首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aerobic chemoheterotrophic bacteria were isolated from surface soils and coastal plain subsurface (including deep aquifer) sediments (depths to 265 m) at a study site near Aiken, S.C., by plating on concentrated and dilute media. Morphologically distinct colonies were purified, and their responses to 21 selected physiological tests were determined. These isolates were quite diverse; 626 physiologically distinct types (i.e., types with a unique pattern of responses to the 21 tests) were detected among the 1,112 isolates obtained. Physiologically distinct types were isolated on concentrated and dilute media (only 11% overlap between the groups); isolates from surface soils and subsurface sediments were also quite different (only 3% overlap). The surface soil isolates more readily utilized all but 1 of 12 carbon sources offered, and a significantly larger proportion of them hydrolyzed esculin and gelatin. Only 4% of the subsurface isolates fermented glucose, even though 82% of them could use it aerobically. l-Malate and d-gluconate were utilized by at least 75% of the subsurface isolates, and seven other carbon sources were used by at least 40% of them. Subsurface isolates from different geological formations (depths) and, to a lesser extent, from the same geological formation at different boreholes differed distinctly in their group responses to certain physiological tests. Moreover, sediments from different depths and boreholes contained physiologically distinct types of bacteria. Thus, considerable bacterial diversity was observed in coastal plain subsurface sediments, even within defined geological formations.  相似文献   

2.
Pankhurst  C.E.  Pierret  A.  Hawke  B.G.  Kirby  J.M. 《Plant and Soil》2002,238(1):11-20
Some agricultural soils in South Eastern Australia with duplex profiles have subsoils with high bulk density, which may limit root penetration, water uptake and crop yield. In these soils, a large proportion (up to 80%) of plant roots maybe preferentially located within the macropores or in the soil within 1–10 mm of the macropores, a zone defined as the macropore sheath (MPS). The chemical and microbiological properties of MPS soil manually dissected from a 1–3 mm wide region surrounding the macropores was compared with that of adjacent bulk soil (>10 mm from macropores) at 4 soil depths (0–20 cm, 20–40 cm, 40–60 cm and 60–80 cm). Compared to the bulk soil, the MPS soil had higher organic C, total N, bicarbonate-extractable P, Ca+, Cu, Fe and Mn and supported higher populations of bacteria, fungi, actinomycetes, Pseudomonas spp., Bacillus spp., cellulolytic bacteria, cellulolytic fungi, nitrifying bacteria and the root pathogen Pythium.In addition, analysis of carbon substrate utilization patterns showed the microbial community associated with the MPS soil to have higher metabolic activity and greater functional diversity than the microbial community associated with the bulk soil at all soil depths. Phospholipid fatty acids associated with bacteria and fungi were also shown to be present in higher relative amounts in the MPS soil compared to the bulk soil. Whilst populations of microbial functional groups in the MPS and the bulk soil declined with increasing soil depth, the differentiation between the two soils in microbiological properties occurred at all soil depths. Soil aggregates (< 0.5 mm diameter) associated with plant roots located within macropores were found to support a microbial community that was quantitatively and functionally different to that in the MPS soil and the bulk soil at all soil depths. The microbial community associated with these soil aggregates thus represented a third recognizable environment for plant roots and microorganisms in the subsoil.  相似文献   

