首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: In this study we have identified specific binding sites for corticotropin-releasing hormone (CRH) in human Y-79 retinoblastoma cell membranes by using 125I-Tyrovine CRH (125I-oCRH) as radioligand. Binding at 19°C was rapid with steady state being reached within 20 min, reversible and linear with membrane protein concentration. The 125I-oCRH binding was enhanced by Mg2+ and inhibited by the GTP analogue guanosine 5'- O -(3'-thiotriphosphate). Y-79 cell membranes exhibited two populations of binding sites, a high-affinity site with an apparent dissociation constant ( K D) of 1 n M and a low-affinity site with an apparent K D of 500 n M . 125I-oCRH binding was completely antagonized by human/rat CRH, [Met(O)21]oCRH, α-helical CRH9–41, urotensin I, and sauvagine with a rank order of potency similar to that displayed by CRH receptors of other tissues. These data describe for the first time the presence of specific CRH-binding sites in retinal cells. The Y-79 cell line may therefore constitute a valuable model in which to study CRH action on retinal cells.  相似文献   

2.
Abstract: In human Y-79 retinoblastoma cells, corticotropin-releasing hormone (CRH) stimulates adenylyl cyclase activity and increases cyclic AMP accumulation. Different CRH analogues mimic the CRH stimulation of adenylyl cyclase and show similar sensitivity to the CRH receptor antagonist α-helical CRH9–41. Vasoactive intestinal peptide (VIP) also increases the enzyme activity but less potently than CRH, and its effect is counteracted by the VIP receptor antagonist [ d - p -Cl-Phe6,Leu17]VIP. The VIP antagonist does not affect the response to CRH. The CRH-stimulated adenylyl cyclase activity is amplified by Mg2+, is inhibited by submicromolar concentrations of Ca2+, and requires GTP. Moreover, the CRH stimulation is reduced by pretreatment of cells with cholera toxin and by incubation of membranes with the RM/1 antibody, which recognizes the C-terminus of the α subunit of Gs. In immunoblots, the RM/1 antibody identifies a doublet of 45 and 52 kDa. Two proteins of similar molecular weights are ADP-ribosylated by cholera toxin. These data demonstrate that in human Y-79 retinoblastoma cells, specific CRH receptors stimulate cyclic AMP formation by interacting with Gs and by affecting a Ca2+-inhibitable form of adenylyl cyclase.  相似文献   

3.
Cyclic AMP-Dependent Melatonin Production in Y79 Human Retinoblastoma Cells   总被引:4,自引:4,他引:0  
Abstract: Melatonin is rhythmically synthesized in some vertebrate retinas and has been implicated in the regulation of key rhythmic events in the photoreceptor-pigment epithelial complex. In human retina, melatonin is present; however, no information exists on the cellular regulation of this hormone. We report here that the established human retinoblastoma cell line Y79 synthesizes and releases melatonin. Treatments that elevate cyclic AMP (cAMP) levels (forskolin, 8-Br-cAMP, and the phosphodiesterase inhibitor 3-isobutyl-1 -meth-ylxanthine) all stimulate melatonin release from static cultures of Y79 cells. Other 8-bromo nucleotide analogues (cyclic GMP, ATP, and AMP) are not effective. These results suggest that Y79 human retinoblastoma cells require a cAMP-dependent mechanism for melatonin biosynthesis similar to that described previously in other vertebrates. This is the first demonstration of melatonin release from a cultured human cell line. These results support the idea that human retinal cells share homologies with pineal cells, as suggested by the condition trilateral retinoblastoma.  相似文献   

