首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The architecture of flowering plants exhibits both phenotypic diversity and plasticity, determined, in part, by the number and activity of axillary meristems and, in part, by the growth characteristics of the branches that develop from the axillary buds. The plasticity of shoot branching results from a combination of various intrinsic and genetic elements, such as number and position of nodes and type of growth phase, as well as environmental signals such as nutrient availability, light characteristics, and temperature (Napoli et al., 1998; Bennett and Leyser, 2006; Janssen et al., 2014; Teichmann and Muhr, 2015; Ueda and Yanagisawa, 2019). Axillary meristem initiation and axillary bud outgrowth are controlled by a complex and interconnected regulatory network. Although many of the genes and hormones that modulate branching patterns have been discovered and characterized through genetic and biochemical studies, there are still many gaps in our understanding of the control mechanisms at play. In this review, we will summarize our current knowledge of the control of axillary meristem initiation and outgrowth into a branch.

The key regulatory genes and the role of multiple plant hormones coordinate the process of axillary meristem initiation and subsequent growth into a branch.  相似文献   

2.
3.
4.
Naturally transformable bacteria acquire chromosomal DNA from related species at lower frequencies than from cognate DNA sources. To determine how genome location affects heterogamic transformation in bacteria, we inserted an nptI marker into random chromosome locations in 19 different strains of the Acinetobacter genus (>24% divergent at the mutS/trpE loci). DNA from a total of 95 nptI-tagged isolates was used to transform the recipient Acinetobacter baylyi strain ADP1. A total of >1300 transformation assays revealed that at least one nptI-tagged isolate for each of the strains/species tested resulted in detectable integration of the nptI marker into the ADP1 genome. Transformation frequencies varied up to ∼10,000-fold among independent nptI insertions within a strain. The location and local sequence divergence of the nptI flanking regions were determined in the transformants. Heterogamic transformation depended on RecA and was hampered by DNA mismatch repair. Our studies suggest that single-locus-based studies, and inference of transfer frequencies from general estimates of genomic sequence divergence, is insufficient to predict the recombination potential of chromosomal DNA fragments between more divergent genomes. Interspecies differences in overall gene content, and conflicts in local gene organization and synteny are likely important determinants of the genomewide variation in recombination rates between bacterial species.HORIZONTAL gene transfer (HGT) contributes to bacterial evolution by providing access to DNA evolved and retained in separate species or strains (Cohan 1994a,b; Bergstrom et al. 2000; Ochman et al. 2000; Feil et al. 2001; Koonin 2003; Lawrence and Hendrickson 2003; Fraser et al. 2007). Multilocus sequence typing (MLST) has provided strong evidence for frequent transfer and recombination of chromosomal DNA between related bacterial strains within the same species (Maiden et al. 1998; Enright et al. 2002). HGT occurring by natural transformation allows bacteria to exploit the presence of nucleic acids in their environment for the purposes of nutrition, DNA repair, reacquisition of lost genes, and/or acquisition of novel genetic diversity (Redfield 1993; Mehr and Seifert 1998; Dubnau 1999; Claverys et al. 2000; Szöllösi et al. 2006; Johnsen et al. 2009). It can be inferred from observations of the presence of extracellular DNA in most environments that bacteria are constantly exposed to DNA from a variety of sources, without such exposure necessarily producing observable changes in the genetic compositions of bacterial populations over evolutionary time (Thomas and Nielsen 2005; Nielsen et al. 2007a,b).The absence of sequence similarity between the donor DNA and the DNA of the recipient bacterium is the strongest barrier to the horizontal acquisition of chromosomal genes in bacteria (Matic et al. 1996; Vulic et al. 1997; Majewski 2001; Townsend et al. 2003) as illegitimate recombination occurs only at extremely low frequencies in bacteria (Hülter and Wackernagel 2008a). Single-locus transfer models have been extensively applied and have demonstrated a log-linear decrease in recombination frequencies with increasing sequence divergence for Bacillus subtilis (Roberts and Cohan, 1993; Zawadzki et al. 1995), Acinetobacter baylyi (Young and Ornston 2001), Escherichia coli (Shen and Huang 1986; Vulic et al. 1997), and Streptococcus pneumoniae (Majewski et al. 2000). For instance, heterogamic transformation between nonmutator isolates at the rpoB locus of B. mojavensis is undetectable at sequence divergences >16.7% (Zawadzki et al. 1995) and between S. pneumoniae isolates with sequence divergences >18% (Majewski et al. 2000). In A. baylyi, the nonmutator sequence divergence limit for detectable transformation at the pcaH locus of strain ADP1 was found to be 20% (Young and Ornston 2001), and up to 24% overall divergence yielded transformants at 16S rRNA loci in strain DSM587 (Strätz et al. 1996).Several recent studies also show that short stretches (<200 bp) of DNA sequence identity can facilitate additive or substitutive integration of longer stretches (>1000 bp) of heterologous DNA in bacteria (Prudhomme et al. 1991, 2002; de Vries and Wackernagel 2002; Hülter and Wackernagel 2008a). Thus, the uptake of DNA in bacteria can facilitate larger substitutions within gene sequences and the integration of additional DNA material on the basis of recombination initiated in flanking DNA stretches (either at one or both ends) with high sequence similarity (Nielsen et al. 2000). On the other hand, segments of heterologous DNA interrupting the synteny of homologous DNA have also been shown to be a barrier in intraspecies transformation in S. pneumoniae (Pasta and Sicard 1996, 1999).The various studies of the interspecies transfer potential of single genes demonstrate that the immediate local sequence divergence of the transferred locus is of high importance in determining recombination frequencies in hosts up to 20% divergent (at the housekeeping gene level). However, it can be hypothesized that the broader structural, organizational, and biochemical properties of the genome region surrounding a particular locus will determine its transfer potential to more divergent host species (Cohan 2001; Lawrence 2002). The interspecies transfer potential of various genome regions/loci between more diverged species (>20% at the housekeeping gene level) may therefore differ substantially from a log-linear model (determined experimentally for more closely related species) as local gene organization becomes less conserved with evolutionary time. The barriers to gene exchange between divergent bacterial species is likely a combination of inefficient recombination due to both mismatched base pairs (the main determinator in the log-linear model) and conflicting gene order and organization across the local recombining DNA regions. In addition, selective barriers due to negative effects on host fitness of the transferred DNA regions may become increasingly important for the removal of recombination events from the bacterial population. Recent bioinformatics-based genome analysis of E. coli and Salmonella genomes suggests various parts of the bacterial genome may have different suceptibilities to undergo evolutionarily successful recombination leading to temporal fragmentation of speciation (Lawrence 2002; Retchless and Lawrence 2007). Nevertheless, few studies have experimentally tested the effect of variable species and chromosome locations of genes on their transfer potential between bacteria (Ravin and Chen 1967; Ravin and Chakrabarti 1975; Siddiqui and Goldberg 1975; Cohan et al. 1991; Huang et al. 1991; Fall et al. 2007).Here, we determine to what extent genome location contributes to sexual isolation between the recipient A. baylyi strain ADP1 and 19 sequence divergent (24–27% divergent at the mutS/trpE loci) donor Acinetobacter strains and species (carrying a selectable nptI gene in a total of 95 random genome locations).  相似文献   

5.
