首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Penelope, originally found as a key element responsible for the hybrid dysgenesis in Drosophila virilis, has been widely conserved throughout eukaryotic genomes. In other organisms, they are often referred to as Penelope-like elements or PLEs. In this study, we found two types of PLEs, designated MjPLE01 and MjPLE02, from kuruma shrimp, Marsupenaeus japonicus. There was no observed nucleotide similarity between MjPLE01 and 02, and both elements differed from each other in terms of their structure; MjPLE02 has a distinctive endonuclease (EN) domain at the C-terminus while MjPLE01 do not. A phylogenetic tree that includes publicly available PLEs and TERTs showed that MjPLE01 and 02 were closely related to Coprina elements, which have been reported as an EN-deficient PLE, and to PenelopePoseidon group, which possess an EN domain, respectively. Genomic Southern blot analysis using MjPLE01 as a probe showed several multiple bands that differ among individual shrimps. On the other hand, two major identical bands were observed when MjPLE02 was used. Colony hybridization showed co-localization of MjPLE01 and GGTTA repeats, suggesting that MjPLE01 might be prevalent in subtelomeric regions of kuruma shrimp genome. These results suggest that the kuruma shrimp genome has at least two types of PLEs with different domain compositions, phylogenetic positions, and probably chromosomeal localization. Such distinctive types of PLEs in an organism have never been described and hence could be a potential source to understand how multiple PLE types evolved.  相似文献   

2.
MgtC is a virulence factor of unknown function important for survival inside macrophages in several intracellular bacterial pathogens, including Mycobacterium tuberculosis. It is also involved in adaptation to Mg2+ deprivation, but previous work suggested that MgtC is not a Mg2+ transporter. In this study, we demonstrated that the amount of the M. tuberculosis MgtC protein is not significantly increased by Mg2+ deprivation. Members of the MgtC protein family share a conserved membrane N-terminal domain and a more divergent cytoplasmic C-terminal domain. To get insights into MgtC functional and structural organization, we have determined the nuclear magnetic resonance (NMR) structure of the C-terminal domain of M. tuberculosis MgtC. This structure is not affected by the Mg2+ concentration, indicating that it does not bind Mg2+. The structure of the C-terminal domain forms a βαββαβ fold found in small molecule binding domains called ACT domains. However, the M. tuberculosis MgtC ACT domain differs from canonical ACT domains because it appears to lack the ability to dimerize and to bind small molecules. We have shown, using a bacterial two-hybrid system, that the M. tuberculosis MgtC protein can dimerize and that the C-terminal domain somehow facilitates this dimerization. Taken together, these results indicate that M. tuberculosis MgtC does not have an intrinsic function related to Mg2+ uptake or binding but could act as a regulatory factor based on protein-protein interaction that could be facilitated by its ACT domain.  相似文献   

3.
The minichromosome maintenance complex (MCM) represents the replicative DNA helicase both in eukaryotes and archaea. Here, we describe the solution structure of the C-terminal domains of the archaeal MCMs of Sulfolobus solfataricus (Sso) and Methanothermobacter thermautotrophicus (Mth). Those domains consist of a structurally conserved truncated winged helix (WH) domain lacking the two typical ‘wings’ of canonical WH domains. A less conserved N-terminal extension links this WH module to the MCM AAA+ domain forming the ATPase center. In the Sso MCM this linker contains a short α-helical element. Using Sso MCM mutants, including chimeric constructs containing Mth C-terminal domain elements, we show that the ATPase and helicase activity of the Sso MCM is significantly modulated by the short α-helical linker element and by N-terminal residues of the first α-helix of the truncated WH module. Finally, based on our structural and functional data, we present a docking-derived model of the Sso MCM, which implies an allosteric control of the ATPase center by the C-terminal domain.  相似文献   

