首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymorphonuclear leukocytes (PMNs) stimulated by the chemotactic peptide formyl-methionyl-leucyl-phenylalanine (FMLP) were effectively inhibited by chlorpromazine (10 microM) and azelastine (20 microM) in terms of superoxide generation, and restored by the addition of dodecylbenzenesulfonic acid (DBS) in a range of concentrations from 20 to 40 microM. The stimulation of superoxide generation by DBS was also inactivated by dodecylamine (DA) but was restored by the subsequent addition of DBS. A dose dependent competitive inhibition and activation of leukocytes was observed between azelastine (10 microM) and DBS (20 microM). The release of arachidonic acid from leukocytes activated by the chemotactic peptide was decreased by DA or chlorpromazine, but could be restored by DBS. The changes in membrane potential of leukocytes as monitored by cyanine dye were also decreased by DA, chlorpromazine or azelastine. These observations indicate that some cationic drugs reversibly inhibit membrane bound enzymes or receptors. The physiological responses of these inhibited PMNs can then be restored by appropriate anionic amphiphiles.  相似文献   

2.
Stimulation of human polymorphonuclear leukocytes (PMNs) with PMA initiates a cascade of events leading to the production and release of superoxide anion (O-2), a major component in anti-bacterial defense. Generation of O-2 by PMA-stimulated PMNs occurs through the translocation and activation of protein kinase C (PKC). In this study, using freshly isolated PMNs, we examined the effect of ethanol on this response to PMA. Our results show that the basal production of O-2 was not affected by ethanol. In contrast, the response induced by PMA was potentiated by ethanol. This potentiation was observed even at high doses of PMA (200 nM) which alone had stimulated the O-2 response maximally. This enhanced response was not due to an increase of PMA uptake by PMNs. The maximal effect was obtained when the cells were preincubated with 80 mM of ethanol before PMA stimulation. Measurement of PKC activity in the cytosolic and membrane fractions showed that pretreatment of PMNs with ethanol increased twofold the PMA-stimulated PKC activity in the membrane fraction. Furthermore, Western blot analysis verified that this increase in PKC activity in the membrane fraction was linked to an increase in the translocation of PKC-alpha and -beta isoforms to the membrane. These results suggest that ethanol potentiates PMA-induced O-2 production through increasing PKC translocation and activity in PMNs.  相似文献   

3.
Effects of islet-activating protein (IAP) were examined to assess the involvement of the guanine nucleotide-binding regulatory protein responsible for inhibition of adenylate cyclase system (Ni protein) in the superoxide anion (O-2) production in polymorphonuclear leukocytes (PMNL) stimulated with various agents. N-Formyl-methionyl-leucyl-phenylalanine (FMLP)-stimulated O-2 production was inhibited by the pretreatment with IAP. O-2 production induced by each of phorbol myristate acetate, concanavalin A, and A23187, however, was rather resistant to the pretreatment with IAP. This observation indicates that the Ni protein does not involve in the common pathway for the O-2 production. in PMNL, and the involvement is rather specific for the FMLP-induced production. O-2 production in PMNL stimulated with various membrane perturbing agents was also diverse in the requirement of extracellular Ca2+.  相似文献   

4.
A mixture of rabbit polymorphonuclear leukocytes (PMNs) and platelets at concentrations of 5 X 10(6) PMN and 3.5 X 10(8) platelets/ml Tyrode's solution was stimulated with the chemotactic peptide, formyl-methionyl-leucyl-phenylalanine (FMLP). A micromolar concentration of FMLP elicited an immediate weak aggregation, followed by a strong aggregation with a time lag of about 1 min. Microscopic examination showed that the immediate aggregation was due to PMNs and the delayed one was more complex and involved platelets. The delayed aggregation was dependent upon the concentrations of both the PMNs and FMLP. The delayed aggregation was completely blocked by pretreatment of the PMN-platelet mixture with 8 microM CV-3988, a specific receptor antagonist of 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC), or by the application of platelets desensitized to AGEPC. The time course of AGEPC production by PMNs was well matched to that of the biphasic aggregation response. Furthermore, nordihydroguaiaretic acid inhibited both the AGEPC production by PMNs and the delayed aggregation in a similar dose-dependent manner. These result demonstrate that AGEPC, newly-generated by PMNs under FMLP-stimulation, is of primary importance in platelet aggregation in a PMN-platelet mixed system.  相似文献   

