首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A technique for the simultaneous determination of [S]sulfide and [C]carbon dioxide produced in anaerobic aqueous samples dual-labeled with [S]sulfate and a C-organic substrate is described. The method involves the passive distillation of sulfide and carbon dioxide from an acidified water sample and their subsequent separation by selective chemical absorption. The recovery of sulfide was 93% for amounts ranging from 0.35 to 50 mumol; recovery of carbon dioxide was 99% in amounts up to 20 mumol. Within these delineated ranges of total sulfide and carbon dioxide, 1 nmol of [S]sulfide and 7.5 nmol of [C]carbon dioxide were separated and quantified. Correction factors were formulated for low levels of radioisotopic cross-contamination by sulfide, carbon dioxide, and volatile organic acids. The overall standard error of the method was +/-4% for sulfide and +/-6% for carbon dioxide.  相似文献   

2.
Sodium ion battery (SIB) as a next‐generation battery has been drawing much attention due to the abundance and even distribution of sodium source. Metal sulfides with high theoretical capacity and good electrical conductivity are promising anode candidates for SIB, however, the structural collapse caused by severe volume change during the de/sodiation process typically results in a fast capacity decay, limited rate capability, and cycling stability. In this work, by careful composition and structure design, polydopamine coated Prussian blue analogs derived carbon coated bimetallic sulfide hollow nanocubes (PBCS) are prepared with distinguished morphology, higher surface area, smaller charge transfer resistance, and higher sodium diffusion coefficient than the uncoated bimetallic sulfides. An optimum carbon coated bimetallic sulfide hollow nanocube anode delivers a specific capacity of ≈500 mA h g?1 at 50 mA g?1 with ethylene carbonate/dimethyl carbonate (1:1, vol%) electrolyte in the presence of fluoroethylene carbonate additives. A capacity of 122.3 mA h g?1 can be realized at 5000 mA g?1, showing good rate performance. In addition the carbon coated bimetallic sulfide hollow nanocubes can maintain capacity of 87 mA h g?1 after being cycled at 500 mA g?1 for 150 times, indicating its good cycling stability. The structure integrity, high specific capacity, good rate performance, and cycling stability of PBCS render it a promising anode material for advanced SIB.  相似文献   

3.
Room‐temperature (RT) sodium–sulfur (Na–S) batteries are attractive cost‐effective platforms as the next‐generation energy storage systems by using all earth‐abundant resources as electrode materials. However, the slow kinetics of Na–S chemistry makes it hard to achieve high‐rate performance. Herein, a facile and scalable approach has been developed to synthesize hollow sodium sulfide (Na2S) nanospheres embedded in a highly hierarchical and spongy conductive carbon matrix, forming an intriguing architecture similar to the morphology of frogspawn coral, which has shown great potential as a cathode for high‐rate performance RT Na–S batteries. The shortened Na‐ion diffusion pathway benefits from the hollow structures together with the fast electron transfer from the carbon matrix contributes to high electrochemical reactivity, leading to superior electrochemical performance at various current rates. At high current densities of 1.4 and 2.1 A g?1, high initial discharge capacities of 980 and 790 mAh g?1sulfur can be achieved, respectively, with reversible capacities stabilized at 600 and 400 mAh g?1sulfur after 100 cycles. As a proof of concept, a Na‐metal‐free Na–S battery is demonstrated by pairing the hollow Na2S cathode with tin‐based anode. This work provides guidance on rational materials design towards the success of RT high‐rate Na–S batteries.  相似文献   

4.
Metal sulfide minerals, including mercury sulfides (HgS), are widespread in hydrothermal vent systems where sulfur‐oxidizing microbes are prevalent. Questions remain as to the impact of mineral composition and structure on sulfur‐oxidizing microbial populations at deep‐sea hydrothermal vents, including the possible role of microbial activity in remobilizing elemental Hg from HgS. In the present study, metal sulfides varying in metal composition, structure, and surface area were incubated for 13 days on and near a diffuse‐flow hydrothermal vent at 9°50′N on the East Pacific Rise. Upon retrieval, incubated minerals were examined by scanning electron microscopy with energy‐dispersive X‐ray spectroscopy (SEM‐EDS), X‐ray diffraction (XRD), and epifluorescence microscopy (EFM). DNA was extracted from mineral samples, and the 16S ribosomal RNA gene sequenced to characterize colonizing microbes. Sulfur‐oxidizing genera common to newly exposed surfaces (Sulfurimonas, Sulfurovum, and Arcobacter) were present on all samples. Differences in their relative abundance between and within incubation sites point to constraining effects of the immediate environment and the minerals themselves. Greater variability in colonizing community composition on off‐vent samples suggests that the bioavailability of mineral‐derived sulfide (as influenced by surface area, crystal structure, and reactivity) exerted greater control on microbial colonization in the ambient environment than in the vent environment, where dissolved sulfide is more abundant. The availability of mineral‐derived sulfide as an electron donor may thus be a key control on the activity and proliferation of deep‐sea chemosynthetic communities, and this interpretation supports the potential for microbial dissolution of HgS at hydrothermal vents.  相似文献   