3.
Spatial patterns of microbial communities have been extensively surveyed in well‐developed soils, but few studies investigated the vertical distribution of micro‐organisms in newly developed soils after glacier retreat. We used 454‐pyrosequencing to assess whether bacterial and fungal community structures differed between stages of soil development (SSD) characterized by an increasing vegetation cover from barren (vegetation cover: 0%/age: 10 years), sparsely vegetated (13%/60 years), transient (60%/80 years) to vegetated (95%/110 years) and depths (surface, 5 and 20 cm) along the Damma glacier forefield (Switzerland). The SSD significantly influenced the bacterial and fungal communities. Based on indicator species analyses, metabolically versatile bacteria (e.g. Geobacter) and psychrophilic yeasts (e.g. Mrakia) characterized the barren soils. Vegetated soils with higher C, N and root biomass consisted of bacteria able to degrade complex organic compounds (e.g. Candidatus Solibacter), lignocellulolytic Ascomycota (e.g. Geoglossum) and ectomycorrhizal Basidiomycota (e.g. Laccaria). Soil depth only influenced bacterial and fungal communities in barren and sparsely vegetated soils. These changes were partly due to more silt and higher soil moisture in the surface. In both soil ages, the surface was characterized by OTUs affiliated to Phormidium and Sphingobacteriales. In lower depths, however, bacterial and fungal communities differed between SSD. Lower depths of sparsely vegetated soils consisted of OTUs affiliated to Acidobacteria and Geoglossum, whereas depths of barren soils were characterized by OTUs related to Gemmatimonadetes. Overall, plant establishment drives the soil microbiota along the successional gradient but does not influence the vertical distribution of microbiota in recently deglaciated soils.  相似文献   

4.
塔里木盆地荒漠盐碱生境嗜盐碱细菌的初步研究   总被引:6,自引:0,他引:6  
为了探索塔里木盆地荒漠盐碱生境嗜(耐)盐碱细菌的分离方法,采用纯培养技术探讨了不同土壤预处理方法、盐度及不同分离培养基对不同盐度土壤中嗜(耐)盐碱细菌分离效果的影响。结果表明:高盐土壤嗜(耐)盐碱细菌的多样性高于中度盐分和低度盐分的土壤,而总菌落数则相反;半量的Horikoshi I(NaCl 10%~15%)为3种土样最佳的分离培养基,碱性复合培养基和高盐碱培养基A次之;分离嗜(耐)盐碱细菌以获得资源为主要目的时,富集培养法最佳。以反映土壤嗜(耐)盐碱细菌生态分布而言,用土壤悬液法;塔里木盆地嗜(耐)盐碱细菌生长盐浓度及pH值范围较宽,最适生长盐浓度为10%左右,pH值多为8—10左右。分离到的120株嗜(耐)盐碱细菌中,有33株为嗜盐碱细菌,占分离菌株的27.5%。  相似文献   

5.
Types and properties of some bacteria isolated from hypersaline soils   总被引:4,自引:2,他引:2  
Five rhizosphere soil samples from the dominant xerophytic plants, and nearby root-free soil samples were obtained from a series of hypersaline soils (5.0–10.7% NaCl) from sites near Alicante in Spain. Physico-chemical analyses were made, and the bacterial flora estimated using three different plating media. Counts from rhizosphere soil were always significantly higher than those from root-free soils. A total of 211 strains isolated were purified and identified to genus level; 12 could not be classified. The range of salt concentration allowing growth was determined for each isolate, but this did not correlate with the salt content of the soil habitat. Most isolates appeared to be typical moderate halophiles (with optimum growth between 5 and 15% salts), but about half of them grew on normal media with only 0.9% naCl, a notable difference from moderately halophilic aquatic bacteria. Extreme halophiles were rare but this may have been due to an insufficient incubation period.  相似文献   

6.
Fungi of a forest soil nitrifying at low pH values   总被引:4,自引:0,他引:4  
Abstract No autotrophic nitrifying organisms were found in a podzolic brown earth forming nitrate. 350 fungi and aerobic heterotrophic bacteria were isolated from this soil and examined for their nitrifying abilities. About one quarter of the isolates produced 0.05–0.90 mg N·1−1 nitrite or nitrate in peptone solution, soil extract mixture or sterilised soil. The nitrification rate of the most active fungus, Verticillium lecanii , was highest at pH 3.5 in defined media. The results support the significance of heterotrophic nitrification in acid soils.  相似文献   

7.
The effect of 46 bacterial strains isolated from tilled and non-tilled soils collected at 3 localities on the growth of intraradical hyphae of the arbuscular mycorrhizal (AM) fungusGlomus claroideum was demonstrated. A larger number of stimulatory bacterial isolates was obtained from tilled soils, but the bacteria showing the strongest stimulation of hyphal growth were isolated from a soil that had not been cultivated. Isolates obtained from hyphae of AM fungi showed no substantial stimulatory effects, but produced more uniform effects on hyphal growth than the isolates of bacteria obtained from soil. Bacterial cenoses present in 3 different soils differ significantly in their effects on AM fungi.  相似文献   

