首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Electrospinning was applied to create easy-to-handle and high-surface-area membranes from continuous nanofibers of polyvinyl alcohol (PVA) or polylactic acid (PLA). Lipase PS from Burkholderia cepacia and Lipase B from Candida antarctica (CaLB) could be immobilized effectively by adsorption onto the fibrous material as well as by entrapment within the electrospun nanofibers. The biocatalytic performance of the resulting membrane biocatalysts was evaluated in the kinetic resolution of racemic 1-phenylethanol (rac-1) and 1-phenylethyl acetate (rac-2). Fine dispersion of the enzymes in the polymer matrix and large surface area of the nanofibers resulted in an enormous increase in the activity of the membrane biocatalyst compared to the non-immobilized crude powder forms of the lipases. PLA as fiber-forming polymer for lipase immobilization performed better than PVA in all aspects. Recycling studies with the various forms of electrospun membrane biocatalysts in ten cycles of the acylation and hydrolysis reactions indicated excellent stability of this forms of immobilized lipases. PLA-entrapped lipases could preserve lipase activity and enantiomer selectivity much better than the PVA-entrapped forms. The electrospun membrane forms of CaLB showed high mechanical stability in the repeated acylations and hydrolyses than commercial forms of CaLB immobilized on polyacrylamide beads (Novozyme 435 and IMMCALB-T2-150).  相似文献   

2.
An enzymatic alternative to the chemical synthesis of chiral gem-difluorinated alcohols has been developed. The method is highly effective and stereoselective, feasible at laboratory temperature, avoiding the use of toxic heavy metal catalysts which is an important benefit in medicinal chemistry including the synthesis of drugs and drug precursors. Candida antarctica lipases A and B were applied for the enantioselective resolution of side-chain modified gem-difluorinated alcohols, (R)- and (S)-3-benzyloxy-1,1-difluoropropan-2-ols (1a and 1b), compounds serving as chiral building blocks in the synthesis of various bioactive molecules bearing a gem-difluorinated grouping. The catalytic activity of these lipases was investigated for the chiral acetylation of 1a and 1b in non-polar solvents using vinyl acetate as an acetyl donor. The dependence of the reaction course on various substrate and enzyme concentrations, reaction time, and temperature was monitored by chiral capillary electrophoresis (CE) using sulfobutyl ether β-cyclodextrin as a stereoselective additive of the aqueous background electrolyte. The application of CE, NMR, and MS methods has proved that the complex enzyme effect of Candida antarctica lipase B leads to the thermodynamically stable (S)-enantiomer 1b instead of the expected acetylated derivatives. In contrast, the enantioselective acetylation of racemic alcohol 1 was observed as a kinetically controlled process, where (R)-enantiomer 1a was formed as the main product. This process was followed by enzymatic hydrolysis and chiral isomerisation. Finally, single pure enantiomers 1a and 1b were isolated and their absolute configurations were assigned from NMR analysis after esterification with Mosher’s acids.  相似文献   

3.
Sol-gel entrapment of microbial lipases from Candida cylindracea (Cc lipase),Pseudomonas fluorescens (Lipase AK), and Pseudomonas cepacia (Lipase PS), using as precursors tetraethoxysilane (TEOS) and silanes of type R-Si(OEt)3 with alkyl or aryl R groups, has been investigated. Three different methods using these precursors were tried exhibiting protein immobilization yields in the range of 20–50%. Hydrolysis of emulsified olive oil, esterification of lauric acid with 1-octanol and enantioselective acylation of 2-pentanol have been used as model reactions for testing the properties of the encapsulated lipases. The recovery yields of the enzyme activity in the esterification reaction were between 20–68%, the best performance being achieved with phenyltriethoxysilane and tetraethoxysilane precursors at 3:1 molar ratio. When testing the entrapped Lipase AK in the enantioselective acylation reaction of 2-pentanol, activity recovery yields up to 32% related to the free enzyme were obtained and the immobilization increased the enantioselectivity of the enzyme.  相似文献   