5.
Cyanide and mercury treatment of chloroplast membranes inactivates plastocyanin as shown by the inability of the extracted plastocyanin to restore electron transport in a bioassay on chloroplasts depleted of their endogenous plastocyanin by digitonin treatment. The extraction procedure did remore the enzyme from cyanide and mercury treated chloroplasts as shown by sodium dodecyl sulfate polyacrylamide electrophoresis of the extracts. This procedure normally shows a plastocyanin band at 11,000 dalton molecular weight and the band was present in extracts from control and cyanide or mercury treated membranes.  相似文献   

6.
Arthrobacter species strain FR-3, isolated from sediments of a swamp, produced a novel serine-type sulfide oxidase. The production of sulfide oxidase was maximal at pH 7.5 and 30 degrees C. Among various carbon and nitrogen sources tested, glucose and yeast extract were found to be the most effective substrates for the secretion of sulfide oxidase. The sulfide oxidase was purified to homogeneity and the molecular weight of the purified enzyme was 43 kDa when estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified sulfide oxidase can be effectively immobilized in DEAE (diethylaminoethyl)-cellulose matrix with a yield of 66%. The purified free and immobilized enzyme had optimum activity at pH 7.5 and 6.0, respectively. Immobilization increases the stability of the enzyme with respect to temperature. The half-life of the immobilized enzyme was 30 min at 45 degrees C, longer than that of the free enzyme (10 min). The purified free sulfide oxidase activity was completely inhibited by 1 mM Co2+ and Zn2+ and sulfhydryl group reagents (para-chloromercuribenzoic acid and iodoacetic acid). Catalytic activity was not affected by 1 mM Ca2+, Mg2+, Na+ and metal-chelating agent (EDTA).  相似文献   

7.
The alleviation of the acetylene blockage of nitrous oxide reduction by sulfide was studied in anaerobically incubated Brookston soil to better characterize the process. Removal of nitrate-derived nitrous oxide from soil amended with acetylene and sulfide occurred earlier in the presence of glucose than it did in its absence. This was attributed to the influence of glucose on nitrous oxide production rather than reduction during the early stages of the soil incubation. Glucose was found to have no effect on reduction of injected nitrous oxide in the presence of acetylene- and sulfide-amended soil, whereas carbon dioxide significantly stimulated reduction. It is suggested that the microorganism(s) involved may use carbon dioxide as a cellular carbon source. The sulfide added to the soil probably did not act solely as an electron donor, as the number of electrons required to reduce the added nitrous oxide in our systems was greater than the amount supplied by the sulfide. The soil pH at which the alleviation occurred was 6.7 and was not affected by the sulfide treatment.  相似文献   

8.
Sodium‐ion batteries (SIBs) are promising next‐generation alternatives due to the low cost and abundance of sodium sources. Yet developmental electrodes in SIBs such as transition metal sulfides have huge volume expansion, sluggish Na+ diffusion kinetics, and poor electrical conductivity. Here bimetallic sulfide (Co9S8/ZnS) nanocrystals embedded in hollow nitrogen‐doped carbon nanosheets are demonstrated with a high sodium diffusion coefficient, pseudocapacitive effect, and excellent reversibility. Such a unique composite structure is designed and synthesized via a facile sulfidation of the CoZn‐MOFs followed by calcination and is highly dependant on the reaction time and temperature. The optimized Co1Zn1‐S(600) electrode exhibits excellent sodium storage performance, including a high capacity of 542 mA h g?1 at 0.1 A g?1, good rate capability at 10 A g?1, and excellent cyclic stability up to 500 cycles for half‐cell. It also shows potential in full‐cell configuration. Such capabilities will accelerate the adoption of sodium‐ion batteries for electrical energy applications.  相似文献   