Zinc finger nucleases (ZFNs) are a powerful tool for genome editing in eukaryotic cells. ZFNs have been used for targeted mutagenesis in model and crop species. In animal and human cells, transient ZFN expression is often achieved by direct gene transfer into the target cells. Stable transformation, however, is the preferred method for gene expression in plant species, and ZFN-expressing transgenic plants have been used for recovery of mutants that are likely to be classified as transgenic due to the use of direct gene-transfer methods into the target cells. Here we present an alternative, nontransgenic approach for ZFN delivery and production of mutant plants using a novel Tobacco rattle virus (TRV)-based expression system for indirect transient delivery of ZFNs into a variety of tissues and cells of intact plants. TRV systemically infected its hosts and virus ZFN-mediated targeted mutagenesis could be clearly observed in newly developed infected tissues as measured by activation of a mutated reporter transgene in tobacco (Nicotiana tabacum) and petunia (Petunia hybrida) plants. The ability of TRV to move to developing buds and regenerating tissues enabled recovery of mutated tobacco and petunia plants. Sequence analysis and transmission of the mutations to the next generation confirmed the stability of the ZFN-induced genetic changes. Because TRV is an RNA virus that can infect a wide range of plant species, it provides a viable alternative to the production of ZFN-mediated mutants while avoiding the use of direct plant-transformation methods.Methods for genome editing in plant cells have fallen behind the remarkable progress made in whole-genome sequencing projects. The availability of reliable and efficient methods for genome editing would foster gene discovery and functional gene analyses in model plants and the introduction of novel traits in agriculturally important species (Puchta, 2002; Hanin and Paszkowski, 2003; Reiss, 2003; Porteus, 2009). Genome editing in various species is typically achieved by integrating foreign DNA molecules into the target genome by homologous recombination (HR). Genome editing by HR is routine in yeast (Saccharomyces cerevisiae) cells (Scherer and Davis, 1979) and has been adapted for other species, including Drosophila, human cell lines, various fungal species, and mouse embryonic stem cells (Baribault and Kemler, 1989; Venken and Bellen, 2005; Porteus, 2007; Hall et al., 2009; Laible and Alonso-González, 2009; Tenzen et al., 2009). In plants, however, foreign DNA molecules, which are typically delivered by direct gene-transfer methods (e.g. Agrobacterium and microbombardment of plasmid DNA), often integrate into the target cell genome via nonhomologous end joining (NHEJ) and not HR (Ray and Langer, 2002; Britt and May, 2003).Various methods have been developed to indentify and select for rare site-specific foreign DNA integration events or to enhance the rate of HR-mediated DNA integration in plant cells. Novel T-DNA molecules designed to support strong positive- and negative-selection schemes (e.g. Thykjaer et al., 1997; Terada et al., 2002), altering the plant DNA-repair machinery by expressing yeast chromatin remodeling protein (Shaked et al., 2005), and PCR screening of large numbers of transgenic plants (Kempin et al., 1997; Hanin et al., 2001) are just a few of the experimental approaches used to achieve HR-mediated gene targeting in plant species. While successful, these approaches, and others, have resulted in only a limited number of reports describing the successful implementation of HR-mediated gene targeting of native and transgenic sequences in plant cells (for review, see Puchta, 2002; Hanin and Paszkowski, 2003; Reiss, 2003; Porteus, 2009; Weinthal et al., 2010).HR-mediated gene targeting can potentially be enhanced by the induction of genomic double-strand breaks (DSBs). In their pioneering studies, Puchta et al. (1993, 1996) showed that DSB induction by the naturally occurring rare-cutting restriction enzyme I-SceI leads to enhanced HR-mediated DNA repair in plants. Expression of I-SceI and another rare-cutting restriction enzyme (I-CeuI) also led to efficient NHEJ-mediated site-specific mutagenesis and integration of foreign DNA molecules in plants (Salomon and Puchta, 1998; Chilton and Que, 2003; Tzfira et al., 2003). Naturally occurring rare-cutting restriction enzymes thus hold great promise as a tool for genome editing in plant cells (Carroll, 2004; Pâques and Duchateau, 2007). However, their wide application is hindered by the tedious and next to impossible reengineering of such enzymes for novel DNA-target specificities (Pâques and Duchateau, 2007).A viable alternative to the use of rare-cutting restriction enzymes is the zinc finger nucleases (ZFNs), which have been used for genome editing in a wide range of eukaryotic species, including plants (e.g. Bibikova et al., 2001; Porteus and Baltimore, 2003; Lloyd et al., 2005; Urnov et al., 2005; Wright et al., 2005; Beumer et al., 2006; Moehle et al., 2007; Santiago et al., 2008; Shukla et al., 2009; Tovkach et al., 2009; Townsend et al., 2009; Osakabe et al., 2010; Petolino et al., 2010; Zhang et al., 2010). Here too, ZFNs have been used to enhance DNA integration via HR (e.g. Shukla et al., 2009; Townsend et al., 2009) and as an efficient tool for the induction of site-specific mutagenesis (e.g. Lloyd et al., 2005; Zhang et al., 2010) in plant species. The latter is more efficient and simpler to implement in plants as it does not require codelivery of both ZFN-expressing and donor DNA molecules and it relies on NHEJ—the dominant DNA-repair machinery in most plant species (Ray and Langer, 2002; Britt and May, 2003).ZFNs are artificial restriction enzymes composed of a fusion between an artificial Cys2His2 zinc-finger protein DNA-binding domain and the cleavage domain of the FokI endonuclease. The DNA-binding domain of ZFNs can be engineered to recognize a variety of DNA sequences (for review, see Durai et al., 2005; Porteus and Carroll, 2005; Carroll et al., 2006). The FokI endonuclease domain functions as a dimer, and digestion of the target DNA requires proper alignment of two ZFN monomers at the target site (Durai et al., 2005; Porteus and Carroll, 2005; Carroll et al., 2006). Efficient and coordinated expression of both monomers is thus required for the production of DSBs in living cells. Transient ZFN expression, by direct gene delivery, is the method of choice for targeted mutagenesis in human and animal cells (e.g. Urnov et al., 2005; Beumer et al., 2006; Meng et al., 2008). Among the different methods used for high and efficient transient ZFN delivery in animal and human cell lines are plasmid injection (Morton et al., 2006; Foley et al., 2009), direct plasmid transfer (Urnov et al., 2005), the use of