首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The mechanism of inhibition and reactivation of chloroplast ATP-synthase by the fungal cyclotetrapeptide tentoxin was investigated by photolabeling experiments, binding studies, and kinetic analysis using synthetic analogues of tentoxin. The alpha-subunit of chloroplast F(1)-ATPase (CF(1)) was specifically labeled by a photoactivatable tentoxin derivative, providing the first direct evidence of tentoxin binding to the alpha-subunit, and 3D homology modeling was used to locate tentoxin in its putative binding site at the alpha/beta interface. The non-photosynthetic F(1)-ATPase from thermophilic bacterium (TF(1)) proved to be also tentoxin-sensitive, and enzyme turnover dramatically increased the rate of tentoxin binding to its inhibitory site, contrary to what was previously observed with epsilon-depleted CF(1) [Santolini, J., Haraux, F., Sigalat, C., Moal, G., and André, F. (1999) J. Biol. Chem. 274, 849-858]. We propose that tentoxin preferentially binds to an ADP-loaded alpha beta pair, and mechanically blocks the catalytic cycle, perhaps by the impossibility of converting this alpha beta pair into an ATP-loaded alpha beta pair. Using (14)C-tentoxin and selected synthetic analogues, we found that toxin binding to the tight inhibitory site of CF(1) exerts some cooperative effect on the loose reactivatory site, but that no reciprocal effect exists. When the two tentoxin-binding sites are filled in reactivated F(1)-ATPase, they do not exchange their role during catalytic turnover, indicating an impairment between nucleotide occupancy and the shape of tentoxin-binding pocket. This analysis provides a mechanical interpretation of the inhibition of F(1)-ATPase by tentoxin and a clue for understanding the reactivation process.  相似文献   

2.
In an effort to understand the catalytic mechanism of the tryptophan synthase beta-subunit from Salmonella typhimurium, possible functional active site residues have been identified (on the basis of the 3-D crystal structure of the bienzyme complex) and targeted for analysis utilizing site-directed mutagenesis. The chromophoric properties of the pyridoxal 5'-phosphate cofactor provide a particularly convenient and sensitive spectral probe to directly investigate changes in catalytic events which occur upon modification of the beta-subunit. Substitution of Asp for Glu 109 in the beta-subunit was found to alter both the catalytic activity and the substrate specificity of the beta-reaction. Steady-state kinetic data reveal that the beta-reaction catalyzed by the beta E109D alpha 2 beta 2 mutant enzyme complex is reduced 27-fold compared to the wild-type enzyme. Rapid-scanning stopped-flow (RSSF) UV-visible spectroscopy shows that the mutation does not seriously affect the pre-steady-state reaction of the beta E109D mutant with L-serine to form the alpha-aminoacrylate intermediate, E(A-A). Binding of the alpha-subunit specific ligand, alpha-glycerol phosphate (GP) to the alpha 2 beta 2 complex exerts the same allosteric effects on the beta-subunit as observed with the wild-type enzyme. However, the pre-steady-state spectral changes for the reaction of indole with E(A-A) show that the formation of the L-tryptophan quinonoid, E(Q3), is drastically altered. Discrimination against E(Q3) formation is also observed for the binding of L-tryptophan to the mutant alpha 2 beta 2 complex in the reverse reaction. In contrast, substitution of Asp for Glu 109 increases the apparent affinity of the beta E109D alpha-aminoacrylate complex for the indole analogue indoline and results in the increased rate of synthesis of the amino acid product dihydroiso-L-tryptophan. Thus, the mutation affects the covalent bond forming addition reactions and the nucleophile specificity of the beta-reaction catalyzed by the bienzyme complex.  相似文献   