4.
5.
The metazoan mitochondrial DNA helicase is an integral part of the minimal mitochondrial replisome. It exhibits strong sequence homology with the bacteriophage T7 gene 4 protein primase-helicase (T7 gp4). Both proteins contain distinct N- and C-terminal domains separated by a flexible linker. The C-terminal domain catalyzes its characteristic DNA-dependent NTPase activity, and can unwind duplex DNA substrates independently of the N-terminal domain. Whereas the N-terminal domain in T7 gp4 contains a DNA primase activity, this function is lost in metazoan mtDNA helicase. Thus, although the functions of the C-terminal domain and the linker are partially understood, the role of the N-terminal region in the metazoan replicative mtDNA helicase remains elusive. Here, we show that the N-terminal domain of Drosophila melanogaster mtDNA helicase coordinates iron in a 2Fe-2S cluster that enhances protein stability in vitro. The N-terminal domain binds the cluster through conserved cysteine residues (Cys68, Cys71, Cys102, and Cys105) that are responsible for coordinating zinc in T7 gp4. Moreover, we show that the N-terminal domain binds both single- and double-stranded DNA oligomers, with an apparent Kd of ∼120 nm. These findings suggest a possible role for the N-terminal domain of metazoan mtDNA helicase in recruiting and binding DNA at the replication fork.  相似文献   

6.
7.
α-Haemolysin (HlyA) is a toxin secreted by pathogenic Escherichia coli, whose lytic activity requires submillimolar Ca2+ concentrations. Previous studies have shown that Ca2+ binds within the Asp and Gly rich C-terminal nonapeptide repeat domain (NRD) in HlyA. The presence of the NRD puts HlyA in the RTX (Repeats in Toxin) family of proteins. We tested the stability of the whole protein, the amphipathic helix domain and the NRD, in both the presence and absence of Ca2+ using native HlyA, a truncated form of HlyAΔN601 representing the C-terminal domain, and a novel mutant HlyA W914A whose intrinsic fluorescence indicates changes in the N-terminal domain. Fluorescence and infrared spectroscopy, tryptic digestion, and urea denaturation techniques concur in showing that calcium binding to the repeat domain of α-haemolysin stabilizes and compacts both the NRD and the N-terminal domains of HlyA. The stabilization of the N-terminus through Ca2+ binding to the C-terminus reveals long-range inter-domain structural effects. Considering that RTX proteins consist, in general, of a Ca2+-binding NRD and separate function-specific domains, the long-range stabilizing effects of Ca2+ in HlyA may well be common to other members of this family.  相似文献   

8.
9.
BackgroundLittle is known about the association between psychotic-like experiences (PLEs) and nonsuicidal self-injury (NSSI) in the general adult population. Thus, the aim of this study was to examine the association using nationally-representative data from England.MethodsData from the 2007 Adult Psychiatric Morbidity Survey was analyzed. The sample consisted of 7403 adults aged ≥16 years. Five forms of PLEs (mania/hypomania, thought control, paranoia, strange experience, auditory hallucination) were assessed with the Psychosis Screening Questionnaire. The association between PLEs and NSSI was assessed by multivariable logistic regression. Hierarchical models were constructed to evaluate the influence of alcohol and drug dependence, common mental disorders, and borderline personality disorder symptoms on this association.ResultsThe prevalence of NSSI was 4.7% (female 5.2% and male 4.2%), while the figures among those with and without any PLEs were 19.2% and 3.9% respectively. In a regression model adjusted for sociodemographic factors and stressful life events, most types of PLE were significantly associated with NSSI: paranoia (OR 3.57; 95%CI 1.96–6.52), thought control (OR 2.45; 95%CI 1.05–5.74), strange experience (OR 3.13; 95%CI 1.99–4.93), auditory hallucination (OR 4.03; 95%CI 1.56–10.42), and any PLE (OR 2.78; 95%CI 1.88–4.11). The inclusion of borderline personality disorder symptoms in the models had a strong influence on the association between PLEs and NSSI as evidenced by a large attenuation in the ORs for PLEs, with only paranoia continuing to be significantly associated with NSSI. Substance dependence and common mental disorders had little influence on the association between PLEs and NSSI.ConclusionsBorderline personality disorder symptoms may be an important factor in the link between PLEs and NSSI. Future studies on PLEs and NSSI should take these symptoms into account.  相似文献   