5.
The inhibitory effect of adenosine (ADO) and pentoxifylline (POF) was studied alone and in combination on the N-formyl-methionyl-leucyl-phenylalanine (FMLP) stimulated superoxide anion production of human polymorphonuclear leukocytes (PMNL). The pharmacological analysis of the results of these experiments demonstrated greater than additive and independent interaction of the drugs, representing potentiation. These results reflect differences between the sites of action of ADO and POF. Accordingly, the ADO receptor antagonist 8-phenyltheophylline only diminished the inhibition mediated by ADO, but totally failed to affect POF. Therefore, we hypothesize that POF acts as a phosphodiesterase inhibitor, potentiating the increase in cyclic AMP induced by ADO due to the stimulation of the adenylate-cyclase of human PMNL.  相似文献   

6.
When polymorphonuclear neutrophils were stored at 4 °C for up to 2 weeks, the maintenance of the integrity of PMNs was examined by determining changes in enzyme activity, enzyme release, stimulated superoxide anion generation, and sensitivity to hypotonicity. Until at least 3-day storage, no changes were observed in enzyme activity, enzyme release, and stimulated superoxide anion generagion. After 1-week storage, the ability of PMNs to generate superoxide anions decreased considerably and the extracellular release of lactate dehydrogenase (LDH) was observed. After 2 weeks of storage, this LDH release and inhibition of O2?-generating ability of PMNs increased further, although enzyme activities were only slightly affected except for acid p-nitrophenyl phosphatase. The resistance of PMNs to hypotonic solutions decreased with increasing preservation time at 4 °C.  相似文献   

7.
To clarify effects of pseudomonal leukocidin (42.5 kd) on chemiluminescence (CL) production of polymorphonuclear leukocytes (PMNs), rabbit PMNs were stimulated by zymosan or phorbol myristate acetate (PMA) after pretreatment with the leukocidin, which by itself stimulated little chemiluminescence response. The extent of CL responses stimulated by zymosan or PMA was respectively 5.3- or 3.5-fold greater in leukocidin (1.5 μg/ml)-pretreated PMNs than in non-pretreated ones. The priming effect of the leukocidin was greater than that of G-CSF and related to some steps before NADPH oxidase activation. The increased CL productions might be related to tissue damages caused by pseudomonal infections in vivo.  相似文献   

8.
HNE (4-hydroxy-2,3-trans-nonenal), an aldehydic product of lipid peroxidation, has been reported to modulate different functional parameters of human and rat neutrophils (PMNs), such as chemiluminescence, migration and some enzymatic activities, thus exerting effects that varied according to the concentration tested. Experiments were done to evaluate the effects of HNE on superoxide anion (O2?.) production from human PMNs, isolated from healthy volunteers. After having tested that HNE by itself was not able to activate the cells, comparisons were made between its effects on PMNs, stimulated by either a single stimulus, N-formyl-methionyl-leucyl-phenylalanine (FMLP), or a combination of stimuli, such as FMLP and the neuropeptide substance P (SP; primed PMNs). In the concentration range tested (10?12–10?4 M ), HNE inhibited FMLP-evoked O2?. production with an IC50 of 11·6 ± 1·5 × 10?6 M ; at concentrations ≤10?6 M , HNE enhanced O2?. production elicited by FMLP + SP, while higher concentrations were inhibitory. There was a bell-shaped dose–response curve to the enhancing effects of HNE, depending on the incubation time being recorded after only short periods (≤5 min) of the exposure of the cells to HNE; this was not shown by structurally-related aldehydes, such as 2-nonenal and nonanal. These results suggest that low concentrations of HNE may participate in the evolution of the inflammatory process, by contributing to the activation of PMNs. The effects of high concentrations of the aldehyde may represent a mechanism which contributes to the regulation of the extent of the inflammatory response.  相似文献   