3.
The stoichiometry of nucleotide binding to the isolated alpha- and beta-subunits of Escherichia coli F1-ATPase was investigated using two experimental techniques: (a) titration with fluorescent trinitrophenyl (TNP) derivatives of AMP, ADP, and ATP and (b) the centrifuge column procedure using the particular conditions of Khananshvili and Gromet-Elhanan (Khananshvili, D., and Gromet-Elhanan, Z. (1985) FEBS Lett. 178, 10-14). Both procedures showed that alpha-subunit contains one nucleotide-binding site, confirming previous work. TNP-ADP and TNP-ATP bound to a maximal level of 1 mol/mol beta-subunit, consistent with previous equilibrium dialysis studies which showed isolated beta-subunit bound 1 mol of ADP or ATP per mol (Issartel, J. P., and Vignais, P. V. (1984) Biochemistry 23, 6591-6595). However, binding of only approximately 0.1 mol of ATP or ADP per mol of beta-subunit was detected using centrifuge columns. Our results are consistent with the conclusion that each of the alpha- and beta-subunits contains one nucleotide-binding domain. Because the subunit stoichiometry is alpha 3 beta 3 gamma delta epsilon, this can account for the location of the six known nucleotide-binding sites in E. coli F1-ATPase. Studies of in vitro assembly of isolated alpha-, beta-, and gamma- subunits into an active ATPase showed that ATP, GTP, and ITP all supported assembly, with half-maximal reconstitution of ATPase occurring at concentrations of 100-200 microM, whereas ADP, GDP, and IDP did not. Also TNP-ATP supported assembly and TNP-ADP did not. The results demonstrate that (a) the nucleotide-binding site on beta-subunit has to be filled for enzyme assembly to proceed, whereas occupancy of the alpha-subunit nucleotide-binding site is not required, and (b) that enzyme assembly requires nucleoside triphosphate.  相似文献   

4.
J G Wise  B J Hicke  P D Boyer 《FEBS letters》1987,223(2):395-401
Under appropriate conditions tight, noncovalent binding of 2-azido-adenine nucleotides to either catalytic or noncatalytic binding sites on the E. coli F1-ATPase occurs. After removal of unbound ligands, UV-irradiation results primarily in the covalent incorporation of nucleotide moieties into the beta-subunit in both catalytic and noncatalytic site labeling experiments. Minor labeling of the alpha-subunit was also observed. After trypsin digestion and purification of the labeled peptides, microsequencing studies identified two adjacent beta-subunit tryptic peptides labeled by 2-azido-ADP or -ATP. These beta-subunit peptides were labeled on tyrosine-331 (catalytic sites) and tyrosine-354 (noncatalytic sites) in homology with the labeling patterns of the mitochondrial and chloroplast enzymes.  相似文献   

5.
The alpha-subunit of tryptophan synthase (alphaTS) catalyzes the cleavage of indole-3-glycerol phosphate to glyceraldehyde-3-phosphate and indole, which is used to yield the amino acid tryptophan in tryptophan biosynthesis. Here, we report the first crystal structures of wild-type and double-mutant P28L/Y173F alpha-subunit of tryptophan synthase from Escherichia coli at 2.8 and 1.8A resolution, respectively. The structure of wild-type alphaTS from E. coli was similar to that of the alpha(2)beta(2) complex structure from Salmonella typhimurium. As compared with both structures, the conformational changes are mostly in the interface of alpha- and beta-subunits, and the substrate binding region. Two sulfate ions and two glycerol molecules per asymmetric unit bind with the residues in the active sites of the wild-type structure. Contrarily, double-mutant P28L/Y173F structure is highly closed at the window for the substrate binding by the conformational changes. The P28L substitution induces the exposure of hydrophobic amino acids and decreases the secondary structure that causes the aggregation. The Y173F suppresses to transfer a signal from the alpha-subunit core to the alpha-subunit surface involved in interactions with the beta-subunit and increases structural stability.  相似文献   

