首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to assess cyclooxygenase (COX)-1 and COX-2 expression in skeletal muscle after an ischemia-reperfusion (I/R). Male Sprague-Dawley rats were subjected to unilateral hindlimb ischemia for 2 h and then euthanized after 0, 1, 2, 4, 6, 10, 24, and 72 h of reperfusion. The COX protein and mRNA were assessed in control and injured gastrocnemius muscle. Muscle damage was indirectly determined by plasma creatine kinase activity and edema by weighing wet muscle. Creatine kinase activity in plasma increased as early as 1 h after reperfusion and returned to control levels by 72 h of reperfusion. Edema was observed at 6 and 10 h of reperfusion, but histological investigations showed an absence of tissular inflammatory cell infiltration. COX-1 mRNA was expressed in control muscle and was increased at 72 h of reperfusion, but the levels of associated COX-1 protein detected in control and injured gastrocnemius muscle were similar. COX-2 mRNA was not, or only slightly, detectable in control muscle and after I/R. In contrast, I/R induced major overexpression of COX-2 immunoreactivity at 6 and 10 h of reperfusion with a maximum at 10 h, whereas COX-2 protein was undetectable in control muscle. In conclusion, hindlimb I/R induced a large overexpression of COX-2 but not COX-1 protein between 6 and 10 h after injury. These results suggest a role for COX-2 enzyme in such pathophysiological conditions of the skeletal muscle.  相似文献   

2.
3.
Cyclooxygenases (COXs) are the key enzymes in the production of prostaglandins (PGs) and exist in two isoforms. Isoform 1 (COX-1) is constitutively expressed in most tissues, whereas cyclooxygenase-2 (COX-2) is rapidly induced by a variety of different stimuli. In this study, we have quantitatively analyzed mRNA expression of COX-1 and COX-2 and protein distribution during corneal reparative processes after wound. Total RNA was isolated from cornea samples of New Zealand rabbits that had been subjected to corneal wound by mechanical brush scraping. Quantification of RT-PCR results was made by using a DNA mimic approach. The localization and expression of the enzymes was studied by immunocytochemistry and Western blotting. In normal corneas COX-1 is expressed throughout the cornea in the whole tissue, while COX-2 is strongly expressed in stromal keratocytes. Following injury, COX-2 levels drastically increase and, at least in the epithelium, COX-2 becomes the predominant isoform of cyclooxygenases at an early stage of healing. Moreover, in the epithelium COX-2 is expressed predominantly by those cells close to the wound. These cells become migratory and move toward the injured area. In contrast, COX-1 levels remain unaffected in all corneal tissues. The system returns to the pre-injury state in about 24h. Thus, the expression of COX-2 in the corneal epithelium during wound repair is tightly regulated both temporally and spatially.  相似文献   

4.
Role of cyclooxygenase-2 in gastric mucosal defense.   总被引:5,自引:0,他引:5  
Two isoenzymes of cyclooxygenase (COX), the key enzyme in prostaglandin (PG) biosynthesis, COX-1 and COX-2, have been identified. COX-1 was proposed to regulate physiological functions, COX-2 to mediate pathophysiological reactions such as inflammation. In particular, it was suggested that maintenance of gastric mucosal integrity relies exclusively on COX-1. Recently, it was shown that a selective COX-1 inhibitor does not damage the mucosa in the healthy rat stomach, although mucosal prostaglandin formation is near-maximally suppressed. However, concurrent treatment with a COX-1 and a COX-2 inhibitor induces severe gastric damage. This indicates that in normal mucosa both COX-1 and COX-2 have to be inhibited to evoke ulcerogenic effects. In the acid-challenged rat stomach inhibition of COX-1 alone is associated with dose-dependent injury which is aggravated by additional inhibition of COX-2 activity or prevention of acid-induced up-regulation of COX-2 expression by dexamethasone. After acid exposure, COX-2 inhibitors cause substantial gastric injury when nitric oxide formation is suppressed or afferent nerves are defunctionalized. Ischemia-reperfusion of the gastric artery increases levels of COX-2 but not COX-1 mRNA. COX-2 inhibitors or dexamethasone aggravate ischemia-reperfusion-induced mucosal damage up to 4-fold, an effect abolished by concurrent administration of 16,16-dimethyl-PGE2. Furthermore, the protective effects elicited by a mild irritant or intragastric peptone perfusion are antagonized by COX-2 inhibitors. Finally, COX-2 expression is increased in experimental ulcers. COX-2 inhibitors delay the healing of chronic gastric ulcers in experimental animals and decrease epithelial cell proliferation, angiogenesis and maturation of the granulation tissue to the same extent as non-steroidal anti-inflammatory drugs. These observations indicate that, in contrast to the initial concept, COX-2 plays an important role in gastric mucosal defense.  相似文献   