8.
In this study, we isolated and compared the weathering effectiveness and population of mineral-weathering bacteria from the rhizosphere and bulk soils of Morus alba grown in a mineral-rich soil. Eighty-four isolates could release Si, Al, K, and Fe from potash feldspar. Weathering effectiveness and pattern of the isolates differed between the rhizosphere and bulk soils. The proportion of the highly effective Si, Al, K, and Fe solubilizers was significantly higher in the rhizosphere soils than in the bulk soils. Notably, the proportion of the highly effective acid-producing isolates was also significantly higher in the rhizosphere soils. The 84 mineral-weathering isolates were affiliated with 15 bacterial genera. Distinct mineral-weathering genera were observed between the rhizosphere and bulk soils. The results suggested that the highly effective mineral-weathering bacteria were selected in the rhizosphere soils and the mineral-weathering bacteria from the rhizosphere and bulk soils might weather potash feldspar through different mechanisms.  相似文献   

9.
The influence of different media and incubation temperatures on the quantification of microbial populations in sorghum, eucalyptus and forest soils was evaluated. Microbial growth was compared by using complex (tryptone soybean agar, TSA, casein-starch, CS, and Martin) and saline (Thorton, M3, Czapeck) media and incubation temperatures of 25 and 30 degrees C. Higher numbers of total bacterial and fungal colony-forming units (CFU) were observed in sorghum soils, and of spore-forming and Gram-negative bacteria in forest soils than other soils. Actinomycetes counts were highest in forest soil when using CS medium at 30 degrees C and in sorghum soil at 25 degrees C in M3 medium. Microorganism counts were dependent on the media and incubation temperatures. The counts at temperatures of 30 degrees C were significantly higher than at 25 degrees C. Microbial quantification was best when using TSA medium for total and spore-forming bacteria, Thorton for Gram-negative bacteria, M3 for actinomycetes, and Martin for fungi.  相似文献   

10.
Aims:  To analyse the arsenic-resistant bacterial communities of two agricultural soils of Bangladesh, to isolate arsenic-resistant bacteria, to study their potential role in arsenic transformation and to investigate the genetic determinants for arsenic resistance among the isolates.
Methods and Results:  Enrichment cultures were performed in a minimal medium in the presence of As(III) and As(V) to isolate resistant bacteria. Twenty-one arsenic-resistant bacteria belonging to different genera of Gram-positive and Gram-negative bacteria were isolated. The isolates, with the exception of Oceanimonas doudoroffii Dhal Rw, reduced 2 mmol l−1 As(V) completely to As(III) in aerobic conditions. Putative gene fragments for arsenite efflux pumps were amplified in isolates from Dhal soil and a putative arsenate reductase gene fragment was amplified from a Bacillus sp. from Rice soil.
Conclusions:  Phylogenetically diverse arsenic-resistant bacteria present in agricultural soils of Bangladesh are capable of reducing arsenate to arsenite under aerobic conditions apparently for detoxification purpose.
Significance and Impact of the Study:  This study provides results on identification, levels of arsenic resistance and reduction of arsenate by the bacterial isolates which could play an important role in arsenic cycling in the two arsenic-contaminated soils in Bangladesh.  相似文献   