9.
A method for the removal of mercury sulfide frommercury-contaminated sediments was developed, whichconsists of chemical leaching and volatilization ofmercury by bacteria. More than 85% of the mercury insediment containing 0.11–37.4 mg/kg of mercury wasefficiently extracted with 3 M HCl and 74 mMFeCl3. Subsequent volatilization by bacteriaresulted in the removal of 62.9–75.1% of mercury frommercury-contaminated Minamata Bay sediments. Methylmercury was also eliminated from soil at a highefficiency. Thus, this combined method of chemicaland microbial treatments could be used for efficientremoval of both organic and inorganic mercurials fromnatural sediments.  相似文献   

10.
A method for light and electron microscopic demonstration of mercury sulfides and mercury selenides in mammalian tissue is presented. Silver ions adhering to the surface of submicroscopic traces of mercury sulfides or selenides in the tissue are reduced to metallic silver by hydroquinone. Physical development thereupon renders deposits of mercury sulfides or mercury selenide visible as spheres of solid silver. Examples of localization of mercury in the central nervous system and various organs from animals exposed to mercury chloride or methyl mercury chloride with or without additional sodium selenide treatment are presented. Selenium treatment results in a considerable increase in the amount of mercury that can be made visible by silver amplification. After mercury chloride treatment, most of the mercury is localized in lysosomes and is only rarely seen in secretory granules. After simultaneous selenium treatment, mercury is also found in nuclei of proximal tubule cells in the kidney and in macrophages. The "sulfide-osmium" method for ultrastructural localization of mercury suggested by Silberberg, Lawrence, and Leider (Arch Environ Health 19:7, 1969) and the light microscopic method using a photographic emulsion suggested by Umeda, Saito, and Saito (Jpn J Exp Med 39:17, 1969) have been experimentally analyzed and commented on.  相似文献   

11.
A hydrogen gas (H2)-producing strain of Ectothiorhodospira vacuolata isolated from Soap Lake, Washington, possessed nitrogenase activity. Increasing evolution of H2 with decreasing ammonium chloride concentrations provided evidence that nitrogenase was the catalyst in gas production. Cells were grown in a mineral medium plus 0.2% acetate with sodium sulfide as an electron donor. Factors increasing H2 production included addition of reduced carbon compounds such as propionate and succinate, increased reducing power by increasing sodium sulfide concentrations, and increased energy charge (ATP) by increasing light intensity.  相似文献   

12.
H S Pan-Hou  M Hosono    N Imura 《Applied microbiology》1980,40(6):1007-1011
A strain of Clostridium cochlearium having methylmercury-decomposing ability was isolated. The ability was cured by the treatment with acridine dye and recovered by the conjugation of the cured strain with the parent strain. The cured strain then showed the activity to methylate mercuric ion as previously reported (M. Yamada and K. Tonomura, J. Ferment. Technol. 50:159-166, 1971). These results and the agarose gel electrophoretic pattern of the deoxyribonucleic acids from the lysates indicate a possible role of plasmids in controlling the mercury biotransformation of the two opposite directions in a single bacterial strain: methylation in the absence of the plasmid and demethylation in the presence of it. A possible mechanism for mercury resistance involving hydrogen sulfide is discussed.  相似文献   

13.
Disordered carbons have captured extensive interest as anode materials for Na‐ion batteries (NIBs) due to the abundant resources, competitive specific capacity, and low cost. Here, a facile strategy of pre‐oxidation is successfully adopted to tune the microstructure of carbon anode to facilitate sodium storage. Pitch is selected as the low‐cost and high carbon yield precursor. An easy pre‐oxidation treatment in air can enable pitch to realize an effective structural conversion from ordered to disordered at further carbonization processes. Compared with the carbonized pristine pitch, the carbonized pre‐oxidation pitch increases the carbon yield from 54 to 67%, the sodium storage capacity from 94.0 to 300.6 mAh g?1, and the initial Coulombic efficiency from 64.2 to 88.6%. Experiment results reveal that the introduction of oxygen based functional groups is the key to achieve the highly disordered structure, not only ensuring the cross‐linkage during low‐temperature pre‐oxidation process but also suppressing the carbon structure from melting and rearranging in the high‐temperature carbonization process. Most importantly, this facile pre‐oxidation strategy can also be extended to other carbon precursors to facilitate the low‐cost and high‐performance disordered carbon anodes for NIBs and beyond.  相似文献   