4.
Abstract : The aim of the present study was to identify the N-terminal regions of human corticotropin-releasing factor (CRF) receptor type 1 (hCRF-R1) that are crucial for ligand binding. Mutant receptors were constructed by replacing specific residues in hCRF-R1 with amino acids from the corresponding position in the N-terminal region of the human vasoactive intestinal peptide receptor type 2 (hVIP-R2). In cyclic AMP stimulation and CRF binding assays, it was established that two regions within the N-terminal domain were crucial for the binding of CRF receptor agonists and antagonists : one region mapping to amino acids 43-50 and a second amino acid sequence extending from position 76 to 84 of hCRF-R1. Recently, it was found that the latter sequence plays a very important role in determining the high ligand selectivity of the Xenopus CRF-R1 (xCRF-R1). Replacement of amino acids 76-84 of hCRF-R1 with residues from the same segment of the hVIP-R2 N terminus markedly reduced the binding affinity of CRF ligands. Mutation of Arg76 or Asn81 but not Gly83 of hCRF-R1 to the corresponding amino acids of xCRF-R1 or hVIP-R2 resulted in 100-1,000-fold lower affinities for human/rat CRF, rat urocortin, and astressin. These data underline the importance of the N-terminal domain of CRF-R1 in high-affinity ligand binding.  相似文献   

5.
Hydroxyindole-O-methyltransferase (HIOMT), the enzyme in the final step of melatonin synthesis, is present in the Y-79 human retinoblastoma cell line. Using electroblot immunolabellings, a single band corresponding to HIOMT was observed. Immunofluorescence, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and quantification of enzyme activity all revealed dramatic increases in HIOMT in cells attached to substrate compared to cells in suspension culture.  相似文献   

6.
Abstract: Recoverin is a calcium-binding protein expressed in retinal photoreceptors. It appears to delay the termination of the phototransduction cascade by blocking the phosphorylation of photoexcited rhodopsin. The goal of this study was to determine if recoverin mRNA and protein are expressed in cultured human Y79 retinoblastoma cells, so that this cell line could be used as a model to study the mechanism of recoverin gene expression in the retina. A cDNA encoding human recoverin was PCR cloned and used for prokaryotic expression of recoverin protein. Polyclonal antibodies raised against pure recombinant recoverin were used for western blotting and immunocytochemistry of Y79 cells grown as attachment cultures in the presence of the differentiating agents dibutyryl cyclic AMP (dbcAMP) or butyrate. Northern blot analysis was performed on mRNA extracted from Y79 cells that were also treated with the differentiating agents. In Y79 cell monolayer cultures, recoverin was immunolocalized to the cell cytoplasm, and immunoreactivity was increased dramatically by the addition of 2 m M butyrate to the culture medium. Butyrate treatment also caused an increase in the development of neurite-like cellular processes. Addition of 4 m M dbcAMP resulted in a moderate increase in both recoverin immunoreactivity and number of cellular processes. Western and northern blots of butyrate and dbcAMP-treated Y79 cell cultures demonstrated an increase in recoverin protein and RNA expression, respectively, comparable with that observed with immunocytochemistry. These data suggest that, under the influence of the differentiating agent butyrate, Y79 cells exhibit an increase in expression of the photoreceptor protein recoverin and a concomitant morphological differentiation toward a neuronal phenotype.  相似文献   

7.
Preincubation of D384 cells, derived from the human astrocytoma cell line G-CCM, with dopamine resulted in a time-dependent attenuation of cyclic AMP responsiveness to subsequent dopamine stimulation. This effect was agonist specific because the prostaglandin E1 (PGE1) stimulation of cyclic AMP of similarly treated cells remained unchanged. The attenuation by dopamine was concentration dependent with a maximum observed at 100 microM. A comparison of dopamine concentration-response curves of control and dopamine-preincubated cells revealed no change in the Ka apparent value, but a marked attenuation of the maximal response. Preincubation of cells with dopamine in the presence of D1 but not D2 selective antagonists partially prevented the observed attenuation. Attenuations in dopamine responsiveness were also obtained when D384 cells were preincubated with D1 but not D2 receptor agonists. The level of attenuation attained related to agonist efficiency in stimulating cyclic AMP: SKF38393 less than 3,4-dihydroxynomifensine less than fenoldopam less than 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene = dopamine. However, increasing the efficiency of 3,4-dihydroxynomifensine stimulation of cyclic AMP, using the synergistic effect of adding a low concentration of forskolin, produced no further change in the attenuation of the subsequent response to dopamine. Thus, the D1 dopamine receptors expressed by D384 cells undergo homologous desensitization. Uncoupling of the D1 dopamine receptor appears to be independent of cyclic AMP formation, analogous to a mechanism proposed for the beta-adrenergic receptor.  相似文献   