10.
Tamulaitis G  Mucke M  Siksnys V 《FEBS letters》2006,580(6):1665-1671
The archetypal Type IIE restriction endonuclease EcoRII is a dimer that has a modular structure. DNA binding studies indicate that the isolated C-terminal domain dimer has an interface that binds a single cognate DNA molecule whereas the N-terminal domain is a monomer that also binds a single copy of cognate DNA. Hence, the full-length EcoRII contains three putative DNA binding interfaces: one at the C-terminal domain dimer and two at each of the N-terminal domains. Mutational analysis indicates that the C-terminal domain shares conserved active site architecture and DNA binding elements with the tetrameric restriction enzyme NgoMIV. Data provided here suggest possible evolutionary relationships between different subfamilies of restriction enzymes.  相似文献   

11.
12.
The PI3K/Akt pathway is central for numerous cellular functions and is frequently deregulated in human cancers. The catalytic subunits of PI3K, p110, are thought to have a potential oncogenic function, and the regulatory subunit p85 exerts tumor suppressor properties. The fruit fly, Drosophila melanogaster, is a highly suitable system to investigate PI3K signaling, expressing one catalytic, Dp110, and one regulatory subunit, Dp60, and both show strong homology with the human PI3K proteins p110 and p85. We recently showed that p37δ, an alternatively spliced product of human PI3K p110δ, displayed strong proliferation-promoting properties despite lacking the catalytic domain completely. Here we functionally evaluate the different domains of human p37δ in Drosophila. The N-terminal region of Dp110 alone promotes cell proliferation, and we show that the unique C-terminal region of human p37δ further enhances these proliferative properties, both when expressed in Drosophila, and in human HEK-293 cells. Surprisingly, although the N-terminal region of Dp110 and the C-terminal region of p37δ both display proliferative effects, over-expression of full length Dp110 or the N-terminal part of Dp110 decreases survival in Drosophila, whereas the unique C-terminal region of p37δ prevents this effect. Furthermore, we found that the N-terminal region of the catalytic subunit of PI3K p110, including only the Dp60 (p85)-binding domain and a minor part of the Ras binding domain, rescues phenotypes with severely impaired development caused by Dp60 over-expression in Drosophila, possibly by regulating the levels of Dp60, and also by increasing the levels of phosphorylated Akt. Our results indicate a novel kinase-independent function of the PI3K catalytic subunit.  相似文献   

13.
14.
Small heat shock proteins (sHSPs) are oligomeric stress proteins characterized by an α-crystallin domain (ACD) surrounded by a N-terminal arm and C-terminal extension. Publications on sHSPs have reported that they exist in prokaryotes and eukaryotes but, to our knowledge, not in viruses. Here we show that sHSPs are present in some cyanophages that infect the marine unicellular cyanobacteria, Synechococcus and Prochlorococcus. These phage sHSPs contain a conserved ACD flanked by a relatively conserved N-terminal arm and a short C-terminal extension with or without the conserved C-terminal anchoring module (CAM) L-X-I/V, suggested to be implicated in the oligomerization. In addition, cyanophage sHSPs have the signature pattern, P-P-[YF]-N-[ILV]-[IV]-x(9)-[EQ], in the predicted β2 and β3 strands of the ACD. Phylogenetically, cyanophage sHSPs form a monophyletic clade closer to bacterial class A sHSPs than to cyanobacterial sHSPs. Furthermore, three sHSPs from their cellular host, Synechococcus, are phylogenetically close to plants sHSPs. Implications of evolutionary relationships between the sHSPs of cyanophages, bacterial class A, cyanobacteria, and plants are discussed.  相似文献   