14.
A technique for the simultaneous determination of [35S]sulfide and [14C]carbon dioxide produced in anaerobic aqueous samples dual-labeled with [35S]sulfate and a 14C-organic substrate is described. The method involves the passive distillation of sulfide and carbon dioxide from an acidified water sample and their subsequent separation by selective chemical absorption. The recovery of sulfide was 93% for amounts ranging from 0.35 to 50 μmol; recovery of carbon dioxide was 99% in amounts up to 20 μmol. Within these delineated ranges of total sulfide and carbon dioxide, 1 nmol of [35S]sulfide and 7.5 nmol of [14C]carbon dioxide were separated and quantified. Correction factors were formulated for low levels of radioisotopic cross-contamination by sulfide, carbon dioxide, and volatile organic acids. The overall standard error of the method was ±4% for sulfide and ±6% for carbon dioxide.  相似文献   

15.
Efforts in optimizing reducing agents, cysteine-HCl.H2O and sodium sulfide in order to attain satisfactory responses during acetic acid fermentation have been carried out in this study. Cysteine-HCl.H2O each with five concentrations (0.00-0.50 g/L) was optimized one at a time and followed by sodium sulfide component (0.00-0.50 g/L). Response surface methodology (RSM) was used to determine the optimum concentrations of cysteine-HCl.H2O and sodium sulfide. The statistical analysis showed that the amount of cells produced and efficiency in CO conversion were not affected by sodium sulfide concentration. However, sodium sulfide is required as it does influence the acetic acid production. The optimum reducing agents for acetic acid fermentation was at 0.30 g/L cysteine-HCl.H2O and sodium sulfide respectively and when operated for 60 h cultivation time resulted in 1.28 g/L acetic acid production and 100% CO conversion.  相似文献   

16.
We describe a cytochemical method for localizing mercury at the electron microscopic level in the yeast Saccharomyces cerevisiae. After addition of a lethal concentration of mercuric chloride to growing yeast cells, mercury was associated with the cell wall and cytoplasmic membrane. Little or no mercury was present in the cytoplasm. Electron probe X-ray microanalysis (EPMA) confirmed that the cytochemical reaction, visualized as mercury-silver complexes, was localized in dense bodies consisting of a core of mercury sulfide polymers surrounded by a shell of silver atoms.  相似文献   

17.
Room temperature sodium–sulfur batteries have emerged as promising candidate for application in energy storage. However, the electrodes are usually obtained through infusing elemental sulfur into various carbon sources, and the precipitation of insoluble and irreversible sulfide species on the surface of carbon and sodium readily leads to continuous capacity degradation. Here, a novel strategy is demonstrated to prepare a covalent sulfur–carbon complex (SC‐BDSA) with high covalent‐sulfur concentration (40.1%) that relies on ? SO3H (Benzenedisulfonic acid, BDSA) and SO42? as the sulfur source rather than elemental sulfur. Most of the sulfur is exists in the form of O? S/C? S bridge‐bonds (short/long‐chain) whose features ensure sufficient interfacial contact and maintain high ionic/electronic conductivities of the sulfur–carbon cathode. Meanwhile, the carbon mesopores resulting from the thermal‐treated salt bath can confine a certain amount of sulfur and localize the diffluent polysulfides. Furthermore, the C? Sx? C bridges can be electrochemically broken at lower potential (<0.6 V vs Na/Na+) and then function as a capacity sponsor. And the R‐SO units can anchor the initially generated Sx2? to form insoluble surface‐bound intermediates. Thus SC‐BDSA exhibits a specific capacity of 696 mAh g?1 at 2500 mA g?1 and excellent cycling stability for 1000 cycles with 0.035% capacity decay per cycle.  相似文献   