4.
Substrate specificity (typoselectivity), regioselectivity and hydrolytic activity of induced lipases from three strains (4012, 4013, 4166) of Geotrichum candidum and that of Geotrichum ludwigii (48) were investigated. The lipases were induced in two types of culture media, of which the medium containing peptone as nitrogen source was proved to give better results. Olive oil was employed as inductor for the lipase activity. Activated lipases represented mostly extracelullar lipases, which penetrated through cellular membrane into medium. The activity of cell-bound lipase was also determined. Most of lipases belong to the group of specific lipases able to hydrolyse ester bonds in the positions sn-1 and sn-3 ester of triacylglycerols (1,3-selective lipases) and display specificity to saturated fatty acids. All activated lipases from Geotrichum sp., extracellular and cell-bound, were used as biocatalyst in the blackcurrant oil hydrolysis.  相似文献   

5.
《Insect Biochemistry》1989,19(6):535-547
Electrophoretic separation of whole flies and of haemolymph indicates the presence of four peptidases, named dipeptidase A, B and C (Dip A, B and C) and leucine amino peptidase (LAP) after enzymes of similar substrate specificities and electrophoretic mobilities found in Drosophila (Laurie-Ahlberg, Biochem. Genet.20, 407–424, 1982; Walker et al., Insect Biochem.10, 535–541, 1980). Prominent in both tissues and haemolymph, dipeptidase A and B together hydrolyse a variety of dipeptides in vitro and probably most of the fly's small peptide component in vivo. Though Dip A and Dip B hydrolyse many of the same substrates, their activities differ in at least several respects. Dip A's Kms are higher than Dip B's Kms and hence in vivo the two enzymes together are likely to provide peptide hydrolysis through a wide range of substrate concentration. Dip A's unique hydrolyses are of peptides with biosynthesized amino acids in the N-terminal position and Dip B's unique hydrolyses are of peptides with essential amino acids in the N-terminal position. Dip B, but not Dip A, is inhibited by free amino acid. It is inhibited non-competitively and most strongly by essential amino acids. In cell-free haemolymph Dip B's activity is more stable than Dip A's. The accumulation and maintenance of small peptides in times of dietary sufficiency and the utilization of the small peptides as a source of amino acid in times of dietary scarcity (Collett, Insect Biochem.6, 179–185, 1976a; J. Insect Physiol.22, 1433–1440, 1976b) may be attributed to these features.  相似文献   

6.
Two acidothermotolerant lipases from new isolates of Bacillus stearothermophilus SB-1 and Bacillus licheniformis SB-3 are reported. In addition, a thermotolerant, neutral lipase from Bacillus atrophaeus SB-2 that hydrolyses castor oil is also reported. The lipase from B. stearothermophilus SB-1 retained 70% activity and that from B. licheniformis SB-3 retained 50% activity at pH 3.0 at 50 °C. In addition, at 100 °C B. stearothermophilus SB-1 lipase had a half life of 25 min at pH 3.0 and 15 min at pH 6.0. Lipase activity was markedly stimulated by glycerol in case of B. stearothermophilus SB-1 and by diethylether in cases of B. atrophaeus SB-2 and B. licheniformis SB-3. The lipases varied in their substrate specificity towards triacylglycerols. The rate of hydrolysis of neem oil with B. stearothermophilus SB-1 and B. atrophaeus SB-2 lipases was, respectively, nearly 4-fold and 2-fold more than with olive oil.  相似文献   

7.
Lipids enriched in polyunsaturated fatty acids are very susceptible to oxidation, causing the formation of potentially harmful oxidized products. Hence, it is critical to keep the temperature as low as possible during reaction and storage. In this study, five commercial immobilized lipases were evaluated for their capability to produce novel structured lipids (SLs) enriched with medium-chain fatty acids (MCFAs) through acidolysis of single cell oil (SCO) with capric acid. Among the examined lipases, NS40086 and Lipozyme RM IM showed the highest incorporation degree. The acidolysis reactions resulted in an obvious variation in the fatty acids composition as well as their positional distribution. The obtained SLs contained (33.58 %–34.09 %) capric acid at sn-1, 3 positions with increasing the content of arachidonic acid at the sn-2 position up to (49.82 %–50.25 %). The NS40086 lipase displayed 1, 3 regiospecificity towards the TAG of SCO. The acidolysis reactions using NS40086 lipase resulted in a generation of 23 TAG molecular species containing capric acid. Moreover, the NS40086 lipase was more active than Lipozyme RM IM at relatively low temperatures (35 °C and 40 °C), which could be used effectively as a promising biocatalyst in lipid synthesis.  相似文献   