15.
16.
Three y-type high-molecular-weight (HMW) glutenin gene open reading frames (ORFs), Chiy1, Chiy2, and Racy, were isolated and characterized from Leymus chinensis PI499516 and Leymus racemosus ssp. racemosus W623305. They shared an extra glutamine in the N-terminal and LAAQLPAMCRL peptides in the C-terminal with x-type HMW glutenins but had different N-terminal lengths. Like other y-type HMW glutenins, Chiy2 and Racy had 104 (or 105) amino acid (aa) residues at the N-terminal and started with EGEASR, whereas Chiy1 had 99 aa in this domain and started with QLQCER because of the deletion of EGEASR. Five other y-type glutenins, including those from Elymus ciliaris, Pseudoroegneria libanotica, and Leymus mollis, were similar to Chiy1. The ORF of Chiy2 was probably not expressed. The ORFs of both Chiy1 and Racy were expressed in bacteria. The maximum likelihood phylogenic tree based on the signal peptide and N-terminal and C-terminal aa residues revealed two clades of y-type HMW glutenins in Triticeae; the first contained Ay, By, Cy, Dy, Eey, Gy, Ky, Ry, Tay, and Uy, while the second clade contained the remaining y types, including those from Leymus. Within the second clade, HMW glutenins lacking the EGEASR peptide formed a subclade. These y-type HMW glutenins in Leymus could not be targeted to the Xm or Ns genome.  相似文献   

17.
Porphyromonas gingivalis, the major human pathogen bacterium associated with periodontal diseases, secretes virulence factors through the Bacteroidetes-specific type IX secretion system (T9SS). Effector proteins of the T9SS are recognized by the complex via their conserved C-terminal domains (CTDs). Among the 18 proteins essential for T9SS function in P. gingivalis, PorN is a periplasmic protein that forms large ring-shaped structures in association with the PorK outer membrane lipoprotein. PorN also mediates contacts with the PorM subunit of the PorLM energetic module, and with the effector’s CTD. However, no information is available on the PorN structure and on the implication of PorN domains for T9SS assembly and effector recognition. Here we present the crystal structure of PorN at 2.0-Å resolution, which represents a novel fold with no significant similarity to any known structure. In agreement with in silico analyses, we also found that the N- and C-terminal regions of PorN are intrinsically disordered. Our functional studies showed that the N-terminal disordered region is involved in PorN dimerization while the C-terminal disordered region is involved in the interaction with PorK. Finally, we determined that the folded PorN central domain is involved in the interaction with PorM, as well as with the effector’s CTD. Altogether, these results lay the foundations for a more comprehensive model of T9SS architecture and effector transport.  相似文献   

18.
CTP:phosphoethanolamine cytidylyltransferase (ECT) is a key enzyme in the CDP-ethanolamine branch of the Kennedy pathway, which is the primary pathway of phosphatidylethanolamine (PE) synthesis in mammalian cells. Here, the enzymatic properties of recombinant human ECT (hECT) were characterized. The catalytic reaction of hECT obeyed Michaelis–Menten kinetics with respect to both CTP and phosphoethanolamine. hECT is composed of two tandem cytidylyltransferase (CT) domains as ECTs of other organisms. The histidines, especially the first histidine, in the CTP-binding motif HxGH in the N-terminal CT domain were critical for its catalytic activity in vitro, while those in the C-terminal CT domain were not. Overexpression of the wild-type hECT and hECT mutants containing amino acid substitutions in the HxGH motif in the C-terminal CT domain suppressed the growth defect of the Saccharomyces cerevisiae mutant of ECT1 encoding ECT in the absence of a PE supply via the decarboxylation of phosphatidylserine, but overexpression of hECT mutants of the N-terminal CT domain did not. These results suggest that the N-terminal CT domain of hECT contributes to its catalytic reaction, but C-terminal CT domain does not.  相似文献   

19.
We isolated a new recessive allele at the AUXIN RESISTANT6/CULLIN1 (AXR6/CUL1) locus, axr6–101, from an EMS-mutagenized population of Arabidopsis thaliana, the Landsberg erecta ecotype. axr6–101 is auxin resistant and semi-dwarf similar to the other recessive axr6 mutants. The axr6–101 phenotype is caused by the E716K substitution of the CUL1 protein, which is likely to affect its ability to bind to the C-terminal RING domain of RING-box 1 (RBX1). The previously reported allele of AXR6, cul1–7, is caused by a substitution at T510 that binds to the N-terminal β-strand of RBX1. Although cul1–7 shows temperature-sensitive phenotype, the axr6–101 phenotype is largely unaffected by temperature. axr6–101 may provide an important genetic resource for study of the structure−function relationship of the CUL1 protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号