18.
Of 100 strains of iron-oxidizing bacteria isolated, Thiobacillus ferrooxidans SUG 2-2 was the most resistant to mercury toxicity and could grow in an Fe(2+) medium (pH 2.5) supplemented with 6 microM Hg(2+). In contrast, T. ferrooxidans AP19-3, a mercury-sensitive T. ferrooxidans strain, could not grow with 0.7 microM Hg(2+). When incubated for 3 h in a salt solution (pH 2.5) with 0.7 microM Hg(2+), resting cells of resistant and sensitive strains volatilized approximately 20 and 1.7%, respectively, of the total mercury added. The amount of mercury volatilized by resistant cells, but not by sensitive cells, increased to 62% when Fe(2+) was added. The optimum pH and temperature for mercury volatilization activity were 2.3 and 30 degrees C, respectively. Sodium cyanide, sodium molybdate, sodium tungstate, and silver nitrate strongly inhibited the Fe(2+)-dependent mercury volatilization activity of T. ferrooxidans. When incubated in a salt solution (pH 3.8) with 0.7 microM Hg(2+) and 1 mM Fe(2+), plasma membranes prepared from resistant cells volatilized 48% of the total mercury added after 5 days of incubation. However, the membrane did not have mercury reductase activity with NADPH as an electron donor. Fe(2+)-dependent mercury volatilization activity was not observed with plasma membranes pretreated with 2 mM sodium cyanide. Rusticyanin from resistant cells activated iron oxidation activity of the plasma membrane and activated the Fe(2+)-dependent mercury volatilization activity of the plasma membrane.  相似文献   

19.
Biomass of a mercury-resistant strain Pseudomonas aeruginosa PU21 (Rip64) and hydrogen-form cation exchange resin (AG 50W-X8) were investigated for their ability to adsorb mercury. The maximum adsorption capacity was approximately 180 mg Hg/g dry cell in deionized water and 400 mg Hg/g dry cell in sodium phosphate solution at pH 7.4, higher than the maximum mercury uptake capacity in the cation exchange resin (100 mg Hg/g dry resin in deionized water). The mercury selectivity of the biomass over sodium ions was evaluated when 50 mM and 150 mM of Na(+) were present. Biosorption of mercury was also examined in sodium phosphate solution andphosphate-buffered saline solution (pH 7.0), containing 50mM and 150 mM of Na(+), respectively. It was found that the presence of Na(+) did not severely affect the biosorption of Hg(2+), indicating a high mercury selectivity ofthe biomass over sodium ions. In contrast, the mercury uptake by the ion exchange resin was strongly inhibited by high sodium concentrations. The mercury biosorption was most favorable in sodium phosphate solution (pH 7.4), with a more than twofold increase in the maximum mercury uptake capacity. The pH was found to affect the adsorption of Hg(2+)bythe biomass and the optimal pH value was approximately 7.4. The adsorption of mercury on the biomass and the ion exchange resin appeared to follow theLangmuir or Freundlich adsorption isotherms. (c) 1994 John Wiley & Sons, Inc.  相似文献   

20.
Mid‐ocean spreading and accompanying hydrothermal activities result in huge areas with exposure of minerals rich in reduced chemicals – basaltic and peridotitic rocks as well as metal sulfide precipitates – to the oxygenated seawater. Oxidation of Fe and S present in these rocks provides an extensive long‐term source of energy to lithotrophs. Investigation of lipid biomarkers and their carbon isotope ratios from a massive iron sulfide of an inactive sulfide mound or inactive chimney sampled at the western flank of the Turtle‐Pits hydrothermal field (Mid‐Atlantic Ridge, 5°S) revealed a unique lipid distribution. The bacterial fauna appears to be dominated by chemolithotrophs with a distinct lipid composition mainly comprising of iso‐branched fatty acids and nonisoprenoidal dialkyl glycerol diethers partially including the very rare macrocyclic cores with 30–35 carbon atoms (including 13,16‐dimethyloctacosane and 5,13,16‐trimethyloctacosane). The Bacteria are accompanied by most likely hydrogen/CO2‐dependent methanogenic Archaea (e.g. Methanococcus) as well as other Archaea with a different life style (e.g. Ferroplasma). Alike some of the bacterial lipids the archaeal lipids predominantly consist of macrocyclic diethers including one C40 and one C41 isoprenoid. Structural homologues of the latter are so far only reported from a methanogenic archaeum and a Pleistocene sulfur deposit. Compound‐specific analyses of the stable isotope ratios revealed δ13C values for the majority of bacterial and archaeal lipid components of about 0‰ (vs. VPDB), indicative for chemolithoautotrophically fixed carbon which is, for distinct pathways, accompanied by only negligible fractionations. However, the presence of methanogenic Archaea is indicated by 13C‐depleted isoprenoidal lipids (δ13C ~ –50‰) characteristic for certain CO2‐reducing methanogens synthesizing lipids via acetyl CoA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号