9.
It has been found that high concentrations of exogenous hydrogen peroxide kill human neutrophils, the range of toxic concentrations being 100 times as high as that for human endothelial cells. Whereas the H2O2 doses of 30-100 mM induce a fast massive death of neutrophils, 10 mM hydrogen peroxide induces appreciable death only within several hours after treatment. H2O2 used at 30 mM decreases superoxide anion generation by neutrophils stimulated with PMA or FMLP. This decrease is commensurate in value with cell death, thus indicating a high functional resistance of survived cells. In the dose of 10 mM hydrogen peroxide potentiates FMLP (but not PMA-)-induced generation of superoxide anions. Augmentation of superoxide anion generation by H2O2-primed neutrophils in response to FMLP amounts to 200% of the control value. Hydrogen peroxide alone is incapable of inducing superoxide anion generation. It is concluded that exogenous oxidants can alter the functional activity of leukocytes freshly recruited in inflammatory and ischemic tissues.  相似文献   

10.
A diacylglycerol (DG) kinase inhibitor, R 59 022, potentiated superoxide anion (O2-) production in guinea pig polymorphonuclear leukocytes (PMNL) induced by N-formyl-methionyl-leucyl-phenylalanine (FMLP). R 59 022 also potentiated O2- production induced by 1-oleoyl-2-acetylglycerol, a permeable DG. However, the production induced by phorbol 12-myristate 13-acetate (PMA), a direct activator for protein kinase C, was not potentiated by R 59 022. R 59 022 by itself had no significant effects on unstimulated O2- production. The potentiation of FMLP-induced O2- production by R 59 022 was correlated closely with increased formation of DG and decreased formation of phosphatidic acid, a product of DG kinase. R 59 022 had no effect on the breakdown of phosphoinositides. Phosphorylation of 46-kDa protein(s) by protein kinase C was also examined in relation to O2- production in PMNL. In coincidence with the increase in O2- production, the phosphorylation was potentiated by R 59 022 in the response to FMLP, but not in the response to PMA. In addition, staurosporine, a protein kinase C inhibitor, inhibited increases in both O2- production and phosphorylation of the 46-kDa protein(s) after PMA stimulation. Similar inhibitory effects of staurosporine were also observed upon stimulation with FMLP, irrespective of the presence of R 59 022. These results indicate that retention of DG as a result of the inhibition of further metabolism induces marked stimulation of O2- production via protein kinase C activation in PMNL. These results also provide further evidence for the close relationship between 46-kDa protein phosphorylation by protein kinase C and stimulation of O2- production in PMNL.  相似文献   

11.
Superoxide anion production in peritoneal polymorphonuclear leukocytes obtained from guinea pigs was stimulated by in vitro treatment with membrane-perturbing agents, such as cytochalasin D, concanavalin A, phorbol myristate acetate, myristate, digitonin, and NaF. Vinblastine modified these stimulating effects on the superoxide anion production, but its modifying effect was not uniform. The effect of cytochalasin D was stimulated by vinblastine at the concentration of 10(-5)-10(-7) M, whereas it was inhibited at the concentration of 10(-4) M. At 10(-4)-10(-5) M, vinblastine was inhibitory to the effect of concanavalin A, and lower concentrations had no significant effect. Stimulation of the superoxide anion production by phorbol myristate acetate and myristate was further enhanced by vinblastine at any concentration in the range of 10(-4)-10(-8) M with peaks at 10(-6) and 10(-5) M, respectively. Vinblastine had little effect on the stimulation of the superoxide anion production by digitonin and NaF throughout the concentration range examined. The mechanism of the interaction of these membrane-perturbing stimulants and vinblastine is discussed.  相似文献   