6.
We have studied the kinetics of "unisite" ATP hydrolysis and synthesis in seven mutant Escherichia coli F1-ATPase enzymes. The seven mutations are distributed over a 105-residue segment of the catalytic nucleotide-binding domain in beta-subunit and are: G142S, K155Q, K155E, E181Q, E192Q, M209I, and R246C. We report forward and reverse rate constants and equilibrium constants in all seven mutant enzymes for the four steps of unisite kinetics, namely (i) ATP binding/release, (ii) ATP hydrolysis/synthesis, (iii) Pi release/binding, and (iv) ADP release/binding. The seven mutant enzymes displayed a wide range of deviations from normal in both rate and equilibrium constants, with no discernible common pattern. Notably, steep reductions in Kd ATP were seen in some cases, the value of Kd Pi was high, and K2 (ATP hydrolysis/synthesis) was relatively unaffected. Significantly, when the data from the seven mutations were combined with previous data from two other E. coli F1-beta-subunit mutations (D242N, D242V), normal E. coli F1, soluble and membranous mitochondrial F1, it was found that linear free energy relationships obtained for both ATP binding/release (log k+1 versus log K1) and ADP binding/release (log k-4 versus log K-4). Two conclusions follow. 1) The seven mutations studied here cause subtle changes in interactions between the catalytic nucleotide-binding domain and substrate ATP or product ADP. 2) The mitochondrial, normal E. coli, and nine total beta-subunit mutant enzymes represent a continuum in which subtle structural differences in the catalytic site resulted in changes in binding energy; therefore insights into the nature of energy coupling during ATP hydrolysis and synthesis by F1-ATPase may be ascertained by detailed studies of this group of enzymes.  相似文献   

7.
Integration host factor (IHF) is a protein that binds to the H' site of bacteriophage lambda with sequence specificity. Genetic experiments implicated amino acid residue Glu(44) of the beta-subunit of IHF in discrimination against substitution of A for T at position 44 of the TTR submotif of the binding site (Lee, E. C., Hales, L. M., Gumport, R. I., Gardner, J. F. (1992) EMBO J., 11, 305-313). We have extended this observation by generating all possible single-base substitutions at positions 43, 44, and 45 of the H' site. IHF failed to bind these H' site substitution mutants in vivo. The K(d)(app) value for each H' site substitution, except for H'45A mutant, was reduced >2000-fold relative to the wild-type site. Substitution of amino acid beta-Glu(44) with alanine prevented IHF from discriminating against the H'44A variant but not the other H' site substitution mutants. Further analysis with other substitutions at position beta44 demonstrated that both oxygens of the wild-type glutamic acid are necessary for discrimination of AT at position 44. Because the beta-Glu(44) residue does not contact the DNA, this residue probably enforces binding specificity indirectly through interaction with amino acids that themselves contact the DNA.  相似文献   

8.
Tentoxin, produced by phytopathogenic fungi, selectively affects the function of the ATP synthase enzymes of certain sensitive plant species. Binding of tentoxin to a high affinity (K(i) approximately 10 nM) site on the chloroplast F(1) (CF(1)) strongly inhibits catalytic function, whereas binding to a second, lower affinity site (K(d) > 10 microM) leads to restoration and even stimulation of catalytic activity. Sensitivity to tentoxin has been shown to be due, in part, to the nature of the amino acid residue at position 83 on the catalytic beta subunit of CF(1). An aspartate in this position is required, but is not sufficient, for tentoxin inhibition. By comparison with the solved structure of mitochondrial F(1) [Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628], Asp83 is probably located at an interface between alpha and beta subunits on CF(1) where residues on the alpha subunit could also participate in tentoxin binding. A hybrid core F(1) enzyme assembled with beta and gamma subunits of the tentoxin-sensitive spinach CF(1), and an alpha subunit of the tentoxin-insensitive photosynthetic bacterium Rhodospirillum rubrum F(1) (RrF(1)), was stimulated but not inhibited by tentoxin [Tucker, W. C., Du, Z., Gromet-Elhanan, Z. and Richter, M. L. (2001) Eur. J. Biochem. 268, 2179-2186]. In this study, chimeric alpha subunits were prepared by introducing short segments of the spinach CF(1) alpha subunit from a poorly conserved region which is immediately adjacent to beta-Asp83 in the crystal structure, into equivalent positions in the RrF(1) alpha subunit using oligonucleotide-directed mutagenesis. Hybrid enzymes containing these chimeric alpha subunits had both the high affinity inhibitory tentoxin binding site and the lower affinity stimulatory site. Changing beta-Asp83 to leucine resulted in loss of both inhibition and stimulation by tentoxin in the chimeras. The results indicate that tentoxin inhibition requires additional alpha residues that are not present on the RrF(1) alpha subunit. A structural model of a putative inhibitory tentoxin binding pocket is presented.  相似文献   