8.
Mycelial lipase activity of the mould Rhizopus delemar was purified by gel filtration chromatography to three distinct proteins of notable lipase activity. The three enzymes were designated A′, B′ and C′, according to elution volumes from a Sephadex G150 column. The capacity of the three lipases to catalyse glyceride synthesis from free fatty acids and glycerol indicated a tendency towards short-chain and unsaturated fatty acids in preference to long-chain saturated fatty acids. The postional specificity of all lipases involved in such synthetic reactions indicated the formation of ester bonds at positions 1 and 3 of glycerol.  相似文献   

9.
Novel lipases lip11 and lip12 from Yarrowia lipolytica MSR80 were cloned and expressed in E. coli HB101 pEZZ18 system along with lip2. These enzymes were constitutively expressed as extracellular proteins with IgG tag. The enzymes were purified by affinity chromatography and analyzed by SDS-PAGE with specific activity of 314, 352 and 198?U/mg for Lip2, Lip11 and Lip12, respectively on olive oil. Biochemical characterization showed that all were active over broad range of pH 4.0?C9.0 and temperature 20?C80?°C with optima at pH 7 and 40?°C. All the three lipases were thermostable up to 80?°C with varying t1/2. Activity on various substrates revealed that they were most active on oils?>?triacylglycerides?>?p-np-esters. Relatively Lip2 and Lip11 showed specificity for mid to long chain fatty acids, while Lip12 was mid chain specific. GC analysis of triolein hydrolysis by these lipases revealed that Lip2 and Lip11 are regioselective, while Lip12 is not. Effect of metal ions showed that Lip2 and Lip12 were activated by Ca2+ whereas Lip11 by Mg2+. All were thiol activated and inhibited by PMSF and N-bromosuccinimide. All were activated by non polar solvents and inhibited by polar solvents. Detailed sequence analysis and structural predictions revealed Lip11 and Lip12 shared 61 and 62?% homology with Lip2 (3O0D) and three dimensional superimposition revealed Lip2 was closer to Lip11 than to Lip12 as was observed during biochemical characterization. Finally, thermostability and substrate specificity has been explained on the basis of detailed amino acid analysis.  相似文献   

10.
The chemoenzymatic epoxidation of a terpene alcohol, citronellol, is reported. Some experimental conditions, such as the use of lipases from different sources, oxidizing agents (H2O2 or urea–hydrogen peroxide, UHP), reaction time, acyl donor type (C6–C16), temperature (15–40 °C) and the influence of organic media, were evaluated. In most cases, citronellol oxide 2 or the ester citronellol oxide 3 were obtained. Depending on the reaction conditions, high yields of products 2 or 3 were obtained (>99%). CAL-B was the most effective catalyst in this reaction. For epoxide 2, the highest yields of 80% and 77% were obtained at 20 °C and 25 °C, respectively, using UHP as an oxidizing agent and octanoic acid as an acyl donor. The organic medium appears to be one of the most important parameters in the reaction. Using chloroform or dichloromethane, product 2 was obtained at a >99% yield after 24 h. When different mixtures consisting of varied organic solvents and an imidazolium-based ionic liquid (IL) were used, the results were dependent on both the solvent and IL counter-ion (18–75%).  相似文献   

11.
A wide spectrum of commercially available lipases and microbial whole cells catalysts were tested for biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid 1 and its butyryl ester. The best results were achieved for biocatalytic hydrolysis of ester: 2-butyryloxy-2-(ethoxyphenylphosphinyl)acetic acid 2 performed by lipase from Candida cylindracea, what gave optically active products with 85% enantiomeric excess, 50% conversion degree and enantioselectivity 32.9 for one pair of enantiomers. Also enzymatic systems of Penicillium minioluteum and Fusarium oxysporum were able to hydrolyze tested compound with high enantiomeric excess (68–93% ee), enantioselectivity (44 for one pair of enantiomers) and conversion degree about 50–55%. Enzymatic acylation of hydroxyphosphinate was successful in case when porcine pancreas lipase was used. After 4 days of biotransformation the conversion reaches 45% but the enantiomeric enrichment of the isomers mixture do not exceed 43%. Obtained chiral compounds are valuable derivatizing agents for spectroscopic (NMR) evaluation of enantiomeric excess for particular compounds (e.g. amino acids).  相似文献   

