首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While previous studies focused on tree growth in pure stands, we reveal that tree resistance and resilience to drought stress can be modified distinctly through species mixing. Our study is based on tree ring measurement on cores from increment boring of 559 trees of Norway spruce (Picea abies [L.] Karst.), European beech (Fagus sylvatica [L.]) and sessile oak (Quercus petraea (Matt.) Liebl.) in South Germany, with half sampled in pure, respectively, mixed stands. Indices for resistance, recovery and resilience were applied for quantifying the tree growth reaction on the episodic drought stress in 1976 and 2003. The following general reaction patterns were found. (i) In pure stands, spruce has the lowest resistance, but the quickest recovery; oak and beech were more resistant, but recover was much slower and they are less resilient. (ii) In mixture, spruce and oak perform as in pure stands, but beech was significantly more resistant and resilient than in monoculture. (iii) Especially when mixed with oak, beech is facilitated. We hypothesise that the revealed water stress release of beech emerges in mixture because of the asynchronous stress reaction pattern of beech and oak and a facilitation of beech by hydraulic lift of water by oak. This facilitation of beech in mixture with oak means a contribution to the frequently reported overyield of beech in mixed versus pure stands. We discuss the far‐reaching implications that these differences in stress response under intra‐ and inter‐specific environments have for forest ecosystem dynamics and management under climate change.  相似文献   

2.
3.
本研究以塞罕坝地区华北落叶松纯林、白桦纯林和华北落叶松与白桦混交林为对象,每种林分类型设置2个林分密度(200~340和880~1100株·hm-2)。基于树木大小分层取样,采集树芯样本668条。运用线性混合模型,分析了树种相互作用、林分密度和树木大小对华北落叶松生产力的影响。结果表明: 华北落叶松断面积生长量不同程度地受竞争、胸径、年龄和邻体密度的影响;在林分密度较高的混交林中,由于白桦对华北落叶松生长的促进作用,落叶松生产力发生明显的增益效应;在林分密度较低的混交林中,落叶松和白桦之间不发生相互作用,2个树种的生产力均低于相应的纯林;种内竞争是影响华北落叶松生产力的主要因素;树木大小对华北落叶松生产力产生积极的影响,但影响程度因林分密度和树种组成而异。适当增加林分密度和选择白桦作为混交树种可以提高华北落叶松生产力。  相似文献   

4.
Biomass conversion and expansion factors (BCEF) which convert tree stem volume to whole tree biomass and biomass allocation patterns in young trees were studied in order to estimate tree and stand biomass in naturally regenerated forests. European beech (Fagus sylvatica L.), Sessile oak (Quercus petraea (Mattuschka) Liebl.) and Scots pine (Pinus sylvestris L.) stands were compared. Seven forest stands of each species were chosen to cover their natural distribution in Slovakia. Species-specific BCEF are presented, generally showing a steep decrease in all species in the smallest trees, with the only exception in the case of branch BCEF in beech which grows with increasing tree size. The values of BCEF for all tree compartments stabilise in all species once trees reach about 60–70-mm diameter at base. As they grow larger, all species increase their allocation to stem and branches, while decreasing the relative growth of roots and foliage. There are, however, clear differences between species and also between broadleaves and conifers in biomass allocation. This research shows that species-specific coefficients must be used if we are to reduce uncertainties in estimates of carbon stock changes by afforestation and reforestation activities.  相似文献   

5.
Height growth is a trait that contributes to tree species fitness. How height growth responds to environmental changes may therefore provide indications on species ability to compete and maintain, and on changes in tree community composition. Common beech Fagus sylvatica and sessile oak Quercus petraea are the predominant late‐successional broadleaved species in Europe, and they differ in their shade‐tolerance. On common beech (a shade tolerant species), recent observations across Europe have shown a growth decline during recent climate warming. Because sessile oak is a warmth‐ and light‐demanding species, we therefore hypothesised that it may gain in competitiveness relative to common beech. We conducted analyses of historical height growth in several regions spanning the distributional range of the two species across a temperate‐continental gradient in France. Common beech and sessile oak were sampled in two and four regions, respectively, and were compared in two neighbouring regions. We documented the climatic and nutritional conditions of regional samples. Height growth of 408 trees of various ages was reconstituted from stem analyses. We estimated 20th‐century regional chronologies of height growth using a statistical modelling approach that filtered out the effects of ontogeny and site fertility. In regions where both species were sampled, modelled height trajectories were compared at different periods over the 20th century. Growth chronologies revealed 1) long‐term growth rate increases of a magnitude of 50–100% over 100 years in both species, more acute in the continental domain, 2) recurrent historical inversions in growth fluctuations between species, 3) a recent divergence, with growth decline in common beech versus a dramatic growth increase in sessile oak, more acute in colder regions. The analysis of height trajectories indicated a recent reduction in common beech competitiveness relative to sessile oak. In the face of future climate warming, we conclude that increased prevalence of beech–oak mixtures may arise.  相似文献   