12.
In an attempt to elucidate properties and activation mechanisms of the NADPH oxidase system, which is known to be responsible for the production of superoxide anion (O2-) in cell membranes of polymorphonuclear leukocytes (PMNL), intact guinea pig PMNL were treated with glutaraldehyde, a protein crosslinking reagent, before or after stimulation with phorbol 12-myristate 13-acetate (PMA). Then, PMNL were disrupted and NADPH oxidase activity was measured. After the treatment of resting PMNL with glutaraldehyde, NADPH oxidase was no longer activated by PMA. On the other hand, the NADPH oxidase activity enhanced by PMA in advance was markedly retained by the glutaraldehyde treatment of such PMA-stimulated PMNL as compared to that in untreated cells. Similar retention by glutaraldehyde of the stimulated NADPH oxidase activity was observed in PMNL stimulated by formyl-methionyl-leucyl-phenylalanine (FMLP) and cytochalasin D. Furthermore, the oxidase activity of glutaraldehyde-treated PMNL was stable during incubation at 37 degrees C, the half life of the oxidase activity of the treated PMNL being more than 90 min whereas that of the untreated PMNL is about 15 min. This ability of the glutaraldehyde treatment to retain the activity was also observed against inactivation by high concentrations of NaCl and by positively charged alkylamine.  相似文献   

13.
Phosphorylation of proteins was examined in guinea pig polymorphonuclear leukocytes in relation to the effects of membrane-perturbing agents, which stimulate superoxide anion production, and their inhibitors. The phosphorylation was detected by 32P autoradiography after separation by two-dimensional electrophoresis of proteins phosphorylated in 32P-preloaded cells. Though phosphorylation of various proteins was stimulated by each of the membrane-perturbing agents, the stimulation was especially marked in six proteins. Phorbol myristate acetate and digitonin enhanced the phosphorylation of the six proteins, while myristate and concanavalin A increased the phosphorylation of five and three proteins, respectively, out of the six proteins. p-Bromophenacyl bromide, an inhibitor of phospholipase A2, inhibited the stimulatory effect of phorbol myristate acetate on both superoxide anion production and protein phosphorylation. Trifluoperazine, a calmodulin inhibitor, also inhibited the effect of phorbol myristate acetate on both, except for an increase in the phosphorylation of one out of the six proteins. alpha-Methylmannoside, an inhibitor of concanavalin A binding, inhibited the stimulation of the phosphorylation of the three proteins by concanavalin A. The results indicate that the activation of superoxide anion production by the membrane-perturbing agents in guinea pig polymorphonuclear leukocytes is accompanied by the phosphorylation of, at least some of, these six proteins.  相似文献   

14.
Activated by bacterial peptides, phorbol esters, calcium ionophores and other agonists, neutrophils (PMNs) release the proinflammatory mediator, arachidonic acid (AA) via the intervention of phospholipase A(2) (PLA(2)). AA may play an essential role in activation of NADPH-oxidase, which is involved in the generation of superoxide anion by neutrophils. The present study is focused on the involvement of PLA(2) in the respiratory burst developed by PMNs isolated from patients with rheumatoid arthritis (RA). PLA(2) exists in very high levels in diseases such as rheumatoid arthritis and may cause acute inflammatory and proliferative changes in synovial structures. The respiratory burst was evaluated as superoxide anion release, using an amplified chemiluminescence method. The assays were performed using PMNs untreated or treated with different doses of stimulatory reagents (phorbol 12-myristate-13-acetate (PMA), calcium ionophore (A23187)). Our data suggested that PMA stimulated the production of superoxide anion in a dose-response manner, as compared with A23187, which did not induce a significant release of superoxide anion in PMNs-RA. The exogenous addition of AA significantly amplified the superoxide anion release by PMNs-RA stimulated with PMA and to a lesser extent, by PMNs stimulated with A23187. AA has also reversed the inhibitory effect of arachidonyl-trifluorometylketone and E-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)2H-pyran-2-one (BEL) on the superoxide anion release by PMNs-RA. In conclusion, the differential responses to these two agents suggested that different isoforms of PLA(2) were activated by A23187 or PMA, and support the idea that activation of these different PLA(2) served distinct functions of PMNs. Therefore, the inhibition of PLA(2) enzymes might be of great importance in the immunotherapy of rheumatoid arthritis.  相似文献   