integrase-defective lentiviral vectors (Lombardo et al., 2007), and mRNA injection (Takasu et al., 2010).In plant species, however, efficient and strong gene expression is often achieved by stable gene transformation. Both transient and stable ZFN expression have been used in gene-targeting experiments in plants (Lloyd et al., 2005; Wright et al., 2005; Maeder et al., 2008; Cai et al., 2009; de Pater et al., 2009; Shukla et al., 2009; Tovkach et al., 2009; Townsend et al., 2009; Osakabe et al., 2010; Petolino et al., 2010; Zhang et al., 2010). In all cases, direct gene-transformation methods, using polyethylene glycol, silicon carbide whiskers, or Agrobacterium, were deployed. Thus, while mutant plants and tissues could be recovered, potentially without any detectable traces of foreign DNA, such plants were generated using a transgenic approach and are therefore still likely to be classified as transgenic. Furthermore, the recovery of mutants in many cases is also dependent on the ability to regenerate plants from protoplasts, a procedure that has only been successfully applied in a limited number of plant species. Therefore, while ZFN technology is a powerful tool for site-specific mutagenesis, its wider implementation for plant improvement may be somewhat limited, both by its restriction to certain plant species and by legislative restrictions imposed on transgenic plants.Here we describe an alternative to direct gene transfer for ZFN delivery and for the production of mutated plants. Our approach is based on the use of a novel Tobacco rattle virus (TRV)-based expression system, which is capable of systemically infecting its host and spreading into a variety of tissues and cells of intact plants, including developing buds and regenerating tissues. We traced the indirect ZFN delivery in infected plants by activation of a mutated reporter gene and we demonstrate that this approach can be used to recover mutated plants.  相似文献   

6.
7.
8.
9.
10.
11.
Phosphorus (P) enters roots as inorganic phosphate (Pi) derived from organic and inorganic P compounds in the soil. Nucleic acids can support plant growth as the sole source of P in axenic culture but are thought to be converted into Pi by plant-derived nucleases and phosphatases prior to uptake. Here, we show that a nuclease-resistant analog of DNA is taken up by plant cells. Fluorescently labeled S-DNA of 25 bp, which is protected against enzymatic breakdown by its phosphorothioate backbone, was taken up and detected in root cells including root hairs and pollen tubes. These results indicate that current views of plant P acquisition may have to be revised to include uptake of DNA into cells. We further show that addition of DNA to Pi-containing growth medium enhanced the growth of lateral roots and root hairs even though plants were P replete and had similar biomass as plants supplied with Pi only. Exogenously supplied DNA increased length growth of pollen tubes, which were studied because they have similar elongated and polarized growth as root hairs. Our results indicate that DNA is not only taken up and used as a P source by plants, but ironically and independent of Pi supply, DNA also induces morphological changes in roots similar to those observed with P limitation. This study provides, to our knowledge, first evidence that exogenous DNA could act nonspecifically as signaling molecules for root development.Phosphorus (P) is an essential macronutrient that limits plant growth in many situations due to a low availability in soils (for review, see Schachtman et al., 1998; Raghothama, 1999; Vance et al., 2003; Lambers et al., 2008). P enters plant roots as orthophosphates (Pi) via active transport across the plasma membrane (Smith et al., 2003; Park et al., 2007; Xu et al., 2007). Concentrations of Pi in soil solution are generally very low (<10 μm; Bieleski, 1973) and plants have evolved root specializations to access P from inorganic and organic sources (Raghothama, 1999; Hinsinger, 2001; López-Bucio et al., 2003; Vance et al., 2003; Lambers et al., 2008). Roots exude enzymes and chemicals to mobilize P directly from soil compounds or indirectly via enhanced activity of soil microbes, and form symbioses with P-mobilizing mycorrhizal fungi (Schachtman et al., 1998; Raghothama, 1999; Bucher, 2007).However, similar to other nutrients, notably nitrogen, research on P nutrition of plants has focused on inorganic sources although organic P (Porg) in soil can account for 40% to 80% of the total P pool of mineral and organic soils, respectively (Bower, 1945; Raghothama, 1999; Vance et al., 2003). Porg compounds in soils are derived from plant residues, soil biota, and from synthesis by soil microbes (Jencks et al., 1964). Soil Porg is composed primarily of phospholipids, nucleic acids, and phytin (Dyer and Wrenshall, 1941). Phytic acid (inositol hexaphosphate) and its salts phytate, account for a large proportion of the Porg pool of soils (Anderson, 1980). Nucleic acids (RNA, DNA) represent approximately 1% to 2% of the soil Porg pool (Dalal, 1977). It can be released from prokaryotic and eukaryotic cells after death and protected against nuclease degradation by its adsorption on soil colloids and sand particles (Pietramellara et al., 2009).Although Porg can be a substantial constituent of the soil P pool, its contribution to the P nutrition of plants is poorly understood. Porg can be converted to Pi via root-exuded enzymes (Tarafdar and Claassen, 1988; Marschner, 1995; Vance et al., 2003). Secretion of nucleolytic enzymes and breakdown of nucleic acid were considered the reason for the observed growth of axenic Arabidopsis (Arabidopsis thaliana) and wheat (Triticum aestivum) on nucleic acid substrates as the sole P source (Chen et al., 2000; Richardson et al., 2000).Whether plants take up intact DNA has not been reported. We recently showed that roots take up protein, possibly via endocytosis (Paungfoo-Lonhienne et al., 2008). We hypothesized that roots may take up DNA by a similar process and grew Arabidopsis in the presence of phosphorothioate oligonucleotides (S-DNA) labeled with Cy3-fluorescent dye. S-DNA has a sulfur backbone and cannot be digested by plant nucleases, allowing tracking DNA of known size into cells (Spitzer and Eckstein, 1988). We examined if S-DNA of 25 nucleotides in length enters root hairs and pollen tubes as both types of cells are strongly elongated and have similar polarized growth (Schiefelbein et al., 1993; Hepler et al., 2001). We also assessed if addition of DNA to the growth medium affects the morphology of roots and pollen tubes. Here, we present evidence that plants take up DNA and demonstrate that the presence of DNA in the growth medium enhances lateral branching of roots, and the length of root hairs and pollen tubes, irrespective of Pi supply.  相似文献   

12.