6.
The present study aimed at exploring the long-term impact of pure and mixed beech Fagus sylvatica and oak Quercus robur stands on the forest floor by documenting changes in the herb species' behaviour and in humus index across a 200-yr chronosequence of forest stands. The research was conducted in central Belgium, in a 4383 ha beech-dominated forest. Analyses were carried out in stands which are replicated, of the same age, managed in the same way, and growing on the same soil type with the same land-use history. The results of this study indicate that stand aging is an important determinant of herb species occurrence in the studied area. Most of the species studied show a different response to stand age in pure compared to mixed stands. Our results clearly show a decrease of the humus quality with age in pure stands (beech as well as oak). On the other hand, we found that mixing beech and oak maintained or improved the humus status along the chronosequence according to the proportion of each tree. So the addition of some oak to the beech made it possible to keep a constant quality of the humus. We found that, even if the understory tree species is very scarce, it may be sufficient to maintain the humus status on the long term. In the present study, a cover of 1% oak in a beech stand was sufficient to show an effect of the minor species on these soils. This pattern contrasts with the widespread idea that substantial effects of the minor tree species on soils might not develop if the ratio of major/minor species is low.  相似文献   

7.
提升森林质量、修复生态功能是东北阔叶红松林生态修复的核心,而阐明林木与林分生长对采伐干扰的响应机理是其中的关键。森林对采伐干扰的响应会受到空间尺度、时间尺度以及干扰程度等因素的综合影响。以往的研究侧重于比较不同采伐处理下林木生长的相对大小,而忽视了不同恢复时间下,林木和林分生长随干扰程度的变化。以吉林蛟河阔叶红松林采伐样地为对象,基于连续四次样地调查数据(2011、2013、2015、2018年),分别探讨了林木和林分生长在不同恢复阶段对不同程度采伐干扰的响应,并通过构建分段模型确定采伐干扰阈值。结果显示:林木和林分生长对采伐干扰的响应并不一致,采伐促进了林木生长,并且林木生长量随采伐强度的升高而升高;采伐降低了林分生产力,林分生产力随采伐强度的升高而降低。林木和林分生长对采伐干扰的响应存在时滞效应:林木和林分生长在采伐后两年内并无显著变化,而在采伐三年后才发生明显变化。此外,分段模型的结果显示:当保留木断面积为21.6 m2/hm2时,林分生产力最高,表明通过密度调整使阔叶红松林胸高断面积维持在21.6 m2/hm2附近,可使林分处于较高的生产力水平、促进森林恢复。研究结果能够为制定科学的阔叶红松林生态修复策略提供技术支撑。  相似文献   

8.
Facilitation, reduced competition or increased competition can arise in mixed stands and become essential to the performance of these stands when compared to pure stands. Facilitation and over‐yielding are widely held to prevail on poor sites, whereas neutral interactions or competition, leading to under‐yielding of mixed versus pure stands, can occur on fertile sites. While previous studies have focused on the spatial variation of mixing effects, we examine the temporal variation of facilitation and competition and its effect on growth. The study is based on tree ring measurement on cores from increment borings from 559 trees of Norway spruce (Picea abies [L.] Karst.), European beech (Fagus sylvatica [L.]) and sessile oak (Quercus petraea (Matt.) Liebl.) in southern Germany, half of which were in pure stands and half in adjacent mixed stands. Mean basal area growth indices were calculated from tree ring measurements for pure and mixed stands for every species and site. The temporal variation, with positive correlations between species‐specific growth indices during periods of low growth and neutral or negative correlations during periods of high growth, is more distinct in mixed than in neighbouring pure stands. We provide evidence that years with low growth trigger over‐yielding of trees in mixed as opposed to pure stands, while years with high growth lead to under‐yielding. We discuss the relevance of the results in terms of advancing our understanding and modelling of mixed stands, extension of the stress gradient hypothesis, and the performance of mixed versus pure stands in the face of climate change.  相似文献   