11.
The effect of long-term elevated soil Pb levels on soil microbiota was studied at a forest site in Norway, where the soil has been severely contaminated with Pb since the last period of glaciation (several thousand years). Up to 10% Pb (total amount, w/w) has been found in the top layer. The microbial community was drastically affected, as judged from changes in the phospholipid fatty acid (PLFA) pattern. Specific PLFAs that were high in Pb-enriched soil were branched (especially br17:0 and br18:0), whereas PLFAs common in eukaryotic organisms such as fungi (18:2ω6,9 and 20:4) were low compared with levels at adjacent, uncontaminated sites. Congruent changes in the PLFA pattern were found upon analyzing the culturable part of the bacterial community. The high Pb concentrations in the soil resulted in increased tolerance to Pb of the bacterial community, measured using both thymidine incorporation and plate counts. Furthermore, changes in tolerance were correlated to changes in the community structure. The bacterial community of the most contaminated soils showed higher specific activity (thymidine and leucine incorporation rates) and higher culturability than that of control soils. Fungal colony forming units (CFUs) were 10 times lower in the most Pb-enriched soils, the species composition was widely different from that in control soils, and the isolated fungi had high Pb tolerance. The most commonly isolated fungus in Pb-enriched soils was Tolypocladium inflatum. Comparison of isolates from Pb-enriched soil and isolates from unpolluted soils showed that T. inflatum was intrinsically Pb-tolerant, and that the prolonged conditions with high Pb had not selected for any increased tolerance.  相似文献   

12.
A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmolc kg−1, respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils.  相似文献   

13.
The ionizing-radiation-resistant fractions of two soil bacterial communities were investigated by exposing an arid soil from the Sonoran Desert and a nonarid soil from a Louisiana forest to various doses of ionizing radiation using a (60)Co source. The numbers of surviving bacteria decreased as the dose of gamma radiation to which the soils were exposed increased. Bacterial isolates surviving doses of 30 kGy were recovered from the Sonoran Desert soil, while no isolates were recovered from the nonarid forest soil after exposure to doses greater than 13 kGy. The phylogenetic diversities of the surviving culturable bacteria were compared for the two soils using 16S rRNA gene sequence analysis. In addition to a bacterial population that was more resistant to higher doses of ionizing radiation, the diversity of the isolates was greater in the arid soil. The taxonomic diversity of the isolates recovered was found to decrease as the level of ionizing-radiation exposure increased. Bacterial isolates of the genera Deinococcus, Geodermatophilus, and Hymenobacter were still recovered from the arid soil after exposure to doses of 17 to 30 kGy. The recovery of large numbers of extremely ionizing-radiation-resistant bacteria from an arid soil and not from a nonarid soil provides further ecological support for the hypothesis that the ionizing-radiation resistance phenotype is a consequence of the evolution of other DNA repair systems that protect cells against commonly encountered environmental stressors, such as desiccation. The diverse group of bacterial strains isolated from the arid soil sample included 60 Deinococcus strains, the characterization of which revealed nine novel species of this genus.  相似文献   

14.
Abstract In this study, two different agricultural soils were investigated: one organic soil and one sandy soil, from Stend (south of Bergen), Norway. The sandy soil was a field frequently tilled and subjected to crop rotations. The organic soil was permanent grazing land, infrequently tilled. Our objective was to compare the diversity of the cultivable bacteria with the diversity of the total bacterial population in soil. About 200 bacteria, randomly isolated by standard procedures, were investigated. The diversity of the cultivable bacteria was described at phenotypic, phylogenetic, and genetic levels by applying phenotypical testing (Biolog) and molecular methods, such as amplified rDNA restriction analysis (ARDRA); hybridization to oligonucleotide probes; and REP-PCR. The total bacterial diversity was determined by reassociation analysis of DNA isolated from the bacterial fraction of environmental samples, combined with ARDRA and DGGE analysis. The relationship between the diversity of cultivated bacteria and the total bacteria was elucidated. Organic soil exhibited a higher diversity for all analyses performed than the sandy soil. Analysis of cultivable bacteria resulted in different resolution levels and revealed a high biodiversity within the population of cultured isolates. The difference between the two agricultural soils was significantly higher when the total bacterial population was analyzed than when the cultivable population was. Thus, analysis of microbial diversity must ultimately embrace the entire microbial community DNA, rather than DNA from cultivable bacteria.  相似文献   