8.
Elements of three neurotransmitter systems were investigated in morphologically undifferentiated human Y-79 retinoblastoma cells in suspension culture. Specific gamma-aminobutyric acid (GABA) uptake, GABA binding, and glycine binding were absent from these cells, although the cells had been shown to exhibit an active uptake and release of [3H]glycine. Binding and competition studies using both alpha- and beta-adrenergic ligands indicated the presence of a beta-adrenergic receptor. This finding was confirmed by treatment of the cells with beta-agonists in competition with a beta-antagonist and with an alpha-antagonist; the level of cyclic AMP was competitively stimulated. Therefore, human Y-79 cells in suspension culture contain beta-adrenergic receptors, and not glycinergic or GABAergic ones. Thus, the Y-79 cells may be of use in studying the factors involved in developmental regulation of neurotransmitter function.  相似文献   

9.
Abstract: Two cDNA clones encoding distinct members of the corticotropin-releasing factor (CRF) receptor family have been isolated from Xenopus laevis with PCR-based approaches. The first full-length cDNA amplified from Xenopus brain encoded a 415-amino acid protein with ∼80% identity to mammalian CRF receptor type 1 (CRF-R1). The second full-length cDNA isolated from Xenopus brain and heart encoded a 413-amino acid protein with ∼81% identity to the α-variant of mammalian CRF receptor, type 2 (CRF-R2). No evidence could be obtained that the β-variant of CRF-R2 existed in Xenopus laevis . Binding studies using human embryonic kidney 293 (HEK 293) cells stably transfected with xenopus CRF-R2 showed that the CRF analogues urotensin I, urocortin, and sauvagine were bound with higher affinities than human/rat CRF, xenopus CRF, and ovine CRF. In contrast to human CRF-R1, xenopus CRF-R1 (xCRF-R1) was very selective for different CRF ligands. Urotensin I, urocortin, human/rat CRF, and xenopus CRF were bound with significantly (10–22-fold) higher affinities than ovine CRF ( K D = 31.7 n M ) and sauvagine ( K D = 51.4 n M ). In agreement with these binding data, EC50 values of 39.7 and 1.1 n M were found for sauvagine and for human/rat CRF or xenopus CRF, respectively, when the cyclic AMP production in HEK 293 cells stably transfected with xCRF-R1 was determined.  相似文献   

10.
Abstract: Cytochemical analysis demonstrated that a high percentage of human Y-79 retinoblastoma cells displayed a specific labeling by the biotinyl derivative of pituitary adenylate cyclase-activating polypeptide (PACAP), a novel neuropeptide of the secretin-vasoactive intestinal peptide (VIP) family of peptides. In cell membranes, the two molecular forms of PACAP, the one with 38 (PACAP 38) and the other with 27 (PACAP 27) amino acids, displaced the binding of 125I-PACAP 27 with IC50 values in the picomolar range and increased adenylyl cyclase activity by 100-fold with EC50 values of 27 and 180 p M , respectively. VIP, human peptide histidine-isoleucine, glucagon, and secretin were much less effective and potent in both receptor assays. The PACAP receptor antagonists PACAP 6–27 and PACAP 6–38 and an antiserum directed against the stimulatory G protein Gs inhibited the PACAP stimulation of adenylyl cyclase. In intact cells, both PACAPs and VIP failed to stimulate the phosphoinositide hydrolysis, whereas in cell membranes PACAP 38, but not the other peptides, produced a modest increase (40%) of inositol phosphate formation with an EC50 value of 22 n M . However, this effect was not antagonized by either PACAP 6–38 or PACAP 6–27. These data demonstrate the presence in human Y-79 retinoblastoma cells of specific PACAP receptors and provide further evidence that PACAP may act as a neurotransmitter/neuromodulator in mammalian retina.  相似文献   