9.
  • Climate anomalies have resulted in changing forest productivity, increasing tree mortality in Central and Southern Europe. This has resulted in more severe and frequent ecological disturbances to forest stands. This study analysed the size‐dependence of growth response to drought years based on 384 tree individuals of Norway spruce [Picea abies (L.) Karst.] and European beech [Fagus sylvatica ([L.)] in Bavaria, Germany.
  • Samples were collected in both monospecific and mixed‐species stands. To quantify the growth response to drought stress, indices for basal area increment, resistance, recovery and resilience were calculated from tree ring measurements of increment cores. Linear mixed models were developed to estimate the influence of drought periods.
  • The results show that ageing‐related growth decline is significant in drought years. Drought resilience and resistance decrease significantly with growth size among Norway spruce individuals. Evidence is also provided for robustness in the resilience capacity of European beech during drought stress. Spruce benefits from species mixing with deciduous beech, with over‐yielding spruce in pure stands.
  • The importance of the influence of size‐dependence within tree growth studies during disturbances is highlighted and should be considered in future studies of disturbances, including drought.
  相似文献   

10.
In pure and mixed stands of Norway spruce ( Picea abies [L.] Karst.) and European beech ( Fagus sylvatica L.) we have analyzed crown allometry and growing space efficiency at the tree level and have scaled this from tree level to stand level production. Allometry is quantified by the ratio A between the relative growth rates of laterally and vertically oriented tree dimensions. Efficiency parameters, EOC for efficiency in space occupation, EEX for efficiency in space exploitation, and EBI for efficiency in biomass investment, were evaluated, based on quantity and quality of growing space and were measured using crown size and competition index. The evaluation reveals why pure stands of spruce are preferred by foresters, even though the natural vegetation would be dominated by beech. Spruce occupies its share of resources intensively by means of tightly packed pillar-like crowns, whereas beech seizes resources extensively by means of a multi-layered, veil-like canopy. With a given relative biomass increment, beech achieves a 57 % higher increment in crown projection area and a 127 % higher increment in height due to its particular capacity of lateral and vertical expansion. Beech trees are approximately 60 % more efficient in space occupation than spruce trees, however, on average, they are about 70 % less efficient in space exploitation. As a vertical fast growing tree, spruce is efficient in space exploitation under constant conditions, but far more susceptible to disturbances and less well equipped to overcome them when compared with beech. Beech is weaker in terms of space exploitation, while being superior in space occupation, where it encircles competitors and fills gaps after disturbances, which is a successful long-term strategy. A mixture of the two species reduces stand level production by 24 % in comparison to a pure spruce stand, however, when considering enhanced stabilization of the whole stand and risk distribution in the long term, the mixed stand may exceed the production level of pure spruce stands. EEX reflects a strong ontogenetic drift and competition effect that should be considered when scaling from tree to stand level production.  相似文献   

11.
Current forest growth models and yield tables are almost exclusively based on data from mature trees, reducing their applicability to young and developing stands. To address this gap, young European beech, sessile oak, Scots pine and Norway spruce trees approximately 0–10 yr old were destructively sampled in a range of naturally regenerated forest stands in Central Europe. Diameter at base and height was first measured in situ for up to 175 individuals per species. Subsequently, the trees were excavated and dry biomass of foliage, branches, stems and roots was measured. Allometric relations were then used to calculate biomass allocation coefficients (BAC) and growth efficiency (GE) patterns in young trees. We found large differences in BAC and GE between broadleaves and conifers, and also between species within these categories. Both BAC and GE are strongly age-specific in young trees, their rapidly changing values reflecting different growth strategies in the earliest stages of growth. We show that linear relationships describing biomass allocation in older trees are not applicable in young trees. To accurately predict forest biomass and carbon stocks, forest growth models need to include species and age-specific parameters of biomass allocation patterns.  相似文献   

12.