5.
Prostaglandins play a critical role in gastric mucosal cytoprotection and decrease progressively with age. Cyclooxygenase (COX), the rate-limiting enzyme for prostaglandin synthesis, exists in two isoforms, COX-1 and COX-2. The rat COX-1 gene expresses an alternatively spliced mRNA COX-1 splice variant (SV) that may, at best, code for a truncated COX-1 protein. With the use of competitive PCR, we determined whether COX gene expression was altered in the stomach with increasing age and after gastric ulcer induction. COX-1 mRNA was significantly reduced in the aged, and COX-1SV mRNA was significantly higher in the adults compared with the young and aged stomach. Levels of COX-1 and COX-2 were similarly expressed in the normal stomach. In acute gastric ulcers, only COX-2 mRNA levels were significantly elevated. When ulcers were undergoing healing and repair, COX-1 and COX-2 mRNA levels were significantly elevated. Age-related changes in COX-1 and COX-1SV but not COX-2 mRNA may alter gastric mucosal cytoprotection. Furthermore, COX-1 and COX-2 may both contribute to the healing of a gastric ulcer.  相似文献   

6.
To determine critical role of cyclooxygenase-2 (COX-2) for development of viral myocarditis, a mouse model of encephalomyocarditis virus-induced myocarditis was used. The virus was intraperitoneally given to COX-2 gene-deficient heterozygote mice (COX-2+/-) and wild-type mice (WT). We examined differences in heart weights, cardiac histological scores, numbers of infiltrating or apoptotic cells in myocardium, cardiac expression levels of COX-2, tumor necrosis factor-alpha (TNF-alpha), and adiponectin mRNA, immunoreactivity of COX-2, TNF-alpha, and adiponectin in myocytes, cardiac concentrations of TNF-alpha and adiponectin, prostaglandin E2 (PGE2) levels in hearts, and viral titers in tissues between COX-2+/- and WT. We observed significantly decreased expression of COX-2 mRNA and reactivity in hearts from COX-2+/- on day 8 after viral inoculation as compared with that from WT, together with elevated cardiac weights and severe inflammatory myocardial damage in COX-2+/-. Cardiac expression of TNF-alpha mRNA, reactivity, and protein on day 8 was significantly higher in COX-2+/- than in WT, together with reciprocal expression of adiponectin mRNA, reactivity, and protein in hearts. Significantly reduced cardiac PGE2 levels on day 8 were found in COX-2+/- compared with those in WT. There was no difference in local viral titers between both groups on day 4. Infected WT treated with a selective COX-2 inhibitor, NS-398, also showed the augmented myocardial damage on day 8. These results suggest that inhibition of COX-2 may enhance myocardial damage through reciprocal cardiac expression of TNF-alpha and adiponectin in a mouse model of viral myocarditis.  相似文献   

7.
We examined the gastric ulcerogenic property of selective COX-1 and/or COX-2 inhibitors in rats, and investigated whether COX-1 inhibition is by itself sufficient for induction of gastric damage. Animals fasted for 18 h were given various COX inhibitors p.o., either alone or in combination, and they were killed 8 h later. The nonselective COX inhibitors such as indomethacin, naproxen and dicrofenac inhibited PG production, increased gastric motility, and provoked severe gastric lesions. In contrast, the selective COX-2 inhibitor rofecoxib did not induce any damage in the stomach, with no effect on the mucosal PGE(2) contents and gastric motility. Likewise, the selective COX-1 inhibitor SC-560 also did not cause gastric damage, despite causing a significant decrease in PGE(2) contents. The combined administration of SC-560 and rofecoxib, however, provoked gross damage in the gastric mucosa, in a dose-dependent manner. SC-560 also caused a marked gastric hypermotility, whereas rofecoxib had no effect on basal gastric motor activity. On the other hand, the COX-2 mRNA was expressed in the stomach after administration of SC-560, while the normal gastric mucosa expressed only COX-1 mRNA but not COX-2 mRNA. These results suggest that the gastric ulcerogenic property of conventional NSAIDs is not accounted for solely by COX-1 inhibition and requires the inhibition of both COX-1 and COX-2. The inhibition of COX-1 up-regulates the COX-2 expression, and this may counteract the deleterious influences, such as gastric hypermotility and the subsequent events, due to a PG deficiency caused by COX-1 inhibition.  相似文献   

