首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Internal Ca2+ mobilization and secretion in bovine adrenal chromaffin cells   总被引:5,自引:0,他引:5  
T R Cheek  O Thastrup 《Cell calcium》1989,10(4):213-221
Since secretion from intact bovine adrenal chromaffin cells in response to depolarization by nicotine is triggered by a rise in the concentration of intracellular Ca2+ ([Ca2+]i) to about 200-300 nM above basal, it has been assumed that the failure of the inositol 1,4,5-trisphosphate (InsP3)-mobilizing muscarinic agonists to induce secretion reflects the fact that the 50 nM rise in [Ca2+]i they elicit is insufficient to trigger the exocytotic machinery. A recent report, however, has demonstrated that some of the nicotine-induced rise in [Ca2+]i could originate from the InsP3-releasable Ca2+ store. The role of this Ca2+ store in secretion from bovine adrenal chromaffin cells is therefore unclear. In order to investigate in more detail the role of the InsP3-sensitive Ca2+ store in secretion from these cells, we have used a combination of an InsP3-mobilizing muscarinic agonist and the sesquiterpene lactone thapsigargin (TG), which releases internal Ca2+ without concomitant breakdown of inositol lipids or protein kinase C activation, to examine the events which follow depletion of the releasable Ca2+ store in these cells. Monitoring [Ca2+]i using Fura-2 demonstrated that TG released Ca2+ from the InsP3-sensitive store and, additionally, that the Ca2+ response to TG was composed of two distinct, temporally separated, components: a) a slow (1 min) increase in [Ca2+]i to approximately 50 nM above basal that was independent of extracellular Ca2+ and b) the maintenance of this level at a new steady-state that was dependent on the continual entry of extracellular Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effect of elastin peptides (Kappa-elastin) was investigated on human monocytes. The data presented here indicate that elastin peptides increase the intracellular Ca2+ level measured by Quin 2 fluorescence and mediate the release of beta glucuronidase and elastase. The O2 consumption and H2O2 release were stimulated in a dose-dependent manner. The early rise of cAMP was followed by a return to the original level at 30 min and by a concomitant increase of cGMP level. The action of elastin peptides on intracellular calcium level and cGMP levels may well be related to its previously demonstrated chemotactic activity. These activities may well play a role in the modifications of the extracellular matrix following elastin degradation as observed in atherosclerosis, emphysema and aging.  相似文献   

3.
The effect of the carcinogen safrole on intracellular Ca2+ mobilization and on viability of human PC3 prostate cancer cells was examined. Cytosolic free Ca2+ levels ([Ca2+]i) were measured by using fura-2 as a probe. Safrole at concentrations above 10 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 350 microM. The Ca2+ signal was reduced by more than half after removing extracellular Ca2+ but was unaffected by nifedipine, nicardipine, nimodipine, diltiazem, or verapamil. In Ca2+-free medium, after treatment with 650 microM safrole, 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) failed to release Ca2+. Neither inhibition of phospholipase C with U73122 nor modulation of protein kinase C activity affected safrole-induced Ca2+ release. Overnight incubation with 0.65-65 microM safrole did not affect cell viability, but incubation with 325-625 microM safrole decreased viability. Collectively, the data suggest that in PC3 cells, safrole induced a [Ca2+]i increase by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C- and protein kinase C-independent fashion, and by inducing Ca2+ influx. Safrole can decrease cell viability in a concentration-dependent manner.  相似文献   

4.
The effects of ionophores, which can carry alkali metal cations, on platelet aggregation were examined. At an alkaline extracellular pH, alkali metal cation/H+ exchanger nigericin accelerated aggregation in K+-enriched medium, whereas it rather inhibited aggregation in Na+-enriched medium, even though the intracellular pH was only slightly alkaline. The inhibitory effect of Na+ on platelet aggregation was more clearly shown with the alkali metal cation exchanger gramicidin D. The ionophore had no effect or a slightly accelerative effect on aggregation in K+-enriched medium, whereas it significantly inhibited aggregation induced by thrombin, ADP and platelet activating factor in Na+-enriched medium. Fluorescence studies on fura-2-labeled platelets revealed that in Na+-enriched medium gramicidin D inhibited agonist-induced Ca2+ mobilization both in the presence and absence of extracellular Ca2+. These results suggest that the intracellular Na+ inhibits platelet aggregation by inhibiting Ca2+ mobilization.  相似文献   