15.
Four bacterial isolates were examined for their ability to increase the availability of water soluble Cu, Cr, Pb and Zn in soils and for their effect on metals uptake by Zea mays and Sorghum bicolor. Random Amplified Polymorphic DNA (RAPD) analysis was used to show that the bacterial cultures were genetically diverse. Bacterial isolates S3, S28, S22 and S29 had 16S rRNA gene sequences that were most similar to Bacillus subtilis, Bacillus pumilus, Pseudomonas pseudoalcaligenes and Brevibacterium halotolerans based on 100% similarity in their 16S rDNA gene sequence, respectively. Filtrate liquid media that had supported B. pumilus and B. subtilis growth significantly increased Cr and Cu extraction from soil polluted with tannery effluent and from Cu-rich soil, respectively, compared to axenic media. The highest concentrations of Pb (0.2 g kg−1), Zn (4 g kg−1) and Cu (2 g kg−1) were accumulated in shoots of Z. mays grown on Cu-rich soil inoculated with Br. halotolerans. The highest concentration of Cr (5 g kg−1) was accumulated in S. bicolor roots grown in tannery-effluent-polluted soil inoculated with a mixed inoculum of bacterial strains. These results show that bacteria play an important role in increasing metal availability in soil, thus enhancing Cr, Pb, Zn and Cu accumulation by Z. mays and S. bicolor.  相似文献   

16.
不同类型农田土壤对可溶性有机氮、碳的吸附特性   总被引:7,自引:0,他引:7  
研究了陕西关中地区红油土和淋溶褐土耕层土壤对分离的有机肥提取液中可溶性有机氮、碳(SON和SOC)的吸附特性.结果表明:原始物质吸附等温线方程可以反映土壤对可溶性有机氮、碳的吸附特性,土壤吸附SON、SOC的数量与它们各自加入的量呈极显著线性关系.从原始物质吸附等温线方程的分配系数m看,淋溶褐土对SON、SOC的吸附能力强于红油土.红油土对SON、SOC的平均吸附率分别为24.3%和18.8%,淋溶褐土则分别为38.3%和18.6%;两种类型土壤对SON和SOC的吸附能力较低,说明它们在土壤中具有较强的移动性;土壤对SOC的吸附能力弱于SON,说明SOC更易于从土壤中流失.  相似文献   

17.
The use of indigenous bacterial strains is a valuable bioremediation strategy for cleaning the environment from hydrocarbon pollutants. The isolation and selection of hydrocarbon-degrading bacteria is therefore crucial for obtaining the most promising strains for site decontamination. Two different media, a minimal medium supplemented with a mixture of polycyclic aromatic hydrocarbons and a MS medium supplemented with triphenyltetrazolium chloride, were used for the isolation of bacterial strains from two hydrocarbon contaminated soils and from their enrichment phases. The hydrocarbon degradation abilities of these bacterial isolates were easily and rapidly assessed using the 2,6-dichlorophenol indophenol assay. The diversity of the bacterial communities isolated from these two soil samples and from their enrichment phases was evaluated by the combination of a bacterial clustering method, fluorescence ITS-PCR, and bacterial identification by 16S rRNA sequencing. Different PCR-based assays were performed in order to detect the genes responsible for hydrocarbon degradation. The best hydrocarbon-degrading bacteria, including Arthrobacter sp., Enterobacter sp., Sphingomonas sp., Pseudomonas koreensis, Pseudomonas putida and Pseudomonas plecoglossicida, were isolated directly from the soil samples on minimal medium. The nahAc gene was detected only in 13 Gram-negative isolates and the sequences of nahAc-like genes were obtained from Enterobacter, Stenotrophomonas, Pseudomonas brenneri, Pseudomonas entomophila and P. koreensis strains. The combination of isolation on minimal medium with the 2,6-dichlorophenol indophenol assay was effective in selecting different hydrocarbon-degrading strains from 353 isolates.  相似文献   