9.
The photoaffinity phosphate analogue 4-azido-2 nitrophenyl phosphate (ANPP) was shown previously (Pougeois, R., Lauquin, G. J.-M., and Vignais, P. V. (1983) Biochemistry 22, 1241-1245) to bind covalently and specifically to a single catalytic site on one of the three beta-subunits of the isolated chloroplast coupling factor 1 (CF(1)). Modification by ANPP strongly inhibited ATP hydrolysis activity. In this study, we examined labeling of membrane-bound CF(1) by ANPP by exposing thylakoid membranes to increasing concentrations of the reagent. ANPP exhibited saturable binding to two sites on CF(1), one on the beta-subunit and one on the alpha-subunit. Labeling by ANPP resulted in the complete inhibition of both ATP synthesis and ATP hydrolysis by the membrane-bound enzyme. Labeling of both sites by ANPP was reduced by more than 80% in the presence of P(i) (> or = 10 mM) and ATP (> or = 0.5 mM). ADP was less effective in competing with ANPP for binding, giving a maximum of approximately 35% inhibition at concentrations > or = 2 mM. ANPP-labeled tryptic peptides of the alpha-subunit were isolated and sequenced. The majority of the probe was contained in three peptides corresponding to residues Gln(173) to Arg(216), Gly(217) to Arg(253), and His(256) to Arg(272) of the alpha-subunit. In the mitochondrial F(1) (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628), all three analogous peptides are located within the nucleotide binding pocket and within close proximity to the gamma-phosphate binding site. The data indicate, however, that the azidophenyl group of bound ANPP is oriented at approximately 180 degrees in the opposite direction to the adenine binding site with reference to the phosphate binding site on the alpha-subunit. The study has confirmed that ANPP is a bona fide phosphate analogue and suggests that it specifically targets the gamma-phosphate binding site within the nucleotide binding pockets on the alpha- and beta-subunits of CF(1). The study also indicates that in the resting state of the chloroplast F(1)-F(0) complex both the alpha- and beta-subunits are structurally asymmetric.  相似文献   

10.
Tryptophan synthase is a bifunctional alpha(2)beta(2) complex catalyzing the last two steps of l-tryptophan biosynthesis. The natural substrates of the alpha-subunit indole- 3-glycerolphosphate and glyceraldehyde-3-phosphate, and the substrate analogs indole-3-propanolphosphate and dl-alpha-glycerol-3-phosphate are allosteric effectors of the beta-subunit activity. It has been shown recently, that the indole-3-acetyl amino acids indole-3-acetylglycine and indole-3-acetyl-l-aspartic acid are both alpha-subunit inhibitors and beta-subunit allosteric effectors, whereas indole-3-acetyl-l-valine is only an alpha-subunit inhibitor (Marabotti, A., Cozzini, P., and Mozzarelli, A. (2000) Biochim. Biophys. Acta 1476, 287-299). The crystal structures of tryptophan synthase complexed with indole-3-acetylglycine and indole-3-acetyl-l-aspartic acid show that both ligands bind to the active site such that the carboxylate moiety is positioned similarly as the phosphate group of the natural substrates. As a consequence, the residues of the alpha-active site that interact with the ligands are the same as observed in the indole 3-glycerolphosphate-enzyme complex. Ligand binding leads to closure of loop alphaL6 of the alpha-subunit, a key structural element of intersubunit communication. This is in keeping with the allosteric role played by these compounds. The structure of the enzyme complex with indole-3-acetyl-l-valine is quite different. Due to the hydrophobic lateral chain, this molecule adopts a new orientation in the alpha-active site. In this case, closure of loop alphaL6 is no longer observed, in agreement with its functioning only as an inhibitor of the alpha-subunit reaction.  相似文献   