5.
Summary The effects of agents known to interfere with Ca2+ release processes of endoplasmic reticulum were investigated in bradykinin (BK)-stimulated bovine aortic endothelial cells (BAE cells), via the activation of Ca2+-activated potassium channels [K(Ca2+) channels]. In cell-attached patch experiments, the external application of caffeine (1 mm) caused a brief activation of K(Ca2+) channels in Ca2+-free and Ca2+-containing external solutions. The application of BK (10 nm) during cell stimulation by caffeine (1–20 mm) invariably led to a drastic channel activation which was maintained during a recording period longer than that observed in caffeine-free conditions. In addition, the cell exposure to caffeine (20 mm) during the BK stimulation enhanced systematically the channel activation process. Since a rapid inhibition of BK-evoked channel activity was also produced by removing caffeine from the bath medium, it is proposed that the sustained single-channel response recorded in the concomittant presence of both agents was due to their synergic action on internal stores and/or the external Ca2+ entry pathway resulting in an increased [Ca2+]i. In addition, the local anesthetic, procaine, depressed the initial BK-induced K(Ca2+) channel activity and completely blocked the secondary phase of the channel activation process related to the external Ca2+ influx into stimulated cells. In contrast, this blocking effect of procaine was not observed on the initial caffeine-elicited channel activity and could not suppress the external Ca2+-dependent phase of this channel activation process. Our results confirm the existence of at least two pharmacologically distinct types of Ca2+-release from internal stores in BAE cells: an inositol 1,4,5-triphosphate (InsP3)-dependent and a caffeine-induced Ca2+-release process.The authors would like to thank Dr. A. Diarra for his contribution to the fluorescence measurements and Diane Vallerand for preparing cell cultures. These data were presented in part at the 14th Scientific Meeting of the International Society of Hypertension (Madrid, Spain, June 14–18, 1992), and have been published in abstract form in the Journal of Hypertension (1992). Dominique Thuringer is a fellow of the Heart and Stroke Foundation of Canada. Rémy Sauvé is a senior fellow from the Fonds de la Recherche en Santé du Québec. This work was supported by a grant from the Medical Research Council of Canada.  相似文献   

6.
In fura-2-loaded human periodontal ligament (HPDL) cells, bradykinin induced a rapidly transient increase and subsequently sustained increase in cytosolic Ca2+ ([Ca2+]i). When external Ca2+ was chelated by EGTA, the transient peak of [Ca2+]i was reduced and the sustained level was abolished, implying the Ca2+ mobilization consists of intracellular Ca2+ release and Ca2+ influx. Thapsigargin, a specific Ca2+-ATPase inhibitor for inositol 1,4,5-trisphosphate (1,4,5-1P3)-sensitive Ca2+ pool, induced an increase in [Ca2+]i in the absence of external Ca2+. After depletion of the intracellular Ca2+ pool by thapsigargin, the increase in [Ca2+]i induced by bradykinin was obviously reduced. Bradykinin also stimulated formation of inositol polyphosphates including 1,4,5-IP3. These results suggest that bradykinin stimulates intracellular Ca2+ release from the 1,4,5-1P3-sensitive Ca2+ pool. Bradykinin stimulated prostaglandin E2 (PGE2) release in the presence of external Ca2+, but not in the absence of external Ca2+. Ca2+ ionophore A23187 and thapsigargin evoked the release of PGE2 in the presence of external Ca2+ despite no activation of bradykinin receptors. These results indicate that bradykinin induces Ca2+ mobilization via activation of phospholipase C and PGE2 release caused by the Ca2+ influx in HPDL cells.  相似文献   