13.
The role of calcium-mediated signaling has been extensively studied in plant responses to abiotic stress signals. Calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) constitute a complex signaling network acting in diverse plant stress responses. Osmotic stress imposed by soil salinity and drought is a major abiotic stress that impedes plant growth and development and involves calcium-signaling processes. In this study, we report the functional analysis of CIPK21, an Arabidopsis (Arabidopsis thaliana) CBL-interacting protein kinase, ubiquitously expressed in plant tissues and up-regulated under multiple abiotic stress conditions. The growth of a loss-of-function mutant of CIPK21, cipk21, was hypersensitive to high salt and osmotic stress conditions. The calcium sensors CBL2 and CBL3 were found to physically interact with CIPK21 and target this kinase to the tonoplast. Moreover, preferential localization of CIPK21 to the tonoplast was detected under salt stress condition when coexpressed with CBL2 or CBL3. These findings suggest that CIPK21 mediates responses to salt stress condition in Arabidopsis, at least in part, by regulating ion and water homeostasis across the vacuolar membranes.Drought and salinity cause osmotic stress in plants and severely affect crop productivity throughout the world. Plants respond to osmotic stress by changing a number of cellular processes (Xiong et al., 1999; Xiong and Zhu, 2002; Bartels and Sunkar, 2005; Boudsocq and Lauriére, 2005). Some of these changes include activation of stress-responsive genes, regulation of membrane transport at both plasma membrane (PM) and vacuolar membrane (tonoplast) to maintain water and ionic homeostasis, and metabolic changes to produce compatible osmolytes such as Pro (Stewart and Lee, 1974; Krasensky and Jonak, 2012). It has been well established that a specific calcium (Ca2+) signature is generated in response to a particular environmental stimulus (Trewavas and Malhó, 1998; Scrase-Field and Knight, 2003; Luan, 2009; Kudla et al., 2010). The Ca2+ changes are primarily perceived by several Ca2+ sensors such as calmodulin (Reddy, 2001; Luan et al., 2002), Ca2+-dependent protein kinases (Harper and Harmon, 2005), calcineurin B-like proteins (CBLs; Luan et al., 2002; Batistič and Kudla, 2004; Pandey, 2008; Luan, 2009; Sanyal et al., 2015), and other Ca2+-binding proteins (Reddy, 2001; Shao et al., 2008) to initiate various cellular responses.Plant CBL-type Ca2+ sensors interact with and activate CBL-interacting protein kinases (CIPKs) that phosphorylate downstream components to transduce Ca2+ signals (Liu et al., 2000; Luan et al., 2002; Batistič and Kudla, 2004; Luan, 2009). In several plant species, multiple members have been identified in the CBL and CIPK family (Luan et al., 2002; Kolukisaoglu et al., 2004; Pandey, 2008; Batistič and Kudla, 2009; Weinl and Kudla, 2009; Pandey et al., 2014). Involvement of specific CBL-CIPK pair to decode a particular type of signal entails the alternative and selective complex formation leading to stimulus-response coupling (D’Angelo et al., 2006; Batistič et al., 2010).Several CBL and CIPK family members have been implicated in plant responses to drought, salinity, and osmotic stress based on genetic analysis of Arabidopsis (Arabidopsis thaliana) mutants (Zhu, 2002; Cheong et al., 2003, 2007; Kim et al., 2003; Pandey et al., 2004, 2008; D’Angelo et al., 2006; Qin et al., 2008; Tripathi et al., 2009; Held et al., 2011; Tang et al., 2012; Drerup et al., 2013; Eckert et al., 2014). A few CIPKs have also been functionally characterized by gain-of-function approach in crop plants such as rice (Oryza sativa), pea (Pisum sativum), and maize (Zea mays) and were found to be involved in osmotic stress responses (Mahajan et al., 2006; Xiang et al., 2007; Yang et al., 2008; Tripathi et al., 2009; Zhao et al., 2009; Cuéllar et al., 2010).In this report, we examined the role of the Arabidopsis CIPK21 gene in osmotic stress response by reverse genetic analysis. The loss-of-function mutant plants became hypersensitive to salt and mannitol stress conditions, suggesting that CIPK21 is involved in the regulation of osmotic stress response in Arabidopsis. These findings are further supported by an enhanced tonoplast targeting of the cytoplasmic CIPK21 through interaction with the vacuolar Ca2+ sensors CBL2 and CBL3 under salt stress condition.  相似文献   

14.
15.