15.
The purpose of this study was to examine whether the adhesion of polymorphonuclear leukocytes (PMNs) to endothelial cells and/or reactive oxygen species (ROS) released from PMNs are responsible for inducing angiogenesis. Angiogenesis was assessed by tube formation using endothelial cells obtained from bovine thoracic aorta (BAECs) grown on a layer of collagen type I. Addition of PMNs to BAECs weakly induced angiogenesis. The angiogenesis induced by PMNs alone was further enhanced by treatment of the PMNs with N-formyl-methionyl-leucyl-phenylalanine (FMLP), a selective activator of PMN. The involvement of PMN adhesion to BAECs via adhesion molecules in angiogenesis was investigated by using monoclonal antibodies against E-selectin and intercellular adhesion molecule-1 (ICAM-1). These antibodies blocked both the PMN adhesion to BAECs and the enhancement of angiogenesis induced by FMLP-treated PMNs. Furthermore, the enhancement of angiogenesis by FMLP-treated PMNs was blocked by catalase, a scavenging enzyme of H2O2, but not by superoxide dismutase (SOD). These results suggest that PMNs induce angiogenesis in vitro, and that the mechanism of stimulation of angiogenesis by PMNs may involve the adherence of PMNs to endothelial cells via E-selectin and ICAM-1, and H2O2, but not superoxide. Thus, activated PMNs in pathological states may not only induce tissue injury, but may also function as regulators of angiogenesis.  相似文献   

16.
We studied the chemotactic peptide receptor/cytoskeletal interactions in HL-60 cells induced to differentiate with different agents and attempted to correlate these observations with the acquisition of different functional responses. Dibutyryl cyclic AMP-treated cells showed rapid superoxide anion production in response to N-formyl-methionyl-leucyl-phenylalanine (FMLP) and slow, sustained response to phorbol myristate acetate (PMA). Retinoic acid-induced cells showed a slow, sustained response to both FMLP and PMA. Interferon-gamma-treated cells produced no superoxide anion on stimulation with FMLP, whereas tumor necrosis factor (TNF)-treated cells showed a slight response. Chemotactic peptide receptor association was the same in the HL-60 cells treated with different agents, despite marked differences in the superoxide anion generation and actin polymerization responses to FMLP and PMA in these cells. In mature neutrophils chemotactic peptide receptor association with the cytoskeleton was not affected by either pertussis or cholera toxin. However, both toxins inhibited FMLP-induced actin polymerization and superoxide anion generation. This suggested involvement of a G-protein similar to Gt, rather than Gi or Gs. Neither toxin had any effect on PMA-induced superoxide anion generation. These observations indicate that receptor association with the cytoskeleton may not have a significant role in affecting signal recognition and response. Among the several possible roles suggested, clearance of the occupied receptors may be the most important role of the cytoskeletal association. HL-60 cells induced to differentiate with different agents (because of their varied functional responses) might prove very useful in dissecting the molecular mechanisms regulating stimulus-induced activation of neutrophils.  相似文献   

17.
We determined circulatory polymorphonuclear leukocytes (PMN) functions of superoxide anion production, adhesion and aggregation in 38 type 2 diabetic patients with and without diabetic triopathy. Tumor necrosis factor (TNF)-alpha-stimulated superoxide production and N-formyl-methionyl-leucyl-phenylalanine (FMLP)-stimulated aggregation in diabetic patients with triopathy were significantly greater than those in diabetics without triopathy. The more diabetic complications existed, the more TNF-alpha-stimulated superoxide was produced by PMN. These results suggest that the activated PMN contributes to a progression of diabetic triopathy in type 2 diabetic patients.  相似文献   