7.
Smooth muscle cells were isolated from the circular muscle layer of guinea pig stomach and permeabilized by brief exposure to saponin. Both permeabilized and intact muscle cells contracted in response to cholecystokinin octapeptide (CCK-8) and acetylcholine, but only permeabilized muscle cells contracted in response to inositol 1,4,5-trisphosphate (InsP3). The contractile response to InsP3 was prompt (peak less than 5 s), concentration-dependent (EC50-0.3 microM), and insensitive to antimycin or oligomycin. Contraction induced by either InsP3 or CCK-8 was accompanied by a concentration-dependent increase in free Ca2+ that was directly correlated with the magnitude of contraction. Both InsP3 and CCK-8 caused rapid net efflux of Ca2+ from cells preloaded with 45Ca2+. Contraction, increase in free Ca2+ concentration, and net 45Ca2+ efflux elicited by a combination of maximal concentrations of InsP3 and CCK-8 were not significantly different from those elicited by maximal concentrations of either agent alone. Repeated stimulation of single muscle cells with either InsP3 or CCK-8 in Ca2+-free medium caused eventual loss of the contractile response to all agents. The response to all agents was restored upon re-exposure of the cell to a cytosol-like concentration of Ca2+, implying equal access of InsP3 and receptor-linked agonists to the same intracellular Ca2+ store. The results demonstrate that InsP3 mimics the effects of receptor-linked agonists on contraction and mobilization of intracellular Ca2+ in permeabilized smooth muscle cells that retain the functional properties of intact smooth muscle cells and support a role for InsP3 as membrane-derived messenger responsible for mobilization of intracellular Ca2+ in smooth muscle cells.  相似文献   

8.
S Dho  T A Ansah  R M Case 《Cell calcium》1989,10(8):551-560
Thyroid hormones influence Ca2+ homeostasis in both skeletal and cardiac muscle. Since secretory cells, like muscle cells, store and use Ca2+ in stimulus-response coupling, we have studied the effects of thyroid status on Ca2+ mobilization and secretion in a model secretory tissue, the pancreatic acinar cell. Hyperthyroidism was induced by rats by daily, subcutaneous injections of triiodothyronine for 8 days and hypothyroidism by adding 6-n-propyl-2-thiouracil to the drinking water for 14 days. Pancreatic acini were prepared by collagenase digestion of pancreatic tissue from hyper- and hypo-thyroid animals and from euthyroid controls. Ca2(+)-mobilization was assessed using Quin-2 fluorescence and secretion by assaying amylase release. The data indicate that the amount of Ca2+ mobilized by the muscarinic agonist carbachol or by cholecystokinin octapeptide increases with increasing thyroid hormone concentrations. Only in hypothyroidism was this change in Ca2+ homeostasis reflected by a parallel change in amylase secretion. This implies the existence of some compensatory mechanism which stabilizes secretory rate in the face of stimulus-evoked increases in intracellular Ca2+ concentration.  相似文献   

9.
The mechanism by which Bcl-2 inhibits cell death is unknown. Ithas been suggested that Bcl-2 functions as an antioxidant. BecauseBcl-2 is localized mainly to the membranes of the endoplasmic reticulum(ER) and the mitochondria, which represent the main intracellularstorage sites for Ca2+, wehypothesized that Bcl-2 might protect cells against oxidant injury byaltering intracellular Ca2+homeostasis. To test this hypothesis, we examined the effect of oxidanttreatment on viability in normal rat kidney (NRK) cells and in NRKcells stably transfected with Bcl-2 in the presence or absence ofintracellular Ca2+, and wecompared the effect of Bcl-2 expression on oxidant-induced intracellular Ca2+ mobilizationand on ER and mitochondrial Ca2+pools. NRK cells transfected with Bcl-2 (NRK-Bcl-2) were significantly more resistant toH2O2-inducedcytotoxicity than control cells. EGTA-AM, an intracellularCa2+ chelator, as well as theabsence of Ca2+ in the medium,reducedH2O2-inducedcytotoxicity in both cell lines. Compared with controls, cellsoverexpressing Bcl-2 showed a delayed rise in intracellularCa2+ concentration([Ca2+]i)afterH2O2treatment. After treatment with theCa2+ ionophore ionomycin,Bcl-2-transfected cells showed a much quicker decrease after themaximal rise than control cells, suggesting stronger intracellularCa2+ buffering, whereas treatmentwith thapsigargin, an inhibitor of the ERCa2+-ATPases, transientlyincreased[Ca2+]iin control and in Bcl-2-transfected cells. Estimates of mitochondrial Ca2+ stores using an uncoupler ofoxidative phosphorylation show that NRK-Bcl-2 cells have a highercapacity for mitochondrial Ca2+storage than control cells. In conclusion, Bcl-2 may prevent oxidant-induced cell death, in part, by increasing the capacity ofmitochondria to store Ca2+.