12.
《Process Biochemistry》2004,39(11):1347-1361
The aim of this investigation was to obtain an efficiently immobilized intracellular lipase from Rhizomucor miehei and Yarrowia lipolytica. The activity of intracellular lipases from R. miehei and Y. lipolytica was enhanced by the addition of waste fats (beef tallow or poultry fat) to the medium and by cell immobilization on biomass support particles (BSPs, cubic particle of polypropylene or polyurethane foams). The highest intracellular activity of lipases was obtained after adding 20 and 50 BSPs to the medium of R. miehei (130.5 U) and Y. lipolytica (90.3 U), respectively. The best carrier for immobilizing intracellular lipases was polyurethane foam and the lipolytic activity of immobilized lipases was 2.1–4.3-times higher than the activity of lipases obtained from free biomass. The properties of the immobilized enzymes were very similar to the free enzymes but the immobilized intracellular lipases were more useful for the hydrolysis of waste fats. The highest reaction ratio (72%) and content of free fatty acids (68% (w/w)) in the reaction mixture was obtained after 72 h for beef tallow hydrolysis in a batch reaction with the immobilized lipases from R. miehei.  相似文献   

13.
The extract of UIC 10035, a strain obtained from a sample collected near the town of Homestead, South Florida, showed antiproliferative activity against MDA-MB-435 cells. Bioassay-guided fractionation led to the isolation of a series of cyclic lipodecapeptides, named minutissamides E–L (18). The planar structures were determined by analysis of HRESIMS, tandem MS, and 1D and 2D NMR data, and the stereoconfigurations were assigned by LC–MS analysis of the Marfey’s derivatives after acid hydrolysis. Minutissamides E–L (18) exhibited antiproliferative activity against MDA-MB-435 cells with IC50 values ranging between 1 and 10 μM. The structures of minutissamides E–L (18) were closely related with those of the previously reported lipopeptides, puwainaphycins A–E and minutissamides A–D, characterized by the presence of a lipophilic β-amino acid and three non-standard amino acids NMeAsn, OMeThr and Dhb (α,β-dehydro-α-aminobutyric acid). The strain UIC 10035 was designated as cf. Anabaena sp. on the basis of morphological and 16S rRNA gene sequence analyses.  相似文献   

14.
Two cold-adapted lipases (Lipase-A and Lipase-B in the paper) of mesophilic Geotrichum sp. SYBC WU-3 were purified by using (NH4)2SO4 fractionation, chromatography separation on a DEAE-cellulose-32 column and a Sephadex G100 column. The molecular mass of Lipase-A and Lipase-B were determined to be approximately 41.1 and 35.8 kDa, respectively by SDS-PAGE. The optimum temperature for the activity of Lipase-A was found to be 20 °C, and that of Lipase-B was 15 °C. Lipase-A and Lipase-B had good stability when temperature was below 40 °C. Both the optimum pH for the activity of the lipases was 9.5. Lipase-A retained about 80% of its activity when pH was between 3 and 6 and Lipase-B maintained over 80% activity in the pH range of 3–8. The two lipases showed hydrolysis efficiency to various p-nitrophenyl esters, but they were more active with shorter p-nitrophenyl esters (C2 and C4).  相似文献   

15.
Bioassay guided fractionation of the EtOAc fraction of the sponge Callyspongia aerizusa yielded seven new cytotoxic cyclic peptides callyaerins A–F (16) and H (8). Their structures were determined using extensive 1D (1H, 13C and DEPT) and 2D (COSY, HMQC, HMBC, TOCSY, and ROESY) NMR and mass spectral (ESI and HRESI-TOF) data. All compounds were cyclic peptides containing ring systems of 5–9 amino acids and side chains of 2–5 amino acids in length. An unusual (Z)-2,3-diaminoacrylic acid unit provided the template for ring closure and afforded the linkage to the peptidic side chain which was always initiated with a proline moiety. All peptides contained three or more proline residues and the remaining residues were predominantly hydrophobic residues with all amino acids present in the l form. Callyaerins A–F (16) and H (8) showed biological activity in antibacterial assays and in various cytotoxicity assays employing different tumour cell-lines (L5178Y, HeLa, and PC12). Callyaerins E (5) and H (8) exhibited strong activity against the L5178Y cell line with ED50 values of 0.39 and 0.48 μM, respectively. On the other hand, callyaerin A (1) showed strong inhibitory properties towards C. albicans.  相似文献   