18.
Natamycin is commonly used to control fungal growth on agar media used for bacterial enumeration or strain isolation. However, there is no conclusive report on the possible effect of this antibiotic on bacterial growth or on the diversity of the recovered soil bacteria. Therefore, the possible effects of natamycin on the numbers of bacteria isolated at 12 degrees C from three different soils and soybean rhizosphere soil were investigated using natamycin concentrations ranging from 0 to 200 mg l(-1). Our results demonstrate that natamycin concentrations, which inhibit the growth of fungi on the media, have a small but significant inhibitory effect on the number of bacterial colony forming units. A natamycin concentration of 50-200 mg l(-1) is required for an efficient control of fungal growth on media in our experimental conditions depending on the soil type. Bacterial community structure was assessed on culturable cells (cells washed from enumeration plates: plate-wash approach) obtained at 12 degrees C from soybean rhizosphere soil by performing Ribosomal Intergenic Spacer Analysis (RISA) fingerprinting. We demonstrate that all natamycin concentrations used alter the structure of the recovered, culturable bacterial community, compared to control without natamycin. Using ARDRA (amplification of the 16S rDNA gene and restriction analysis) genotyping of individual isolates, some differences were observed between the bacterial isolates obtained in the presence or absence of natamycin. Bacterial isolates recovered in the presence of natamycin are more tolerant (maximal growth rate and lag phase) to this compound than those isolated without natamycin, indicating a possible selection of resistant strains. Therefore, high concentration of natamycin cannot be used for isolation of bacterial strains with the aim of studying biodiversity and could bias a selection of strains for practical applications.  相似文献   

19.
Zhang XF  Yao TD  Tian LD  Xu SJ  An LZ 《Microbial ecology》2008,55(3):476-488
The microbial abundance, the percentage of viable bacteria, and the diversity of bacterial isolates from different regions of a 83.45-m ice core from the Puruogangri glacier on the Tibetan Plateau (China) have been investigated. Small subunit 16S rRNA sequences and phylogenetic relationships have been studied for 108 bacterial isolates recovered under aerobic growth conditions from different regions of the ice core. The genomic fingerprints based on ERIC (enterobacterial repetitive intergenic consensus)-polymerase chain reaction and physiological heterogeneity of the closely evolutionary related bacterial strains isolated from different ice core depths were analyzed as well. The results showed that the total microbial cell, percentages of live cells, and the bacterial CFU ranged from 104 to 105 cell ml−1 (Mean, 9.47 × 104; SD, 5.7 × 104, n = 20), 25–81%, and 0–760 cfu ml−1, respectively. The majority of the isolates had 16S rRNA sequences similar to previously determined sequences, ranging from 92 to 99% identical to database sequences. Based on their 16S rRNA sequences, 42.6% of the isolates were high-G + C-content (HGC) gram-positive bacteria, 35.2% were low-G + C (LGC) gram-positive bacteria, 16.6% were Proteobacteria, and 5.6% were CFB group. There were clear differences in the depth distribution of the bacterial isolates. The isolates tested exhibited unique phenotypic properties and high genetic heterogeneity, which showed no clear correlation with depths of bacterial isolation. This layered distribution and high heterogeneity of bacterial isolates presumably reflect the diverse bacterial sources and the differences in bacteria inhabiting the glacier’s surface under different past climate conditions.  相似文献   

20.
In many legumes, the nitrogen fixing root nodules produce H2 gas that diffuses into soil. It has been demonstrated that such exposure of soil to H2 can promote plant growth. To assess whether this may be due to H2-oxidizing microorganisms, bacteria were isolated from soil treated with H2 under laboratory conditions and from soils collected adjacent to H2 producing soybean nodules. Nineteen isolates of H2-oxidizing bacteria were obtained and all exhibited a half-saturation coefficient (Ks) for H2 of about 1 ml l(-1). The isolates were identified as Variovorax paradoxus, Flavobacterium johnsoniae and Burkholderia spp. using conventional microbiological tests and 16S rRNA gene sequence analysis. Seventeen of the isolates enhanced (57-254%) root elongation of spring wheat seedlings. Using an Arabidopsis thaliana bioassay, plant biomass was increased by 11-27% when inoculated by one of four isolates of V. paradoxus or one isolate of Burkholderia that were selected for evaluation. The isolates of V. paradoxus found in both H2-treated soil and in soil adjacent to soybean nodules had the greatest impact on plant growth. The results are consistent with the hypothesis that H2-oxidizing bacteria in soils have plant growth promoting properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号