  相似文献   

10.
In fura-2-loaded bovine adrenal chromaffin cells, 0.5 microM angiotensin II (AII) stimulated a 185 +/- 19 nM increase of intracellular-free calcium [( Ca2+]i) approximately 3 s after addition. The time from the onset of the response until achieving 50% recovery (t 1/2) was 67 +/- 10 s. Concomitantly, AII stimulated both the release of 45Ca2+ from prelabeled cells, and a 4-5-fold increase of [3H]inositol 1,4,5-trisphosphate [( 3H]Ins(1,4,5)P3) levels. In the presence of 50 microM LaCl3, or when extracellular-free Ca2+ [( Ca2+]o) was less than 100 nM, AII still rapidly increased [Ca2+]i by 95-135 nM, but the t 1/2 for recovery was then only 23-27 s. In medium with 1 mM MnCl2 present, AII also stimulated a small amount of Mn2+ influx, as judged by quenching of the fura-2 signal. When [Ca2+]o was normal (1.1 mM) or low (less than 60 nM), 1-2 microM ionomycin caused [Ca2+]i to increase 204 +/- 26 nM, while also releasing 45-55% of bound 45Ca2+. With low [Ca2+]o, ionomycin pretreatment abolished both the [Ca2+]i increase and 45Ca2+ release stimulated by AII. However, after ionomycin pretreatment in normal medium, AII produced a La3+-inhibitable increase of [Ca2+]i (103 +/- 13 nM) with a t 1/2 of 89 +/- 8 s, but no 45Ca2+ release. No pretreatment condition altered AII-induced formation of [3H]Ins(1,4,5)P3. We conclude that AII increased [Ca2+]i via rapid and transient Ca2+ mobilization from Ins(1,4,5)P3- and ionomycin-sensitive stores, accompanied (and/or followed) by Ca2+ entry through a La3+-inhibitable divalent cation pathway. Furthermore, the ability of AII to activate Ca2+ entry in the absence of Ca2+ mobilization (i.e. after ionomycin pretreatment) suggests a receptor-linked stimulus other than Ca2+ mobilization initiates Ca2+ entry.  相似文献   

11.
Gossypol is a natural toxicant present in cottonseeds, and is hepatotoxic to animals and human. The effect of gossypol on cytosolic free Ca2+ levels ([Ca2+]i) in HA22/VGH human hepatocytes was explored using fura-2 as a fluorescent Ca2+ indicator. Gossypol increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 2 microM. The Ca2+ signal was reduced by removing extracellular Ca2+ or by 10 microM La3+, but was not affected by nifedipine, verapamil or diltiazem. Pretreatment with 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) to deplete the endoplasmic reticulum Ca2+ partly reduced 10 microM gossypol-induced Ca2+ release; and conversely pretreatment with gossypol abolished thapsigargin-induced Ca2+ release. The Ca2+ release induced by 10 microM gossypol was not changed by inhibiting phospholipase C with 2 microM U73122 or by depleting ryanodine-sensitive Ca2+ stores with 50 microM ryanodine. Together, the results suggest that in human hepatocytes, gossypol induced a [Ca2+]i increase by causing store Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and by inducing Ca2+ influx.  相似文献   

12.
Sei Y  Gallagher KL  Daly JW 《Cell calcium》2001,29(3):149-160
Caffeine has been used as a pharmacological tool to study the ryanodine receptor (RYR)-mediated Ca2+ release from caffeine-sensitive, inositol 1,4,5,-trisphosphate (IP3)-insensitive pools. In the present study, we demonstrate multiple effects of caffeine on Ca2+ homeostasis in human B lymphocytes. Although B cells express a functional RYR, which can be activated by 4-chloro-m-cresol following depletion of IP(3)-sensitive pools, caffeine does not activate RYR-mediated Ca2+ release. Instead, caffeine dose-dependently inhibited IP3 receptor (IP3R)-mediated Ca2+ release, RYR-mediated Ca2+ release and B cell receptor-initiated Ca2+ influx, while high concentrations of caffeine (> or = 25 mM) induced a Ca2+ influx. In contrast with its ability to suppress receptor-stimulated Ca2+ influx, caffeine had no significant effect on the store-operated Ca2+ (SOC) channel-dependent Ca2+ influx induced by thapsigargin. Thus, caffeine may act as an inhibitor on a single or multiple site(s) responsible for regulating the IP3R channel, RYR channel and presumably the receptor-mediated SOC channel. The present report may be the first demonstration of multiple effects of caffeine on Ca2+ mobilization in single cell type. Our results suggest the need for caution regarding use of caffeine simply as a RYR-activator to study Ca2+ homeostasis in eucaryotic cells.  相似文献   