18.
We have investigated the effects of a sinusoidal 60 Hz magnetic field on free radical (superoxide anion) production, degranulation (beta-glucuronidase and lysozyme release) and viability in human neutrophils (PMNs). Experiments were performed blindly in very controlled conditions to examine the effects of a magnetic field in resting PMNs and in PMNs stimulated with a tumor promoter: phorbol 12-myristate 13-acetate (PMA). Exposure of unstimulated human PMNs to a 60 Hz magnetic field did not affect the functions examined. In contrast, exposure of PMNs to a 22 milliTesla (mT), 60 Hz magnetic field induced significant increases in superoxide anion (O2-) production (26.5%) and in beta-glucuronidase release (53%) when the cells were incubated with a suboptimal stimulating dose of PMA. Release of lysozyme and lactate dehydrogenase was unchanged by the magnetic field, whether the cells were stimulated or not. A 60 Hz magnetic field did not have any effect on O2- generation by a cell-free system xanthine/xanthine oxidase, suggesting that a magnetic field could upregulate common cellular events (signal transduction) leading to O2- generation and beta-glucuronidase release. In conclusion, exposure of PMNs to a 22 mT, 60 Hz magnetic field potentiates the effect of PMA on O2- generation and beta-glucuronidase release. This effect could be the result of an alteration in the intracellular signaling.  相似文献   

19.
The influence of isoquinolinesulfonamides (H-7 and H-8), phenothiazines(trifluoperazine and fluphenazine), and a naphthalenesulfonamide (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) on stimulated superoxide anion production and phosphatidyl inositol (PI) cycle activity was investigated in the guinea pig alveolar macrophage. All five drugs were able to inhibit superoxide anion production stimulated by n-formyl-nel-leu-phe (FNLP), leukotriene B4 (LTB4), and phorbol-12,13-dibutyrate (PDB). The order of potency was trifluoperazine greater than or equal to fluphenazine greater than H-7 = W-7 greater than H-8. The dose response curves could be shifted to less efficacy by increasing extracellular calcium. By itself, W-7 markedly stimulated 45Ca+2 efflux, fluphenazine and trifluoperazine slightly stimulated 45Ca+2 efflux, while H-7 and H-8 had no effect on 45Ca+2 efflux from macrophages preloaded with 45Ca+2. Consistent with these results, W-7 markedly stimulated PI cycle activity, fluphenazine and trifluoperazine slightly stimulated PI cycle activity, while H-7 and H-8 had no significant effects on PI cycle activity. In addition, W-7 by itself was able to stimulate a weak and short-lived "burst" of superoxide anion production. In order to evaluate whether a site of action of the inhibitors was at protein kinase C and whether protein kinase C was involved in terminating the normally short-lived FNLP- and LTB4-stimulated macrophage activation, fluphenazine and H-7 were used to evaluate the duration of FNLP- and LTB4-stimulated PI cycle activity, at concentrations of the inhibitors that significantly blocked stimulated superoxide anion production. In all cases, FNLP and LTB4 still stimulated PI cycle activity, which still terminated even though protein kinase C was inhibited. These results suggest that all five drugs block protein kinase C, but H-7 was the most specific in its action at protein kinase C, while the phenothiazines and W-7 have multiple sites of action. In addition, these results suggest that protein kinase C may not function to cause the termination of FNLP- and LTB4-stimulated PI cycle activity and subsequent superoxide anion production.  相似文献   

20.
Superoxide production by human neutrophils stimulated with FMLP and soluble aggregated human IgG were inhibited in a dose dependent manner by two kinds of tyrosine kinase inhibitors, erbstatin and genistein. Superoxide production stimulated with surface bound IgG, however, was scarcely inhibited by either inhibitor. Protein tyrosine phosphorylation studies with immunoblotting revealed specific tyrosine phosphorylation of a 40 Kd protein by soluble aggregated and surface bound IgG, and that of a 39 Kd protein, as well as the 40 Kd protein, by FMLP. These were all inhibited by the tyrosine kinase inhibitors. These data suggest that superoxide production induced by FMLP and soluble aggregated IgG are, at least in part, tyrosine kinase dependent, but the tyrosine kinases and/or substrates of tyrosine kinases involved may be different. In addition, tyrosine kinase independent pathways are also suggested to be involved in superoxide production by stimulation with surface bound IgG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号