Female control of nonrandom mating has never been genetically established, despite being linked to inbreeding depression and sexual selection. In order to map the loci that control female-mediated nonrandom mating, we constructed a new advanced intercross recombinant inbred line (RIL) population derived from a cross between Arabidopsis (Arabidopsis thaliana) accessions Vancouver (Van-0) and Columbia (Col-0) and mapped quantitative trait loci (QTLs) responsible for nonrandom mating and seed yield traits. We genotyped a population of 490 RILs. A subset of these lines was used to construct an expanded map of 1,061.4 centimorgans with an average interval of 6.7 ± 5.3 centimorgans between markers. QTLs were then mapped for female- and male-mediated nonrandom mating and seed yield traits. To map the genetic loci responsible for female-mediated nonrandom mating and seed yield, we performed mixed pollinations with genetically marked Col-0 pollen and Van-0 pollen on RIL pistils. To map the loci responsible for male-mediated nonrandom mating and seed yield, we performed mixed pollinations with genetically marked Col-0 and RIL pollen on Van-0 pistils. Composite interval mapping of these data identified four QTLs that control female-mediated nonrandom mating and five QTLs that control female-mediated seed yield. We also identified four QTLs that control male-mediated nonrandom mating and three QTLs that control male-mediated seed yield. Epistasis analysis indicates that several of these loci interact. To our knowledge, the results of these experiments represent the first time female-mediated nonrandom mating has been genetically defined.The process of pollination offers plants the opportunity to selectively breed. For example, in pollinations that include more than one pollen population, pollen often show differential siring ability. This process is called nonrandom mating. Although pollen may fail in pollinations because they are self pollen in an obligate outcrossing plant or pollen from a different species, we focus our studies on differential siring ability of compatible, conspecific mates (Hogenboom, 1973, 1975; Williams et al., 1999; de Nettancourt, 2001; Husband et al., 2002; Wheeler et al., 2009; Meng et al., 2011; Nasrallah, 2011). Nonrandom mating at this level has received intense interest for its potential to avoid inbreeding depression and its potential to be the result of sexual selection (Charnov, 1979; Mulcahy, 1979; Willson, 1979; Queller, 1983; Stephenson and Bertin, 1983; Willson and Burley, 1983; Marshall and Ellstrand, 1986; Charlesworth and Charlesworth, 1987; Mulcahy and Mulcahy, 1987; Cruzan, 1990; Quesada et al., 1993; Snow, 1994; Paschke et al., 2002; Skogsmyr and Lankinen, 2002; Stephenson et al., 2003; Armbruster and Rogers, 2004; Bernasconi et al., 2004; Lankinen and Armbruster, 2007). Despite a long history of theoretical and experimental attention, very little is known about the underlying genetics that govern the process (Carlson et al., 2011).One challenge in understanding the genetics of nonrandom mating lies in its complexity, potentially involving multiple distinct pathways specific to either female or male tissues. Physiologically, postpollination nonrandom mating may be a result of intrinsic differences in pollen competitive abilities (male-mediated nonrandom mating). A number of experimental strategies have been employed to demonstrate male-mediated control of nonrandom mating. For example, experiments in radish (Raphanus sativus) found that some pollen sire more seeds than others in mixed pollinations across a range of maternal plants, demonstrating consistency of male function (Marshall and Ellstrand, 1986, 1988; Mitchell and Marshall, 1998). More direct measures of male function, such as in vitro and in vivo pollen tube growth rates, verify variation in male function and demonstrable impact on nonrandom mating (Snow and Spira, 1991a, 1991b; Pasonen et al., 1999; Skogsmyr and Lankinen, 1999; Stephenson et al., 2001; Lankinen and Skogsmyr, 2002; Lankinen et al., 2009). Finally, recent work in our laboratory has directly mapped the genetic loci responsible for the control of male-mediated nonrandom mating in Arabidopsis (Arabidopsis thaliana; Carlson et al., 2011).Alternatively, or concurrently, nonrandom mating can be the result of differential interaction between the female tissue and competing pollen populations or seeds (female-mediated nonrandom mating). Establishing the female role in nonrandom mating has been more challenging, as most study designs involve the deposition of pollen from multiple donors and thus include the confounding variable of pollen competition. Despite this challenge, a number of experimental strategies have been devised to explore the role of the female in nonrandom mating. For example, a number of studies demonstrate that maternal identity influences nonrandom mating patterns (Marshall and Ellstrand, 1986, 1988; Snow and Mazer, 1988; Johnston, 1993; Marshall et al., 2000; Carlson et al., 2009, 2013). Studies have also established that manipulation of watering or nutrient regimes of maternal plants changes the patterns and magnitude of nonrandom mating (Marshall and Diggle, 2001; Shaner and Marshall, 2003; Haileselassie et al., 2005; Marshall et al., 2007). These studies and others implicate the identity and condition of the female in the process of nonrandom mating. Despite a long history of research, genetic control of female-mediated nonrandom mating has never been demonstrated, and the identity of the genes involved remains unexplored.In previous work, we developed a system in Arabidopsis to assay nonrandom mating and showed its utility for genetically mapping the loci responsible (Carlson et al., 2009, 2011). Pursuing the genetics of nonrandom mating in a largely selfing plant such as Arabidopsis provides both theoretical and practical advantages. First, outcrossing plants carry higher levels of heterozygosity that produce pollen populations that display different phenotypes because of segregating alleles. This complicates genetic analysis. Also, in outcrossing plants that carry genetic load, reproductive success is context dependent. Pollinations with self pollen or pollen from genetically similar plants often lead to poor reproductive outcomes. For example, in mixed pollinations in generally outcrossing self-compatible plants that include self pollen, self pollen often sire a disproportionally low number of seeds (Bateman, 1956; Weller and Ornduff, 1977; Bowman, 1987; Eckert and Barrett, 1994; Jones, 1994; Hauser and Siegismund, 2000; Teixeira et al., 2009), but other findings have been reported (Sork and Schemske, 1992; Johnston, 1993). Thus, in outcrossing plants, gene variants that influence reproductive success, parental relatedness, and segregating heterozygosity all influence reproductive outcomes. Two of these factors are essentially eliminated by studying plant populations that have historically selfed. As outcrossing populations become increasingly self-fertilizing, they both lose heterozygosity, and their genetic load is purged (Lande and Schemske, 1985; Schemske and Lande, 1985; Charlesworth and Charlesworth, 1987; Lande et al., 1994; Byers and Waller, 1999; Crnokrak and Barrett, 2002). This is the case for Arabidopsis, whose tested populations show relatively low levels of heterozygosity and little evidence for the early-acting inbreeding depression that is indicative of genetic load (Bakker et al., 2006; Bomblies et al., 2010; Platt et al., 2010; Carlson et al., 2013). Thus, this system provides an excellent opportunity to identify and explore the genetic variation in differential reproduction that develops or persists in plant populations unrelated to inbreeding depression.Using this system, we previously identified potential female control of nonrandom mating in mixed pollinations between Vancouver (Van-0) and Columbia (Col-0) accessions of Arabidopsis (Carlson et al., 2009). When Van-0 and genetically marked Col-0 (Col-NPTII) pollen compete on Col-0 pistils, Col-NPTII pollen sire 43% of the progeny, while Van-0 pollen sire 57%. When these pollen compete on Van-0 pistils, Col-NPTII pollen sire 67.5% of the progeny, while Van-0 pollen sire 32.5%. This system offers us, to our knowledge for the first time, the opportunity to genetically define female-mediated nonrandom mating and map the loci responsible.In order to genetically map female control of nonrandom mating, we constructed a new advanced intercross recombinant inbred line (RIL) mapping population derived from a cross between Van-0 and Col-0 accessions of Arabidopsis. RILs are powerful tools that allow high-resolution genetic mapping of loci that direct complex traits. Each RIL contains chromosomes that are defined homozygous patchworks of parental DNA, in this case Van-0 and Col-0. By phenotyping these lines, we can statistically associate nonrandom mating and seed yield phenotypes with chromosomal regions. We chose these two accessions because (1) our previous experiments predict clear female control of nonrandom mating and (2) we have previously mapped male-mediated nonrandom mating controls using a Col-4/Landsberg mapping population (a population that does not display female control of nonrandom mating; Carlson et al., 2011). Thus, this new population provides us the opportunity to map loci that control female nonrandom mating and investigate the degree of conservation of loci that affect male-mediated nonrandom mating. We use this new mapping population to perform quantitative trait locus (QTL) mapping and identify multiple loci that direct both female- and male-mediated control of nonrandom mating and seed yield traits.  相似文献   

16.