11.
The Atp12p protein of Saccharomyces cerevisiae is required for the assembly of the F(1) component of the mitochondrial F(1)F(0) ATP synthase. In this report, we show that the F(1) alpha-subunit co-precipitates and co-purifies with a tagged form of Atp12p adsorbed to affinity resins. Moreover, sedimentation analysis indicates that in the presence of the F(1) alpha-subunit, Atp12p behaves as a particle of higher mass than is observed in the absence of the alpha-subunit. Yeast two-hybrid screens confirm the direct association of Atp12p with the alpha-subunit and indicate that the binding site for the assembly factor lies in the nucleotide-binding domain of the alpha-subunit, between Asp133 and Leu322. These studies provide the basis for a model of F(1) assembly in which Atp12p is released from the alpha-subunit in exchange for a beta-subunit to form the interface that contains the non-catalytic adenine nucleotide-binding site.  相似文献   

12.
The alpha-subunit of Escherichia coli F1-ATPase contains an adenine-specific noncatalytic nucleotide-binding domain. A recent proposal (Maggio, M. B., Pagan, J., Parsonage, D., Hatch, L., and Senior, A. E. (1987) J. Biol. Chem. 262, 8981-8984) suggested that this domain is formed by residues 160-340, approximately, in alpha-subunit. Within this proposed domain is a sequence Gly-X-X-X-X-Gly-Lys which is conserved in a large and diverse group of nucleotide-binding proteins and is thought to interact with phosphate groups of bound nucleotide. In this work, residue alpha Lys-175, the terminal residue of the above conserved sequence in F1-alpha-subunit, was mutagenized to Ile or Glu. The specific activity of purified mutant F1-ATPase was reduced by 2.5-fold (Ile) or 3-fold (Glu). Apparent binding of ATP to alpha-subunit, as measured by the centrifuge column procedure, was strongly impaired and ATP-induced conformational change in alpha-subunit, as measured by protection against trypsin proteolysis, was nearly abolished in both mutants. The results suggest that residue alpha Lys-175 is located within the nucleotide-binding domain of alpha-subunit, and that this residue is functionally involved in nucleotide binding. The results support previous suggestions that the alpha-subunit nucleotide-binding site is not involved, directly or indirectly, in catalysis.  相似文献   

13.
The quinol-fumarate reductase (QFR) respiratory complex of Escherichia coli is a four-subunit integral-membrane complex that catalyzes the final step of anaerobic respiration when fumarate is the terminal electron acceptor. The membrane-soluble redox-active molecule menaquinol (MQH(2)) transfers electrons to QFR by binding directly to the membrane-spanning region. The crystal structure of QFR contains two quinone species, presumably MQH(2), bound to the transmembrane-spanning region. The binding sites for the two quinone molecules are termed Q(P) and Q(D), indicating their positions proximal (Q(P)) or distal (Q(D)) to the site of fumarate reduction in the hydrophilic flavoprotein and iron-sulfur protein subunits. It has not been established whether both of these sites are mechanistically significant. Co-crystallization studies of the E. coli QFR with the known quinol-binding site inhibitors 2-heptyl-4-hydroxyquinoline-N-oxide and 2-[1-(p-chlorophenyl)ethyl] 4,6-dinitrophenol establish that both inhibitors block the binding of MQH(2) at the Q(P) site. In the structures with the inhibitor bound at Q(P), no density is observed at Q(D), which suggests that the occupancy of this site can vary and argues against a structurally obligatory role for quinol binding to Q(D). A comparison of the Q(P) site of the E. coli enzyme with quinone-binding sites in other respiratory enzymes shows that an acidic residue is structurally conserved. This acidic residue, Glu-C29, in the E. coli enzyme may act as a proton shuttle from the quinol during enzyme turnover.  相似文献   