11.
Abstract: In Alzheimer's disease (AD) there are dramatic reductions in human corticotropin-releasing factor (hCRF) concentration and reciprocal increases in CRF receptor density in the cortex. hCRF-binding protein (hCRF-BP), hCRF/hCRF-BP complex, and "free" hCRF were measured in 10 brain regions from control and AD postmortem human tissue. In the control brains hCRF-BP was heterogenously distributed and levels were at least 10-fold higher on a molar basis than total hCRF levels, suggesting that one major role of the binding protein is to limit the actions of hCRF at the hCRF receptors. Concordant with this hypothesis, the percentage of total hCRF that was in the bound inactive form ranged from 65 to 90% in most areas examined, with the exception of the caudate and globus pallidus where only 15 and 40% were complexed, respectively. hCRF-BP concentrations were similar in the control and AD groups except for Brodmann area (BA) 39 where there was a small but significant decrease in the AD group. Complexed hCRF levels were significantly decreased in BA 8/BA 9, BA 22, BA 39, nucleus basalis, and globus pallidus in the Alzheimer's group and free hCRF levels were significantly decreased only in three brain areas, BA 4, BA 39, and caudate; substantial (40%) but nonsignificant decreases were also noted in BA 8/BA 9 and BA 22. These data demonstrate that (1) a large proportion of the total hCRF in human brain is complexed to hCRF-BP and thus unavailable for hCRF receptor activation, (2) reductions in total hCRF alone do not necessarily predict reductions in bioactive free hCRF, and (3) total hCRF levels and hCRF-BP levels appear to be the main factors determining the quantity of bound and free hCRF in human brain.  相似文献   

12.
The nonselective human corticotropin-releasing factor (hCRF) receptor 1 (hCRFR1) and the ligand-selective Xenopus CRFR1 (xCRFR1), xCRFR2, and hCRFR2alpha were compared. To understand the interactions of hCRF, ovine CRF (oCRF), rat urocortin (rUcn), and sauvagine, ligands with different affinities for type 1 and type 2 CRFRs, chimeric and mutant receptors of hCRFR1, xCRFR1, hCRFR2alpha, and xCRFR2 were constructed. In cyclic AMP stimulation and CRF-binding assays, it was established that different extracellular regions of CRFR1 and CRFR2 conferred their ligand selectivities. The ligand selectivity of xCRFR1 resided in five N-terminal amino acids, whereas the N-terminus of both CRFR2 proteins did not contribute to their ligand selectivities. Chimeric receptors in which the first extracellular domain of hCRFR1 replaced that of hCRFR2alpha or xCRFR2 showed a similar pharmacological profile to the two parental CRFR2 molecules. Chimeric receptors carrying the N-terminal domain of xCRFR1 linked to hCRFR2alpha or xCRFR2 displayed a novel pharmacological profile. hCRF, rUcn, and sauvagine were bound with high affinity, whereas oCRF was bound with low affinity. Furthermore, when three or five residues of xCRFR1 (Gln76, Gly81, Val83, His88, Leu89; or Gln76, Gly81, Val83) were introduced into receptor chimeras carrying the N-terminus of hCRFR1 linked to xCRFR2, the same novel pharmacology was observed. These data indicate a compensation mechanism of two differentially selecting regions located in different domains of both xCRFR1 and CRFR2.  相似文献   

13.
Characterization of an Insulin Receptor in Human Y79 Retinoblastoma Cells   总被引:1,自引:0,他引:1  
Cultured human Y79 retinoblastoma cells bind [125I]iodoinsulin in a manner similar to that of other CNS and peripheral tissues. The only difference noted between the insulin binding properties of the Y79 cells and other CNS preparations is that insulin binding to Y79 cells is down-regulated by prolonged exposure of the cells to insulin. By contrast, studies with the various brain preparations indicate that the brain insulin receptor is not down-regulated by circulating levels of insulin. Insulin binding to Y79 cells exhibits negative cooperativity, has a pH optimum of 7.8, is responsive to cations, and gives a curvilinear Scatchard plot. Y79 cell insulin binding capacity is 26 fmol/100 micrograms of cell protein, corresponding to about 125,000 binding sites per cell. These findings are the first to report insulin binding in a human cell line of retinal origin. The characterization of the insulin binding in this cell line may facilitate an understanding of the relationship between insulin and its specific functions in the human retina.  相似文献   