Chloroplasts arose from a cyanobacterial endosymbiont and multiply by division. In algal cells, chloroplast division is regulated by the cell cycle so as to occur only once, in the S phase. Chloroplasts possess multiple copies of their own genome that must be replicated during chloroplast proliferation. In order to examine how chloroplast DNA replication is regulated in the green alga Chlamydomonas reinhardtii, we first asked whether it is regulated by the cell cycle, as is the case for chloroplast division. Chloroplast DNA is replicated in the light and not the dark phase, independent of the cell cycle or the timing of chloroplast division in photoautotrophic culture. Inhibition of photosynthetic electron transfer blocked chloroplast DNA replication. However, chloroplast DNA was replicated when the cells were grown heterotrophically in the dark, raising the possibility that chloroplast DNA replication is coupled with the reducing power supplied by photosynthesis or the uptake of acetate. When dimethylthiourea, a reactive oxygen species scavenger, was added to the photoautotrophic culture, chloroplast DNA was replicated even in the dark. In contrast, when methylviologen, a reactive oxygen species inducer, was added, chloroplast DNA was not replicated in the light. Moreover, the chloroplast DNA replication activity in both the isolated chloroplasts and nucleoids was increased by dithiothreitol, while it was repressed by diamide, a specific thiol-oxidizing reagent. These results suggest that chloroplast DNA replication is regulated by the redox state that is sensed by the nucleoids and that the disulfide bonds in nucleoid-associated proteins are involved in this regulatory activity.Chloroplasts are semiautonomous organelles that possess their own genome, which is complexed with proteins to form nucleoids and also certain machinery needed for protein synthesis, as is the case in prokaryotes. It is generally accepted that chloroplasts arose from a bacterial endosymbiont closely related to the currently extant cyanobacteria (Archibald, 2009; Keeling, 2010). In a manner reminiscent of their free-living ancestor, chloroplasts proliferate by the division of preexisting organelles that are coupled to the duplication and segregation of the nucleoids (Kuroiwa, 1991) and have retained the bulk of their bacterial biochemistry. However, chloroplasts have subsequently been substantially remodeled by the host cell so as to function as complementary organelles within the eukaryotic host cell (Rodríguez-Ezpeleta and Philippe, 2006; Archibald, 2009; Keeling, 2010). For example, most of the genes that were once in the original endosymbiont genome have been either lost or transferred into the host nuclear genome. As a result, the size of the chloroplast genome has been reduced to less than one-tenth that of the free-living cyanobacterial genome. Thus, the bulk of the chloroplast proteome consists of nucleus-encoded proteins that are translated on cytoplasmic ribosomes and translocated into chloroplasts. In addition, chloroplast division ultimately came to be a process tightly regulated by the host cell, which ensured permanent inheritance of the chloroplasts during the course of cell division and from generation to generation (Rodríguez-Ezpeleta and Philippe, 2006; Archibald, 2009; Keeling, 2010).Chloroplast division is performed by constriction of the ring structures at the division site, encompassing both the inside and the outside of the two envelopes (Yang et al., 2008; Maple and Møller, 2010; Miyagishima, 2011; Pyke, 2013). One part of the division machinery is derived from the cyanobacterial cytokinetic machinery that is based on the FtsZ protein. In contrast, other parts of the division machinery involve proteins specific to eukaryotes, including one member of the dynamin family. The majority of algae (both unicellular and multicellular), which diverged early within the Plantae, have just one or at most only a few chloroplasts per cell. In algae, the chloroplast divides once per cell cycle before the host cell completes cytokinesis (Suzuki et al., 1994; Miyagishima et al., 2012). In contrast, land plants and certain algal species contain dozens of chloroplasts per cell that divide nonsynchronously, even within the same cell (Boffey and Lloyd, 1988). Because land plants evolved from algae, there is likely to have been a linkage between the cell cycle and chloroplast division in their algal ancestor that was subsequently lost during land plant evolution. Our recent study showed that the timing of chloroplast division in algae is restricted to the S phase by S phase-specific formation of the chloroplast division machinery, which is based on the cell cycle-regulated expression of the components of the chloroplast division machinery (Miyagishima et al., 2012).Because chloroplasts possess their own genome, chloroplast DNA must be duplicated so that each daughter chloroplast inherits the required DNA after division. However, it is still unclear how the replication of chloroplast DNA is regulated and whether the replication is coupled with the timing of chloroplast division, even though certain studies have addressed this issue, as described below.Bacteria such as Escherichia coli and Bacillus subtilis possess a single circular chromosome. In these bacteria, the process of DNA replication is tightly coupled with cell division (Boye et al., 2000; Zakrzewska-Czerwińska et al., 2007), in which the initiation of replication is regulated such that it occurs only once per cell division cycle (Boye et al., 2000). In contrast, cyanobacteria contain multiple copies of their DNA (e.g. three to five copies in Synechococcus elongatus PCC 7942; Mann and Carr, 1974; Griese et al., 2011). In some obligate photoautotrophic cyanobacterial species, replication is initiated only when light is available (Binder and Chisholm, 1990; Mori et al., 1996; Watanabe et al., 2012). Replication is initiated asynchronously among the multiple copies of the DNA. Although the regulation of the initiation of DNA replication is less stringent than that in E. coli and B. subtilis, as described above, a recent study using S. elongatus PCC 7942 showed that this replication peaks prior to cell division, as in other bacteria.Chloroplasts also contain multiple copies of DNA (approximately 1,000 copies; Boffey and Leech, 1982; Miyamura et al., 1986; Baumgartner et al., 1989; Oldenburg and Bendich, 2004; Oldenburg et al., 2006; Shaver et al., 2008). In algae, chloroplast DNA is replicated in a manner that keeps pace with chloroplast and cell division in order to maintain the proper DNA content per chloroplast (i.e. per cell). In contrast, in land plants, the copy number of DNA in each chloroplast (plastid) changes during the course of development and differentiation, although contradictory results were reported about leaf development (Lamppa and Bendich, 1979; Boffey and Leech, 1982; Hashimoto and Possingham, 1989; Kuroiwa, 1991; Rowan and Bendich, 2009; Matsushima et al., 2011). Previous studies that synchronized the algal cell cycle by means of a 24-h light/dark cycle showed that chloroplast DNA is replicated only during the G1 phase, after which it is separated into daughter chloroplasts during the S phase by chloroplast division, implying that chloroplast DNA replication and division are temporally separated (Chiang and Sueoka, 1967; Grant et al., 1978; Suzuki et al., 1994). However, under these experimental conditions, G1 cells grow and the chloroplast DNA level increases during the light period. Cells enter into the S phase, chloroplast DNA replication ceases, and the chloroplasts divide at the beginning of the dark period. Thus, it is still unclear whether chloroplast DNA replication is directly controlled by the cell cycle, as is the case in chloroplast division, or chloroplast DNA replication occurs merely when light energy is available.We addressed this issue using a synchronous culture as well as a heterotrophic culture of the mixotrophic green alga Chlamydomonas reinhardtii. The results show that chloroplast DNA replication occurs independently of either the cell cycle or the timing of chloroplast division. Instead, it is shown that chloroplast DNA replication occurs when light is available in photoautotrophic culture and even under darkness in heterotrophic culture. Further experimental results suggest that chloroplast DNA replication is regulated by the redox state in the cell, which is sensed by the chloroplast nucleoids.  相似文献   

17.
Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition, and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of holm oak (Quercus ilex) as a model. By measuring the leaf water potential 24 h after the deposition of water drops onto abaxial and adaxial surfaces, evidence for water penetration through the upper leaf side was gained in young and mature leaves. The structure and chemical composition of the abaxial (always present) and adaxial (occurring only in young leaves) trichomes were analyzed by various microscopic and analytical procedures. The adaxial surfaces were wettable and had a high degree of water drop adhesion in contrast to the highly unwettable and water-repellent abaxial holm oak leaf sides. The surface free energy and solubility parameter decreased with leaf age, with higher values determined for the adaxial sides. All holm oak leaf trichomes were covered with a cuticle. The abaxial trichomes were composed of 8% soluble waxes, 49% cutin, and 43% polysaccharides. For the adaxial side, it is concluded that trichomes and the scars after trichome shedding contribute to water uptake, while the abaxial leaf side is highly hydrophobic due to its high degree of pubescence and different trichome structure, composition, and density. Results are interpreted in terms of water-plant surface interactions, plant surface physical chemistry, and plant ecophysiology.Plant surfaces have an important protecting function against multiple biotic and abiotic stress factors (Riederer, 2006). They may, for example, limit the attack of insects (Eigenbrode and Jetter, 2002) or pathogenic fungi (Gniwotta et al., 2005; Łaźniewska et al., 2012), avoid damage caused by high intensities of UV and visible radiation (Reicosky and Hanover, 1978; Karabourniotis and Bormann, 1999), help to regulate leaf temperature (Ehleringer and Björkman, 1978; Ripley et al., 1999), and chiefly prevent plant organs from dehydration (Riederer and Schreiber, 2001).The epidermis of plants has been found to have a major degree of physical and chemical variability and may often contain specialized cells such as trichomes or stomata (Roth-Nebelsick et al., 2009; Javelle et al., 2011). Most aerial organs are covered with an extracellular and generally lipid-rich layer named the cuticle, which is typically composed of waxes embedded in (intracuticular waxes) or deposited on (epicuticular waxes) a biopolymer matrix of cutin, forming a network of cross-esterified hydroxy C16 and/or C18 fatty acids, and/or cutan, with variable amounts of polysaccharides and phenolics (Domínguez et al., 2011; Yeats and Rose, 2013). Different nano- and/or microscale levels of plant surface sculpturing have been observed by scanning electron microscopy (SEM), generally in relation to the topography of epicuticular waxes, cuticular folds, and epidermal cells (Koch and Barthlott, 2009). Such surface features together with their chemical composition (Khayet and Fernández, 2012) may lead to a high degree of roughness and hydrophobicity (Koch and Barthlott, 2009; Konrad et al., 2012). The interactions of plant surfaces with water have been addressed in some investigations (Brewer et al., 1991; Brewer and Smith, 1997; Pandey and Nagar, 2003; Hanba et al., 2004; Dietz et al., 2007; Holder, 2007a, 2007b; Fernández et al., 2011, 2014; Roth-Nebelsick et al., 2012; Wen et al., 2012; Urrego-Pereira et al., 2013) and are a topic of growing interest for plant ecophysiology (Helliker and Griffiths, 2007; Aryal and Neuner, 2010; Limm and Dawson, 2010; Kim and Lee, 2011; Berry and Smith, 2012; Berry et al., 2013; Rosado and Holder, 2013; Helliker, 2014). On the other hand, the mechanisms of foliar uptake of water and solutes by plant surfaces are still not fully understood (Fernández and Eichert, 2009; Burkhardt and Hunsche, 2013), but they may play an important ecophysiological role (Limm et al., 2009; Johnstone and Dawson, 2010; Adamec, 2013; Berry et al., 2014).The importance of trichomes and pubescent layers on water drop-plant surface interactions and on the subsequent potential water uptake into the organs has been analyzed in some investigations (Fahn, 1986; Brewer et al., 1991; Grammatikopoulos and Manetas, 1994; Brewer and Smith, 1997; Pierce et al., 2001; Kenzo et al., 2008; Fernández et al., 2011, 2014; Burrows et al., 2013). Trichomes are unicellular or multicellular and glandular or nonglandular appendages, which originate from epidermal cells only and develop outwards on the surface of plant organs (Werker, 2000). Nonglandular trichomes are categorized according to their morphology and exhibit a major variability in size, morphology, and function. On the other hand, glandular trichomes are classified by the secretory materials they excrete, accumulate, or absorb (Johnson, 1975; Werker, 2000; Wagner et al., 2004). Trichomes can be often found in xeromorphic leaves and in young organs (Fahn, 1986; Karabourniotis et al., 1995). The occurrence of protecting leaf trichomes has been also reported for Mediterranean species such as holm oak (Quercus ilex; Karabourniotis et al., 1995, 1998; Morales et al., 2002; Karioti et al., 2011; Camarero et al., 2012). There is limited information about the nature of the surface of trichomes, but they are also covered with a cuticle similarly to other epidermal cell types (Fernández et al., 2011, 2014).In this study and using holm oak as a model, we assessed, for the first time, the leaf surface-water relations of the abaxial (always pubescent) versus the adaxial (only pubescent in developing leaves and for a few months) surface, including their capacity to absorb surface-deposited water drops. Based on membrane science methodologies (Fernández et al., 2011; Khayet and Fernández, 2012) and following a new integrative approach, the chemical, physical, and anatomical properties of holm oak leaf surfaces and trichomes were analyzed, with the aim of addressing the following questions. Are young and mature adaxial and abaxial leaf surfaces capable of absorbing water deposited as drops on to the surfaces? Are young and mature abaxial and adaxial leaf surfaces similar in relation to their wettability, hydrophobicity, polarity, work of adhesion (Wa) for water, solubility parameter (δ), and surface free energy (γ)? What is the physical and chemical nature of the adaxial versus the abaxial trichomes, chiefly in relation to young leaves?  相似文献   

18.