13.
The mechanism by which extracellular ATP stimulates insulin secretion was investigated in RINm5F cells. ATP depolarized the cells as demonstrated both by using the patch-clamp technique and a fluorescent probe. The depolarization is due to closure of ATP-sensitive K+ channels as shown directly in outside-out membrane patches. ATP also raised cytosolic Ca2+ [( Ca2+]i). At the single cell level the latency of the [Ca2+]i response was inversely related to ATP concentration. The [Ca2+]i rise is due both to inositol trisphosphate mediated Ca2+ mobilization and to Ca2+ influx. The former component, as well as inositol trisphosphate generation, were inhibited by phorbol myristate acetate which uncouples agonist receptors from phospholipase C. This manoeuvre did not block Ca2+ influx or membrane depolarization. Diazoxide, which opens ATP-sensitive K+ channels, attenuated membrane depolarization and part of the Ca2+ influx stimulated by ATP. However, the main Ca2+ influx component was unaffected by L-type channel blockers, suggesting the activation of other Ca2+ conductance pathways. ATP increased the rate of insulin secretion by more than 12-fold but the effect was transient. Prolonged exposure to EGTA dissociated the [Ca2+]i rise from ATP-induced insulin secretion, since the former was abolished and the latter only decreased by about 60%. In contrast, vasopressin-evoked insulin secretion was more sensitive to Ca2+ removal than the accompanying [Ca2+]i rise. Inhibition of phospholipase C stimulation by phorbol myristate acetate abrogated vasopressin but only reduced ATP-induced insulin secretion by 34%. These results suggest that ATP stimulates insulin release by both phospholipase C dependent and distinct mechanisms. The Ca2+)-independent component of insulin secretion points to a direct triggering of exocytosis by ATP.  相似文献   

14.
A Ishihata  M Endoh 《Life sciences》1991,48(6):583-591
Confluent monolayers of human umbilical vein endothelial cells subcultured on glass coverslips were loaded with the fluorescent Ca2+ indicator, fura-2. Changes in fura-2 fluorescence were detected by means of a fluorescence spectrophotometer. Both ATP and ADP (0.3-100 microM) caused a concentration-dependent transient peak response of the intracellular free calcium concentration ([Ca2+]i), followed by a lower sustained response. AMP and adenosine did not induce detectable changes in [Ca2+]i. The sustained response to ATP was abolished by superfusion with the Ca2(+)-free solution (with 1 mM EGTA), while the transient peak response was uninfluenced. The transient peak response to ATP (30 microM) was inhibited by pre-exposure to ATP in a graded manner depending on the concentration of ATP. The response to ATP recovered after washout for 20 min with the solution containing Ca2+, but not with the Ca2(+)-free solution. The transient peak response to ATP was markedly reduced by preceding exposure to histamine, while the response to histamine was not influenced by pre-exposure to ATP. These findings indicate that depletion and refilling of the ATP-sensitive intracellular Ca2+ store may be responsible for the desensitization and recovery of the ATP-induced [Ca2+]i response. The pharmacological characteristics of the ATP-sensitive intracellular Ca2+ store seem different from those of the histamine-sensitive store.  相似文献   