14.
Human Y79 retinoblastoma cells are capable of synthesizing the putative retinal neurotransmitters dopamine and serotonin. Separation of the catecholamines and indolamines by high performance liquid chromatography combined with electrochemical detection showed that the cells readily convert tyrosine to 3,4-dihydroxyphenylalanine (DOPA) and, to a lesser extent, dopamine. When DOPA was added, a large quantity of dopamine was produced, as well as norepinephrine, epinephrine, and 3,4-dihydroxyphenylacetic acid. Exogenous tryptophan added to the cells was partially converted to 5-hydroxytryptophan and serotonin. A larger quantity of serotonin was produced when 5-hydroxytryptophan was added. Y79 cells have a high- and low-affinity uptake system for dopamine and serotonin. The K'm and V'max for the high-affinity uptake of dopamine and serotonin are 2.34 +/- 0.64 and 3.63 +/- 1.15 microM and 4.77 +/- 1.12 and 3.20 +/- 1.20 pmol min-1 mg protein-1, respectively. These kinetic parameters are similar to those reported for other retinal preparations where dopamine and serotonin have been suggested to function as neurotransmitters. Tyrosine and tryptophan, the physiologic precursors of dopamine and serotonin, respectively, and phenylalanine are also taken up by high- and low-affinity transport systems. The kinetic parameters for their high-affinity uptake systems are all very similar, suggesting that they may be taken up by the same transporter. These studies show that a tumor cell line derived from the human retina synthesizes dopamine and serotonin and has high-affinity uptake systems for these compounds and their precursors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Endogenous expression of the corticotropin-releasing factor type 2a receptor [CRF2(a)] but not CRF2(b) and CRF2(c) was observed in higher passage cultures of human Y79 retinoblastoma cells. Functional studies further demonstrated an increase in CRF2(a) mRNA and protein levels with higher passage numbers (> 20 passages). Although the CRF1 receptor was expressed at higher levels than the CRF2(a) receptor, both receptors were easily distinguishable from one another by selective receptor ligands. CRF(1)-preferring or non-selective agonists such as CRF, urocortin 1 (UCN1), and sauvagine stimulated cAMP production in Y79 to maximal responses of approximately 100 pmoles/10(5) cells, whereas the exclusive CRF2 receptor-selective agonists UCN2 and 3 stimulated cAMP production to maximal responses of approximately 25-30 pmoles/10(5) cells. UCN2 and 3-mediated cAMP stimulation was potently blocked by the approximately 300-fold selective CRF2 antagonist antisauvagine (IC50 = 6.5 +/- 1.6 nmol/L), whereas the CRF(1)-selective antagonist NBI27914 only blocked cAMP responses at concentrations > 10 microL. When the CRF(1)-preferring agonist ovine CRF was used to activate cAMP signaling, NBI27914 (IC50 = 38.4 +/- 3.6 nmol/L) was a more potent inhibitor than antisauvagine (IC50 = 2.04 +/- 0.2 microL). Finally, UCN2 and 3 treatment potently and rapidly desensitized the CRF2 receptor responses in Y79 cells. These data demonstrate that Y79 cells express functional CRF1 and CRF2a receptors and that the CRF2(a) receptor protein is up-regulated during prolonged culture.  相似文献   