Although researchers have established that DNA methylation and active demethylation are dynamically regulated in plant cells, the molecular mechanism for the regulation of active DNA demethylation is not well understood. By using an Arabidopsis (Arabidopsis thaliana) line expressing the Promoter RESPONSIVE TO DEHYDRATION 29A:LUCIFERASE (ProRD29A:LUC) and Promoter cauliflower mosaic virus 35S:NEOMYCIN PHOSPHOTRANSFERASE II (Pro35S:NPTII) transgenes, we isolated an mbd7 (for methyl-CpG-binding domain protein7) mutant. The mbd7 mutation causes an inactivation of the Pro35S:NPTII transgene but does not affect the expression of the ProRD29A:LUC transgene. The silencing of the Pro35S:NPTII reporter gene is associated with DNA hypermethylation of the reporter gene. MBD7 interacts physically with REPRESSOR OF SILENCING5/INCREASED DNA METHYLATION2, a protein in the small heat shock protein family. MBD7 prefers to target the genomic loci with high densities of DNA methylation around chromocenters. The Gypsy-type long terminal repeat retrotransposons mainly distributed around chromocenters are most affected by mbd7 in all transposons. Our results suggest that MBD7 is required for active DNA demethylation and antisilencing of the genomic loci with high densities of DNA methylation in Arabidopsis.DNA methylation is an important epigenetic marker for genome stability and the regulation of gene expression in both plants and animals (Law and Jacobsen, 2010; He et al., 2011). In plants, the molecular mechanisms for DNA methylation have been well characterized by the use of powerful genetic screening systems (Bartee et al., 2001; Lindroth et al., 2001; Matzke et al., 2004; He et al., 2009). A transgene or an endogenous gene may be silenced because of DNA hypermethylation in the promoter region. Screenings for mutants with release of the silenced marker genes have identified many components that are involved in RNA-directed DNA methylation (RdDM) and in maintaining DNA methylation (Matzke and Birchler, 2005; Law and Jacobsen, 2009; He et al., 2011; Bender, 2012). DNA methylation is catalyzed by DNA methyltransferases including DNA METHYLTRANSFERASE1 (MET1) and CHROMOMETHYLASE3 (CMT3), which maintain symmetric CG and CHG methylation, respectively, during DNA replication, and DOMAINS REARRANGED METHYLASE2 (DRM2) and CMT2, which are required for establishing CHG and asymmetric CHH methylation during each cell cycle. DRM2 also catalyzes CG methylation (Law and Jacobsen, 2010; Haag and Pikaard, 2011; He et al., 2011; Zemach et al., 2013; Stroud et al., 2014). Twenty-four-nucleotide small RNAs produced through the RdDM pathway target genomic regions to guide the establishment of DNA methylation by DRM2 (Cao et al., 2003).DNA methylation can be actively removed by a subfamily of bifunctional DNA glycosylases/lyases including REPRESSOR OF SILENCING1 (ROS1; Gong et al., 2002) and its paralogs DEMETER and DEMETER-LIKE2/3 (Gehring et al., 2006; Ortega-Galisteo et al., 2008). DNA methylation can also be passively lost during DNA replication when DNA methylation cannot be maintained (Zhu, 2009). Promoter RESPONSIVE TO DEHYDRATION 29A:LUCIFERASE (ProRD29A:LUC) in the ProRD29A:LUC/Promoter cauliflower mosaic virus 35S:NEOMYCIN PHOSPHOTRANSFERASE II (Pro35S:NPTII) transgenic Arabidopsis (Arabidopsis thaliana) line has been used as a marker to identify ros1 and ros3 mutants in which both ProRD29A:LUC and Pro35S:NPTII are silenced (Gong et al., 2002; Zheng et al., 2008). ROS3 is an RNA-binding protein that facilitates the function of ROS1 in active DNA demethylation at certain genomic loci. Using Pro35S:NPTII as a selection marker for kanamycin-sensitive mutants and the 35S-SUC2 transgene or a chop PCR marker for assaying DNA methylation at the 3′ region of At1g26400 from transfer DNA (T-DNA) insertion mutants, researchers recently identified two genes involved in active DNA demethylation: ROS4/INCREASED DNA METHYLATION1 (IDM1) and ROS5/IDM2 (Li et al., 2012; Qian et al., 2012, 2014; Zhao et al., 2014). ROS4/IDM1 is a plant homeodomain-finger domain-containing histone acetyltransferase that catalyzes histone H3 lysine18 (H3K18) and lysine23 (H3K23) acetylation (Li et al., 2012; Qian et al., 2012). ROS5/IDM2 is a member of the small heat shock protein family that interacts physically with ROS4/IDM1 for the regulation of active DNA demethylation. Genetic analysis indicates that ROS1, ROS4/IDM1, and ROS5/IDM2 are in the same genetic pathway and that ROS4/IDM1 and ROS5/IDM2 may form a protein complex for the regulation of active DNA demethylation (Qian et al., 2014; Zhao et al., 2014).During the genetic screening for kanamycin-sensitive mutants using the ProRD29A:LUC/Pro35S:NPTII transgenic line in this study, we identified another mutant, mbd7, where the Pro35S:NPTII transgene is specifically silenced. MBD7 is a methyl-CpG-binding domain (MBD) protein containing three MBD motifs that bind in vitro to methylated symmetric CG sites. MBD7 localizes to all highly CpG-methylated chromocenters in vivo (Zemach and Grafi, 2003; Zemach et al., 2008). Recruitment of MBD7 to chromocenters is disrupted in decrease in DNA methylation1 (ddm1) and met1, two mutants with great reductions in DNA methylation, suggesting that DNA methylation is required for proper MBD7 localization (Zemach et al., 2005). In this study, we found that MBD7 interacts physically with ROS5/IDM2 and is required for the active DNA demethylation of certain genomic loci, especially for the Gypsy-type long terminal repeat (LTR) retrotransposons with high densities of DNA methylation around chromocenters in Arabidopsis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号