15.
Reactive oxygen species (ROS) generated from NADPH oxidases and mitochondria have been implicated as key messengers for pulmonary vasoconstriction and vascular remodeling induced by agonists and hypoxia. Since Ca(2+) mobilization is essential for vasoconstriction and cell proliferation, we sought to characterize the Ca(2+) response and to delineate the Ca(2+) pathways activated by hydrogen peroxide (H(2)O(2)) in rat intralobar pulmonary arterial smooth muscle cells (PASMCs). Exogenous application of 10 microM to 1 mM H(2)O(2) elicited concentration-dependent increase in intracellular Ca(2+) concentration in PASMCs, with an initial rise followed by a plateau or slow secondary increase. The initial phase was related to intracellular release. It was attenuated by the inositol trisphosphate (IP(3)) receptor antagonist 2-aminoethyl diphenylborate, ryanodine, or thapsigargin, but was unaffected by the removal of Ca(2+) in external solution. The secondary phase was dependent on extracellular Ca(2+) influx. It was unaffected by the voltage-gated Ca(2+) channel blocker nifedipine or the nonselective cation channel blockers SKF-96365 and La(3+), but inhibited concentration dependently by millimolar Ni(2+), and potentiated by the Na(+)/Ca(2+) exchange inhibitor KB-R 7943. H(2)O(2) did not alter the rate of Mn(2+) quenching of fura 2, suggesting store- and receptor-operated Ca(2+) channels were not involved. By contrast, H(2)O(2) elicited a sustained inward current carried by Na(+) at -70 mV, and the current was inhibited by Ni(2+). These results suggest that H(2)O(2) mobilizes intracellular Ca(2+) through multiple pathways, including the IP(3)- and ryanodine receptor-gated Ca(2+) stores, and Ni(2+)-sensitive cation channels. Activation of these Ca(2+) pathways may play important roles in ROS signaling in PASMCs.  相似文献   

16.
Low concentrations of Ca2+-mobilizing agonists such as vasopressin, platelet-activating factor, ADP, the endoperoxide analogue U44069 and the Ca2+ ionophore A23187 enhance the binding of [3H]phorbol 12,13-dibutyrate (PdBu) to intact human platelets. This effect is prevented by preincubation of platelets with prostacyclin (except for A23187). Adrenaline, which does not increase Ca2+ in the platelet cytosol, does not enhance the binding of [3H]PdBu to platelets. In addition, all platelet agonists except adrenaline potentiate the phosphorylation of the substrate of protein kinase C (40 kDa protein) induced by PdBu. Potentiation of protein kinase C activation is associated with increased platelet aggregation and secretion. Stimulus-induced myosin light-chain phosphorylation and shape change are not significantly affected, but formation of phosphatidic acid is decreased in the presence of PdBu. The results may indicate that low concentrations of agonists induce in intact platelets the translocation of protein kinase C to the plasma membrane by eliciting mobilization of Ca2+, and thereby place the enzyme in a strategic position for activation by phorbol ester. Such activation enhances platelet aggregation and secretion, but at the same time suppresses activation of phospholipase C. Therefore, at least part of the synergism evoked by Ca2+ and phorbol ester is mediated through a single pathway which involves protein kinase C. It is likely that the priming of protein kinase C by prior Ca2+ mobilization occurs physiologically in activated platelets.  相似文献   

17.
The effect of tetracaine on 45Ca efflux, cytoplasmic Ca2+ concentration [Ca2+]i, and insulin secretion in isolated pancreatic islets and beta-cells was studied. In the absence of external Ca2+, tetracaine (0.1-2.0 mM) increased the 45Ca efflux from isolated islets in a dose-dependentOFF efflux caused by 50 mM K+ or by the association of carbachol (0.2 mM) and 50 mM K+. Tetracaine permanently increased the [Ca2+]i in isolated beta-cells in Ca2+-free medium enriched with 2.8 mM glucose and 25 microM D-600 (methoxiverapamil). This effect was also observed in the presence of 10 mM caffeine or 1 microM thapsigargin. In the presence of 16.7 mM glucose, tetracaine transiently increased the insulin secretion from islets perfused in the absence and presence of external Ca2+. These data indicate that tetracaine mobilises Ca2+ from a thapsigargin-insensitive store and stimulates insulin secretion in the absence of extracellular Ca2+. The increase in 45Ca efflux caused by high concentrations of K+ and by carbachol indicates that tetracaine did not interfere with a cation or inositol triphosphate sensitive Ca2+ pool in beta-cells.  相似文献   