16.
Abstract: Choline uptake in Y79 human retinoblastoma cells occurs through two kinetically distinguishable processes. The high-affinity system shows little sodium or energy dependence, and it does not appear to be linked to acetyl CoA: choline O -acetyltransferase. When the cells are grown in a culture medium containing 10% fetal bovine serum, the high-affinity system has a K' m= 2.16 ± 0.13 μ m and V' max= 27.0 ± 2.9 pmol min−1 mg−1, whereas the low-affinity system has K' m= 20.4 ± 1.3 μ m and V' max= 402 ± 49 pmol min−1 mg−1. Under these conditions, the polyunsaturated fatty acid content of the cell membranes is relatively low. When the polyunsaturated fatty acid content of the microsomal membrane fraction was increased by supplementing the culture medium with linolenic or docosahexaenoic acids (n-3 polyunsaturated fatty acids) or arachidonic acid (n-6 polyunsaturated fatty acid), the K' m of the high-affinity choline transport system was reduced by 40–60%. The V' max also was reduced by 20–40%. Supplementation with oleic acid, the most prevalent monounsaturated fatty acid, did not affect either kinetic parameter. The results suggest that one functional effect of the high unsaturated fatty acid content of neural cell membranes is to facilitate the capacity of the high-affinity choline uptake system to transport low concentrations of choline. This effect appears to be specific for polyunsaturated fatty acids but not for a single type, for it is produced by members of both the n-3 and n-6 classes of polyunsaturated fatty acids.  相似文献   

17.
Abstract: Phospholipase D (PLD) activity was determined in rat hippocampal slices between postnatal days 3 and 35. After birth, basal PLD activity was low and, within 2 weeks, increased to reach a plateau that was maintained up to the adult age. Likewise the response to glutamate developed postnatally to reach a maximum at day 8, but then faded rapidly and was almost absent at day 35. Activation of PLD by 4β-phorbol 12β,13α-dibutyrate (PDB) was independent of age, whereas the effect of aluminum fluoride (AlF4) increased to a plateau within the first week. At day 8, PLD stimulation by glutamate via metabotropic receptors involved protein kinase C activation, but was independent of Ca2+ influx; the time course of PLD activation by PDB or AlF4 was linear throughout the experiment, whereas the response to glutamate or 1-aminocyclopentane-1,3-dicarboxylic acid followed a biphasic pattern: the rapid "first phase activation" desensitized within a few minutes and disclosed a small, but maintained "second phase." Pretreatment experiments confirmed desensitization of PLD activation by glutamate, but not by AlF4 or PDB. The biphasic pattern of glutamatergic PLD activation changed during development, i.e., the first phase activation faded and the second phase remained. These results were fully confirmed by the time courses of the PLD-mediated efflux of choline evoked by glutamate. In conclusion, postnatal glutamatergic activation of hippocampal PLD is composed of a pronounced and desensitizing first phase activation and a small, but nondesensitizing second phase. The first, but not the second, phase activation fades rapidly during development. The hypothesis is discussed that the glutamatergic activation of PLD occurs along different pathways in neonate and adult tissue.  相似文献   

18.
Abstract: SH-SY5Y neural cells expressing μ- and δ-opioid receptors were maintained viable in isotonic, sodium-free buffer in vitro. Intracellular sodium levels were manipulated by various methods, and ligand binding to intact cells was studied. In physiological buffer containing 118 mM sodium, [3H]Tyr-d -Ala-Gly-(Me)Phe-Gly-ol ([3H]-DAMGO) and [3H]naltrexone bound to μ receptor with KD values of 3.1 and 0.32 nM and Bmax values of 94 and 264 fmol/mg of protein, respectively. Replacement of sodium by choline decreased the affinity of the antagonist and increased Bmax for [3H]DAMGO, without significantly affecting the other corresponding binding parameters. Depolarizing concentrations of KCl (34 mM) in physiological buffer decreased the intracellular sodium levels by 67%, but this did not decrease the [3H]DAMGO binding to the cells. Incubation of cells with monensin and ouabain increased the intracellular sodium levels dramatically (from 78 to 250 and 300 nmol/mg, respectively), with no changes in agonist binding parameters. Ethylisopropylamiloride inhibited [3H]DAMGO and [3H]naloxone binding to intact cells with EC50 values of 24 and 3,600 nM, respectively. Adenylyl cyclase activities measured in intact cells, at different concentrations of sodium, showed the physiological significance of this ion in signal transduction. Potency of DAMGO in inhibiting the forskolin-stimulated adenylyl cyclase activity was significantly higher at lower concentrations of sodium. However, inhibition reached the maximal level only at 50 mM sodium, and typical sigmoidal dose-response curves were obtained only in the presence of 118 mM sodium. Furthermore, even at low or high intracellular sodium levels, DAMGO inhibition of cyclic AMP levels was normal. These results support a role for extracellular sodium in regulating not only the ligand interactions with the receptor, but also the signal transduction through the μ receptor.  相似文献   