14.
15.
In our previous work, we demonstrated that the replacement of the "heme binding module," a segment from F1 to G5 site, in myoglobin with that of hemoglobin alpha-subunit converted the heme proximal structure of myoglobin into the alpha-subunit type (Inaba, K., Ishimori, K. and Morishima, I. (1998) J. Mol. Biol. 283, 311-327). To further examine the structural regulation by the heme binding module in hemoglobin, we synthesized the betaalpha(HBM)-subunit, in which the heme binding module (HBM) of hemoglobin beta-subunit was replaced by that of hemoglobin alpha-subunit. Based on the gel chromatography, the betaalpha(HBM)-subunit was preferentially associated with the alpha-subunit to form a heterotetramer, alpha(2)[betaalpha(HBM)(2)], just as is native beta-subunit. Deoxy-alpha(2)[betaalpha(HBM)(2)] tetramer exhibited the hyperfine-shifted NMR resonance from the proximal histidyl N(delta)H proton and the resonance Raman band from the Fe-His vibrational mode at the same positions as native hemoglobin. Also, NMR spectra of carbonmonoxy and cyanomet alpha(2)[betaalpha(HBM)(2)] tetramer were quite similar to those of native hemoglobin. Consequently, the heme environmental structure of the betaalpha(HBM)-subunit in tetrameric alpha(2)[betaalpha(HBM)(2)] was similar to that of the beta-subunit in native tetrameric Hb A, and the structural conversion by the module substitution was not clear in the hemoglobin subunits. The contrastive structural effects of the module substitution on myoglobin and hemoglobin subunits strongly suggest different regulation mechanisms of the heme proximal structure between these two globins. Whereas the heme proximal structure of monomeric myoglobin is simply determined by the amino acid sequence of the heme binding module, that of tetrameric hemoglobin appears to be closely coupled to the subunit interactions.  相似文献   

16.
17.
Two highly conserved amino acid residues, an arginine and a glutamine, located near the C-terminal end of the gamma subunit, form a "catch" by hydrogen bonding with residues in an anionic loop on one of the three catalytic beta subunits of the bovine mitochondrial F1-ATPase [Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628]. The catch is considered to play a critical role in the binding change mechanism whereby binding of ATP to one catalytic site releases the catch and induces a partial rotation of the gamma subunit. This role is supported by the observation that mutation of the equivalent arginine and glutamine residues in the Escherichia coli F1 gamma subunit drastically reduced all ATP-dependent catalytic activities of the enzyme [Greene, M. D., and Frasch, W. D. (2003) J. Biol. Chem. 278, 5194-5198]. In this study, we show that simultaneous substitution of the equivalent residues in the chloroplast F1 gamma subunit, arginine 304 and glutamine 305, with alanine decreased the level of proton-coupled ATP synthesis by more than 80%. Both the Mg2+-dependent and Ca2+-dependent ATP hydrolysis activities increased by more than 3-fold as a result of these mutations; however, the sulfite-stimulated activity decreased by more than 60%. The Mg2+-dependent, but not the Ca2+-dependent, ATPase activity of the double mutant was insensitive to inhibition by the phytotoxic inhibitor tentoxin, indicating selective loss of catalytic cooperativity in the presence of Mg2+ ions. The results indicate that the catch residues are required for efficient proton coupling and for activation of multisite catalysis when MgATP is the substrate. The catch is not, however, required for CaATP-driven multisite catalysis or, therefore, for rotation of the gamma subunit.  相似文献   

18.
Seventeen mutations in beta-subunit of Escherichia coli F1-ATPase which had previously been characterized in strain AN1272 (Mu-induced mutant) were expressed in strain JP17 (beta-subunit gene deletion). Six showed unchanged behavior, namely: C137Y; G142D; G146S; G207D; Y297F; and Y354F. Five failed to assemble F1F0 correctly, namely: G149I; G154I; G149I,G154I; G223D; and P403S,G415D. Six assembled F1F0 correctly, but with membrane ATPase lower than in AN1272, namely: K155Q; K155E; E181Q; E192Q; D242N; and D242V. AN1272 was shown to unexpectedly produce a small amount of wild-type beta-subunit; F1-ATPase activities reported previously in AN1272 were referable to hybrid enzymes containing both mutant and wild-type beta-subunits. Purified F1 was obtained from K155Q; K155E; E181Q; E192Q; and D242N mutants in JP17. Vmax ATPase values were lower, and unisite catalysis rate and equilibrium constants were perturbed to greater extent, than in AN1272. However, general patterns of perturbation revealed by difference energy diagrams were similar to those seen previously, and the new data correlated well in linear free energy relationships for reaction steps of unisite catalysis. Correlation between multisite and unisite ATPase activity was seen in the new enzymes. Overall, the data give strong support to previously proposed mechanisms of unisite catalysis, steady-state catalysis, and energy coupling in F1-ATPases (Al-Shawi, M. K., Parsonage, D. and Senior, A. E. (1990) J. Biol. Chem. 265, 4402-4410). The K155Q, K155E, D242N, and E181Q mutations caused 5000-fold, 4000-fold, 1800-fold, and 700-fold decrease, respectively, in Vmax ATPase, implying possibly direct roles for these residues in catalysis. Experiments with the D242N mutant suggested a role for residue beta D242 in catalytic site Mg2+ binding.  相似文献   