18.
Addition of GnRH to pituitary gonadotrophs preloaded with Quin 2 resulted in a rapid (approximately 8 s) mobilization of an ionomycin-sensitive intracellular Ca2+ pool. A second component of Ca2+ entry via voltage dependent channels contributed about 45% of the peak cytosolic free Ca2+ concentration ([Ca2+]i). Thereafter, influx of Ca2+ via voltage-sensitive and -insensitive channels is responsible for maintenance of elevated [Ca2+]i during the second phase of GnRH action. Addition of inositol 1,4,5-trisphosphate (IP3) to permeabilized pituitary cells resulted in a Ca2+ transient, released from a nonmitochondrial pool, which maintained ambient free Ca2+ concentration around 170 nM in an ATP-dependent mechanism. Successive stimulations of the cells with IP3 produced an attenuated response. Elevation of the gonadotroph [Ca2+]i by ionomycin, to levels equivalent to that induced by GnRH, resulted in LH release amounting to only 45% of the response to the neurohormone. Activation of the voltage-dependent Ca2+ channels by the dihydropyridine Ca2+-agonist [methyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyridine- 5-carboxylate (BAYK8644)] stimulated LH release, 36% of the GnRH (100 nM) response being reached by 10(-8) M of the drug, both [Ca2+]i elevation and GnRH-induced LH release were inhibited similarly (40-50%) by the dihydropyridine Ca2+-antagonist nifedipine. The results indicate that peak [Ca2+]i induced by GnRH in pituitary gonadotrophs is derived mainly from ionomycin-sensitive cellular stores most likely via IP3 formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Our past studies have shown that porcine myometrium produce prostaglandins (PG) during luteolysis and early pregnancy and that oxytocin (OT) and its receptor (OTr) support myometrial secretion of prostaglandins E2 and F2alpha (PGE2 and PGF2alpha) during luteolysis. This study investigates the role of intracellular Ca2+ [Ca2+]i as a mediator of OT effects on PG secretion from isolated myometrial cells in the presence or absence of progesterone (P4). Basal [Ca2+]i was similar in myometrial cells from cyclic and pregnant pigs (days 14-16). OT (10(-7)M) increased [Ca2+]i in myometrial cells of cyclic and pregnant pigs, although this effect was delayed in myometrium from pregnant females. After pre-incubation of the myocytes with P4 (10(-5)M) the influence of OT on [Ca2+]i)was delayed during luteolysis and inhibited during pregnancy. Myometrial cells in culture produce more PGE2 than PGF2alpha regardless of reproductive state of the female. OT (10(-7)M) increased PGE2 secretion after 6 and 12 h incubation for the tissue harvested during luteolysis and after 12 h incubation when myometrium from gravid females was used. In the presence of P4 (10(-5)M), the stimulatory effect of OT on PG secretion was diminished. In conclusion: (1) porcine myometrial cells in culture secrete PG preferentially during early pregnancy and produce more PGE2 than PGF2alpha, (2) OT controls myometrial PGF2alpha secretion during luteolysis, (3) release of [Ca2+]i is associated with the influence of OT on PG secretion, and (4) the effects of OT on PG secretion and Ca2+ accumulation are delayed by P4 during luteolysis and completely inhibited by P4 during pregnancy.  相似文献   

20.
In this study we have investigated the effect of ethanol on [Ca2+]c by microfluorimetry and glutamate secretion using an enzyme-linked system, in rat hippocampal astrocytes in culture. Our results show that ethanol (1-200 mM) evoked a dose-dependent increase in glutamate secretion. 50 mM ethanol, a concentration within the range of blood alcohol levels in intoxicated humans, induced a release of Ca2+ from intracellular stores in the form of oscillations. Ca2+-mobilizing effect of ethanol was not prevented by preincubation of cells in the presence of 2 mM of the antioxidant dithiothreitol. Ethanol-evoked glutamate secretion was reduced when extracellular Ca2+ was omitted (medium containing 0.5 mM EGTA) and following preincubation of astrocytes in the presence of the intracellular Ca2+ chelator 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid tetraacetoxy-methyl ester (10 microM). Preincubation of astrocytes in the presence of 2 mM of the antioxidant dithiothreitol significantly reduced ethanol-evoked glutamate secretion. Finally, preincubation of astrocytes in the presence of bafilomycin (50 nM) significantly reduced ethanol-induced neurotransmitter release, indicating that exocytosis is involved in glutamate secretion. In conclusion, our results suggest that ethanol mobilizes Ca2+ from intracellular stores, and stimulates a Ca2+-dependent glutamate secretion, probably involving reactive oxygen species production, and therefore creating a situation potentially leading to neurotoxicity in the hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号