19.
Abstract: The kinetic properties of endothelin-1 (ET-1) binding sites and the production of inositol phosphates (IPs; IP1, IP2, IP3), cyclic AMP, thromboxane B2, and prostaglandin F induced by various endothelins (ET-1, ET-2, ET-3, and sarafotoxin S6b) were examined in endothelial cells derived from human brain microvessels (HBECs). The presence of both high- and low-affinity binding sites for ET-1 with KD1 = 122 pM and KD2 = 31 nM, and Bmax1 = 124 fmol/mg of protein and Bmax2 = 909 fmol/mg of protein, respectively, was demonstrated on intact HBECs. ET-1 dose-dependently stimulated IP accumulation with EC50 (IP3) = 0.79 nM, whereas ET-3 was ineffective. The order of potency for displacing ET-1 from high-affinity binding sites (ET-1 > ET-2 > sarafotoxin S6b > ET-3) correlated exponentially with the ability of respective ligands to induce IP3 formation. ET-1-induced IP3 formation by HBEC was inhibited by the ETA receptor antagonist, BQ123. The protein kinase C activator phorbol myristate ester dose-dependently inhibited the ET-1-stimulated production of IPs, whereas pertussis toxin was ineffective. Cyclic AMP production by HBECs was enhanced by both phorbol myristate ester and ET-1, and potentiated by combined treatment with ET-1 and phorbol myristate ester. Data indicate that protein kinase C plays a role in regulating the ET-1-induced activation of phospholipase C, whereas interaction of different messenger systems may regulate ET-1-induced accumulation of cyclic AMP. ET-1 also stimulated endothelial prostaglandin F production, suggesting that activation of phospholipase A2 is most likely secondary to IP3-mediated intracellular calcium mobilization because both ET-1-induced IP3 and prostaglandin F were inhibited by BQ123. These findings are the first demonstration of ET-1 (ETA-type) receptors linked to phospholipase C and phospholipase A2 activation in HBECs.  相似文献   

20.
We compared the response of rat PC12 cells and a derivative PC18 cell line to the effects of adenosine receptor agonists, antagonists, and adenine nucleotide metabolizing enzymes. We found that theophylline (an adenosine receptor antagonist), adenosine deaminase, and AMP deaminase all decreased basal cyclic AMP content and tyrosine hydroxylase activity in the PC12 cells, but not in PC18 cells. Both cell lines responded to the addition of 2-chloroadenosine and 5'-N-ethylcarboxamidoadenosine, adenosine receptor agonists, by exhibiting an increase in tyrosine hydroxylase activity and cyclic AMP content. The latter finding indicates that both cell lines contained an adenosine receptor linked to adenylate cyclase. We found that the addition of dipyridamole, an inhibitor of adenosine uptake, produced an elevation of cyclic AMP and tyrosine hydroxylase activity in both cell lines. Deoxycoformycin, an inhibitor of adenosine deaminase, failed to alter the levels of cyclic AMP or tyrosine hydroxylase activity. This suggests that uptake was the primary inactivating mechanism of adenosine action in these cells. We conclude that both cell types generated adenine nucleotides which activate the adenosine receptor in an autocrine or paracrine fashion. We found that PC12 cells released ATP in a calcium-dependent process in response to activation of the nicotinic receptor. We also measured the rates of degradation of exogenous ATP, ADP, and AMP by PC12 cells. We found that the rates of metabolism of the former two were at least an order of magnitude greater than that of AMP. Any released ATP would be rapidly metabolized to AMP and then more slowly degraded to adenosine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号