Background

A better understanding of the relationship between stand structure and productivity is required for the development of: a) scalable models that can accurately predict growth and yield dynamics for the world''s forests; and b) stand management regimes that maximize wood and/or timber yield, while maintaining structural and species diversity.

Methods

We develop a cohort-based canopy competition model (“CAIN”), parameterized with inventory data from Ontario, Canada, to examine the relationship between stand structure and productivity. Tree growth, mortality and recruitment are quantified as functions of diameter and asymmetric competition, using a competition index (CAIh) defined as the total projected area of tree crowns at a given tree''s mid-crown height. Stand growth, mortality, and yield are simulated for inventoried stands, and also for hypothetical stands differing in total volume and tree size distribution.

Results

For a given diameter, tree growth decreases as CAIh increases, whereas the probability of mortality increases. For a given CAIh, diameter growth exhibits a humped pattern with respect to diameter, whereas mortality exhibits a U-shaped pattern reflecting senescence of large trees. For a fixed size distribution, stand growth increases asymptotically with total density, whereas mortality increases monotonically. Thus, net productivity peaks at an intermediate volume of 100–150 m3/ha, and approaches zero at 250 m3/ha. However, for a fixed stand volume, mortality due to senescence decreases if the proportion of large trees decreases as overall density increases. This size-related reduction in mortality offsets the density-related increase in mortality, resulting in a 40% increase in yield.

Conclusions

Size-related variation in growth and mortality exerts a profound influence on the relationship between stand structure and productivity. Dense stands dominated by small trees yield more wood than stands dominated by fewer large trees, because the relative growth rate of small trees is higher, and because they are less likely to die.  相似文献   

13.
The effect of mixture on productivity has been widely studied for applications related to agriculture but results in forestry are scarce due to the difficulty of conducting experiments. Using a modeling approach, we analyzed the effect of mixture on the productivity of forest stands composed of sessile oak and Scots pine. To determine whether mixture had a positive effect on productivity and if there was an optimum mixing proportion, we used an aggregation technique involving a mean-field approximation to analyze a distance-dependent individual-based model. We conducted a local sensitivity analysis to identify the factors that influenced the results the most. Our model made it possible to predict the species proportion where productivity peaks. This indicates that transgressive over-yielding can occur in these stands and suggests that the two species are complementary. For the studied growth period, mixture does have a positive effect on the productivity of oak-pine stands. Depending on the plot, the optimum species proportion ranges from 38 to 74% of oak and the gain in productivity compared to the current mixture is 2.2% on average. The optimum mixing proportion mainly depends on parameters concerning intra-specific oak competition and yet, intra-specific competition higher than inter-specific competition was not sufficient to ensure over-yielding in these stands. Our work also shows how results obtained for individual tree growth may provide information on the productivity of the whole stand. This approach could help us to better understand the link between productivity, stand characteristics, and species growth parameters in mixed forests.  相似文献   

14.
A phenology model for estimating the timings of bud burst – one of the most influential phenological phases for the simulation of tree growth – is presented in this study. The model calculates the timings of the leafing of beech (Fagus sylvatica L.) and oak (Quercus robur L.) and the May shoot of Norway spruce (Picea abies L.) and Scots pine (Pinus sylvestris L.) on the basis of the daily maximum temperature. The data for parameterisation and validation of the model have been taken from 40 climate and 120 phenological stations in southern Germany with time series for temperature and bud burst of up to 30 years. The validation of the phenology module by means of an independent data set showed correlation coefficients for comparisons between observed and simulated values of 54% (beech), 55% (oak), 59% (spruce) and 56% (pine) with mean absolute errors varying from 4.4 days (spruce) to 5.0 days (pine). These results correspond well with the results of other – often more complex – phenology models. After the phenology module had been implemented in the tree-growth model BALANCE, the growth of a mixed forest stand with the former static and the new dynamic timings for the bud burst was simulated. The results of the two simulation runs showed that phenology has to be taken into account when simulating forest growth, particularly in mixed stands.  相似文献   

15.

Background and Aims

European beech epicormics have received far less attention than epicormics of other species, especially sessile oak. However, previous work on beech has demonstrated that there is a negative effect of radial growth on trunk sprouting, while more recent investigations on sessile oak proved a strong positive influence of the presence of epicormics. The aims of this study were, first, to make a general quantification of the epicormics present along beech stems and, secondly, to test the effects of both radial growth and epicormic frequency on sprouting.