16.
The chemo-enzymatic epoxidation of the terpene β-caryophyllene is reported herein. This compound can form two products, the mono-epoxide 2 and the di-epoxide 3. Different experimental conditions, varying the source of the lipases (including mycelia from the Amazon region), the oxidizing agents (H2O2 aq. (AHP) or urea-hydrogen peroxide (UHP)) and the substituted acyl donors on the alkyl chain (bromide and alkyl), along with the influence of organic medium, were evaluated. Depending on the experimental conditions the formation of a single product could be obtained. CAL-B was the most efficient catalyst (conv. >99%). When using the commercial lipases product 2 was obtained in conversions of 16–27%, and using the native lipases 2 was obtained in conversions of 20–23%. With the use of mycelia UEA_06 and UEA_53 the conversions were 16 and 21%, respectively. When the 2-bromo alkylated and 2-ethylhexanoic acids were used as acyl donors only the mono-epoxide 2 was obtained in conversions of 14–54% (24 h). AHP was found to be a better oxidizing agent than UHP, a shorter time and lower amount being required to obtain 2 or 3 as the sole product in good conversions (60 up to >99%). The organic solvents were also selective. When using n-hexane the preferred formation of 2 was observed with >99% conversion, and when ethyl acetate or toluene were used the conversion to 3 was also >99% (in 8 and 24 h, respectively).  相似文献   

17.
In this paper we describe the chemoenzymatic synthesis of new enantiomerically enriched (R)- and (S)-1-(2-arylthiazol-4-yl)ethanols and their acetates by enzymatic enantioselective acetylation of the racemic alcohols rac-2ad and by methanolysis of the corresponding racemic esters rac-3ad mediated by lipase B from Candida antarctica (CaL-B) in non-aqueous media. In terms of stereoselectivity and activity, both procedures, acylation and alcoholysis, gave similar good results (50% conversion, E  200). The absolute configuration of the kinetic resolution products was determined by a detailed 1H NMR study of the Mosher's derivatives of (S)-2b.  相似文献   

18.
Two new N-benzoylamino acids, peniginseng A-B (12), and two new fatty acids, peniciginseng A-B (56), were isolated during the fermentation of Penicillium sp. YIM PH30003, an endophytic fungus associated with Panax notoginseng (Burk.) F.H. Chen. Their structures were assigned based on a combination of 1D and 2D NMR and mass spectral data. The N-benzoylamino acids (14) might share similar biosynthetic pathways with the rare siderophore pistillarin. Compounds 110 showed antifungal activities (MICs 16–128 μg/mL) against Fusarium solani, the pathogenic fungus of P. notoginseng.  相似文献   

19.
This work addresses the synthesis and biological evaluation of glycosyl diketopiperazines (DKPs) cyclo[Asp-(αGalNAc)Ser] 3 and cyclo[Asp-(αGalNAc)Thr] 4 for the development of novel anti-trypanosomal agents and Trypanosoma cruzi trans-sialidase (TcTS) inhibitors. The target compounds were synthetized by coupling reactions between glycosyl amino acids αGalNAc-Ser 7 or αGalNAc-Thr 8 and the amino acid (O-tBu)-Asp 17, followed by one-pot deprotection-cyclisation reaction in the presence of 20% piperidine in DMF. The protected glycosyl amino acid intermediates 7 and 8 were, in turn, obtained by α-selective, HgBr2-catalysed glycosylation reactions of Fmoc-Ser/Thr benzyl esters 12/14 with αGalN3Cl 11, being, subsequently, fully deprotected for comparative biological assays. The DKPs 3 and 4 showed relevant anti-trypanosomal effects (IC50 282–124 μM), whereas glycosyl amino acids 1 and 2 showed better TcTS inhibition (57–79%) than the corresponding DKPs (13–25%).  相似文献   

20.
In the preparation of anti-thrombotic agents the 2- and 3-positions of 3S-tetra-hydroisoquinoline-3-carboxylic acid (THIQA) were simultaneously modified with amino acids to form 20 novel N-(3S-N-aminoacyl-1,2,3,4-tetrahydroisoquinoline-3-carbonyl)amino acids (8at). On an in vitro platelet aggregation model 8at selectively inhibit ADP-induced platelet aggregation and their IC50 values are leas than 3.5 nM. On an extracorporeal circulation of arterioveinos cannula model of rats both orally and intraveously effective doses of 8at are less than 30 nmol/kg. Cerius2 based stereoview of explores 8at having highly unfolded conformation. 3D QSAR analysis gives the importance of the unfolded conformation to high in vitro anti-platelet aggregation and in vivo anti-thrombotic potency rational understanding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号