19.
Rapid-scanning stopped-flow (RSSF) UV-visible spectroscopy has been used to investigate the effects of single amino acid mutations in the alpha-subunit of the Salmonella typhimurium tryptophan synthase bienzyme complex on the reactivity at the beta-subunit active site located 25 to 30 A distant. The pyridoxal 5'-phosphate (PLP) cofactor provides a convenient spectroscopic probe to directly monitor catalytic events at the beta-active site. Single substitutions of Phe for Glu at position 49, Leu for Gly at position 51, or Tyr for Asp at position 60 in the alpha-subunit strongly alter the observed steady state and pre-steady state inhibitory effects of the alpha-subunit-specific ligand alpha-glycerophosphate (GP) on the PLP-dependent beta-reaction. However, similar GP-induced allosteric effects on the distribution of covalent intermediates bound at the beta-site that are observed with the wild-type enzyme (Houben, K.F., and Dunn, M.F. (1990) Biochemistry 29, 2421-2429) also are observed for each of the mutant bienzyme complexes. These results support the hypothesis that the preferred pathway of indole from solution into the beta-site is via the alpha-site and the interconnecting tunnel (Dunn, M.F., Aguilar, V., Brzovi?, P., Drewe, W.F., Houben, K.F., Leja, C.A., and Roy, M. (1990) Biochemistry 29, 8598-8607). Residues alpha E49, alpha G51, and alpha D60 are part of a highly conserved inserted sequence in the alpha/beta-barrel topology of the alpha-subunit. We propose that the GP-induced inhibition of the beta-reaction results, in part, from a ligand-dependent conformational change from an "open" to a "closed" structure of the alpha-subunit which involves this region of the alpha-subunit and serves to obstruct the direct access of indole into the tunnel. Our findings suggest that the altered kinetic behavior observed for the alpha-mutants in the presence of GP reflects an impaired ability of the modified bienzyme complex to undergo the conformational transition from the open to the closed form.  相似文献   

20.
J Pagan  A E Senior 《FEBS letters》1990,273(1-2):147-149
It is shown that ATP dissociates very slowly (koff less than 6.4 x 10(5) s-1, t1/2 greater than 3 h) from the three noncatalytic sites of E. coli F1-ATPase and that ADP dissociates from these three sites in a homogeneous fashion with koff = 1.5 x 10(-4) s-1 (t1/2 = 1.35 h). Mutagenesis of alpha-subunit residues R171 and Q172 in the 'glycine-rich loop' (Homology A) consensus region of the noncatalytic sites was carried out to test the hypothesis that unusually bulky residues at these positions are responsible wholly or partly for the observed tight binding of adenine nucleotides. The mutations alpha Q172G or alpha R171S,Q172G had no effects on ATP or ADP binding to or rates of dissociation from F1 noncatalytic sites. KdATP and KdADP of isolated alpha-subunit were weakened by approximately 1 order of magnitude in both mutants. The results suggest that neither residue alpha R171 nor alpha Q172 interacts directly with bound nucleotide, and show that the presence of bulky residues per se in the glycine-rich loop region of F1-alpha-subunit is not responsible for tight binding in the noncatalytic sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号