Methods

In order to test the effect of radial growth, ten forked individuals were sampled, with a dominant and a dominated fork of almost equal length for every individual. To test the effects of primary growth and epicormic frequency, on the last 17 annual shoots of each fork arm, the number of axillary buds, shoot length, ring width profiles, epicormic shoots and other epicormics were carefully recorded.

Key Results

The distribution of annual shoot length, radial growth profiles and parallel frequencies of all epicormics are presented. The latter frequencies were parallel to the annual shoot lengths, nearly equivalent for both arms of each tree, and radial growth profiles included very narrow rings in the lowest annual shoots and even missing rings in the dominated arms alone. The location of the latent buds and the epicormics was mainly at branch base, while epicormic shoots, bud clusters and spheroblasts were present mainly in the lowest annual shoots investigated. Using a zero-inflated mixed model, sprouting was shown to depend positively on epicormic frequency and negatively on radial growth.

Conclusions

Support for a trade-off between cambial activity and sprouting is put forward. Sprouting mainly depends on the frequency of epicormics. Between- and within-tree variability of the epicormic composition in a given species may thus have fundamental and applied implications.  相似文献   

16.
How stand density and species richness affect carbon (C) storage and net primary productivity (NPP) changes with forest succession is poorly understood. We quantified the C storage of trees and the aboveground NPP in an early successional secondary birch forest (birch forest) and a late successional mixed broadleaf-Korean pine (Pinus koraiensis) forest (mixed forest) in northeastern China. We found that: 1) tree C storage in the mixed forest (120.3 Mg C ha?1) was significantly higher than that in the birch forest (78.5 Mg C ha?1), whereas the aboveground NPP was not different between the two forest types; and 2) only stand density had a positive linear relationship with tree C storage and aboveground NPP in the birch forest. In the mixed forest, both tree C storage and aboveground NPP were significantly affected by the combination of the stand density and species richness. The tree C storage to stand density and species richness relationships were hump-shaped. The aboveground NPP increased with increasing stand density, but its relationship to species richness was hump-shaped. We conclude that the effect of stand density and species richness on tree C storage and aboveground NPP was influenced by forest stand succession, and such effects should be considered in studying stand density- and species richness- ecosystem function (e.g., C storage and NPP) relationships in temperate forest ecosystems.  相似文献   

17.
中国南方3种主要人工林生物量和生产力的动态变化   总被引:2,自引:0,他引:2  
基于中国南方杉木、马尾松、桉树3种主要人工林的幼龄林、中龄林、近熟林、成熟林、过熟林5个不同年龄各3块1000 m2样地(共计45块)的建立和调查,采用样木回归分析法(乔木层)和样方收获法(灌木层、草本层、地上凋落物)获取不同林型不同林龄径级样木和其它基本数据,探讨了3种人工林各组分各层次林分生物量和生产力的分配特征及随林龄的变化规律,结果表明,林分生物量和生产力与林龄密切相关,增长模型的拟合度均较高,相关显著;杉木、马尾松、桉树人工林的生物量随林龄的增长呈增加趋势,成熟林的生物量分别为192.30、191.53、105.77 Mg/hm2,其中活体植物分别占95.76%—98.39%、75.01%—99.14%、85.60%—97.61%;生物量的层次分配乔木层占绝对优势,并随年龄而增加,其它层次所占比例较小,总体趋势为凋落物草本层灌木层;乔木层的器官分配以干所占比例最高,杉木、马尾松、桉树分别占54.89%—75.97%、49.93%—83.10%、51.07%—98.48%,随年龄的增加而增加,根的比例次之,枝叶所占比例较小,随林龄而下降;灌木层器官分配以枝的相对生物量较大,草本层的地上和地下分配规律不明显;与其它森林类型相比,杉木和马尾松的生物量处于中上游水平,桉树的生物量较低,但3种人工林的生产力均很高,分别为12.37、8.98、21.10 Mg hm-2a-1,均是光合效率高、固碳潜力大的中国南方速生丰产优良造林树种。  相似文献   

18.
Using data from 20 even-aged and homogeneous mature beech and oak study plots in Flanders (Northern Belgium), an analysis of the empirical relationships between the rates of leaf area index (LAI) change throughout the leaf development of 2008 and stand, site and meteorological variables was performed. Species-specific multiple linear regressions were fitted between the rates of LAI change and the predictors for two distinct periods from April until August. After a sharp increase in LAI following budburst, the seasonal LAI development for both species showed a marked period of stationary LAI development over all study plots. The cause for the cessation of LAI growth was assumed to be the decline of air temperature and radiation during this period. Later on, the rate of LAI development restarted similarly in every plot. The influence of weather on LAI development was high and its effects were different between species, with beech mostly affected by radiation and oak negatively related to minimal and maximal values of air temperature. Furthermore, our analysis suggested that stand structural (tree density and stand basal area for both species) and tree growth characteristics (average tree-ring width ratio for oak) variables were major drivers of the LAI development during early spring. Later during the growth period, stand variables became less predominant in affecting LAI development. Site quality variables affected LAI development to a lesser extent. The seasonal LAI development was found very similar among stands. This study adds a more accurate and comprehensive approach to the modelling of LAI development during leaf growth of two important European temperate deciduous forest species.  相似文献   

19.
How tree morphology develops in mixed-species stands is essential for understanding and modelling mixed-stand dynamics. However, research so far focused on the morphological variation between tree species and neglected the variation within a species depending on intra- and interspecific competition. Our study, in contrast, addresses crown properties of nine mature Norway spruces (Picea abies [L.] Karst.) of a pure stand and compares them with ten spruces growing in mixture with European beech (Fagus sylvatica [L.]). The same was done with 11 pure stand beeches and 12 beeches growing in mixture with spruce. Through application of a terrestrial laser scanner and a new skeletonization approach, we deal with both species’-specific morphological traits such as branch angle, branch length, branch bending, crown volume and space occupation of branches within the crown, some of which were hardly accessible so far. Special attention is paid to distinct differences between trees growing in mixed and pure stands: for spruce, our study reveals significantly longer branches and greater crown volumes in the mixed stand when compared to the pure stand. In case of European beech, individuals growing in mixture show flatter branch angles, more distinct ramification, greater crown volumes and a lower share of a single branch’s space occupation in the total crown volume. The results show that the presented methods yield detailed information on the morphological traits analyzed in this study and that interspecific competition on its own may have a significant impact on crown structures. Implications for production ecology and stand dynamics of mixed-species forests are discussed.  相似文献   

20.
Water-plant relations play a key role in the water cycling in terrestrial ecosystems. Consequently, changes in tree species composition may have distinct effects on the water retention capacity as well as on the pattern of streamflow generation. Such changes may result from modified interception properties and transpiration related to differences in canopy properties and root distribution. In order to evaluate the potential hydrological effects of the current silvicultural conversion from monocultural conifer stands into mixed or pure deciduous stands the hydrological model BROOK90 was applied to two forested upland catchments in Germany. The Rotherdbach catchment (9.4 ha, 93 yr-old Norway spruce) is situated in the Eastern Ore Mountains. The Schluchsee catchment (11 ha, 55-yr-old Norway spruce) is located in the higher altitudes of the Black Forest. The calibrated model is capable to describe rather well the temporal variation of streamflow but also the portions of the individual flow components. Data for a beech scenario were adapted for each site using a standard parameter set for deciduous trees provided by BROOK90. The annual discharge in the fictional beech stand at Rotherdbach is 30 to 50% higher compared to spruce with an increase of soil moisture and especially the slow streamflow components. This mainly results from low interception rates during winter time. In contrast, the spruce stand has a permanently higher interception rate. Effects of tree species conversion are moderate at Schluchsee. The annual discharge of a fictional beech stand at Schluchsee is 7 to 14% higher compared to spruce. There in contrast to Rotherdbach, effects of tree species conversion on soil moisture dynamics are small since vertical percolation in the highly permeable soil dominates and precipitation is abundant. Practical forestry will favorably establish mixed beech–spruce rather than pure beech stands. However, it is critical to simulate mixed stands with BROOK90. Therefore, a simple summation of model results from spruce and beech according to their respective area in a fictional mixed stand can only be a first approximation. Advanced hydrological simulation of mixed stand conditions should regard interactions of tree species and spatial parameter distribution. However, this is not yet feasible due to a distinct lack of information. As a consequence, there is a strong need to collect relevant hydrological and ecophysiological data in mixed stands in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号