8.
Cyclooxygenase (COX), which have the isoforms of COX-1 and COX-2, is the key enzyme of prostaglandins biosynthesis. Especially, COX-2 is induced in inflammatory disease such as Diabetes Mellitus (DM). Resveratrol (RSV), a natural antioxidant, has a beneficial role in prevention of inflammatory disease. We investigated the changes of COX-1 and COX-2 mRNA expression and protein level in diabetic rat kidney after RSV treatment. Three months-old, 44 Wistar albino male rats, which were divided into six groups such as control group, sodium citrate buffer (sham control) group, diabetic group (DM), Dimethyl Sulfoxide induced control group, RSV treated sham control group (RSV) and RSV treated diabetic group (DM + RSV) were used for the study. Experimental diabetes was induced by intraperitoneal injection of 55 mg/kg Streptozotocin. After the induction of chronic diabetes 10 mg/kg per day RSV was administered intraperitoneally for 4 weeks. In this study. RSV has no significant effect on COX-1 mRNA expression in diabetic rat kidney (P > 0.05). Immunohistochemical study showed that COX-1 expression was slightly inhibited in RSV group and was not significantly supressed in DM + RSV group. When comparing control and treated groups, there were no significant differences in COX-2 mRNA or protein levels (P > 0.05). In conclusion, our results indicate that resveratrol do not significantly affect COX gene and protein expression. Therefore, different therapy strategies such as combination with other antidiabetic drugs may tried in STZ induced animal model for reducing diabetic symptoms and altering COX-1 and COX-2 mRNA or protein levels.  相似文献   

9.
Role of cyclooxygenase isoforms in gastric mucosal defence.   总被引:7,自引:0,他引:7  
A complex system of interacting mediators exists in the gastric mucosa to strengthen its resistance against injury. In this system prostaglandins play an important role. Prostaglandin biosynthesis is catalysed by the enzyme cyclooxygenase (COX), which exists in two isoforms, COX-1 and COX-2. Initially the concept was developed that COX-1 functions as housekeeping enzyme, whereas COX-2 yields prostaglandins involved in pathophysiological reactions such as inflammation. In the gastrointestinal tract, the maintenance of mucosal integrity was attributed exclusively to COX-1 without a contribution of COX-2 and ulcerogenic effects of non-steroidal anti-inflammatory drugs (NSAIDs) were believed to be the consequence of inhibition of COX-1. Recent findings, however, indicate that both COX-1 and COX-2 either alone or in concert contribute to gastric mucosal defence. Thus, in normal rat gastric mucosa specific inhibition of COX-1 does not elicit mucosal lesions despite near-maximal suppression of gastric prostaglandin formation. When a selective COX-2 inhibitor which is not ulcerogenic when given alone is added to the COX-1 inhibitor, severe gastric damage develops. In contrast to normal gastric mucosa which requires simultaneous inhibition of COX-1 and COX-2 for breakdown of mucosal resistance, in the acid-challenged rat stomach inhibition of COX-1 alone results in dose-dependent injury which is further increased by additional inhibition of COX-2 enzyme activity or prevention of acid-induced up-regulation of COX-2 expression by dexamethasone. COX-2 inhibitors do not damage the normal or acid-challenged gastric mucosa when given alone. However, when nitric oxide formation is suppressed or afferent nerves are defunctionalized, specific inhibition of COX-2 induces severe gastric damage. Ischemia-reperfusion of the gastric artery is associated with up-regulation of COX-2 but not COX-1 mRNA. COX-2 inhibitors or dexamethasone augment ischemia-reperfusion-induced gastric damage up to four-fold, an effect abolished by concurrent administration of 16,16-dimethyl-PGE(2). Selective inhibition of COX-1 is less effective. Furthermore, COX-2 inhibitors antagonize the protective effect of a mild irritant or intragastric peptone perfusion in the rat stomach, whereas the protection induced by chronic administration of endotoxin is mediated by COX-1. Finally, an important function of COX-2 is the acceleration of ulcer healing. COX-2 is up-regulated in chronic gastric ulcers and inhibitors of COX-2 impair the healing of ulcers to the same extent as non-selective NSAIDs. Taken together, these observations show that both COX isoenzymes are essential factors in mucosal defence with specific contributions in various physiological and pathophysiological situations.  相似文献   

10.
11.
Cyclooxygenase-2 (COX-2) is a recently discovered isoform of cyclooxygenase that is inducible by various types of inflammatory stimuli. Although this enzyme is considered to play a major role in inflammation processes by catalyzing the production of prostaglandins, the precise location, distribution, and regulation of prostaglandin synthesis remains unclear in several tissues. Using in situ hybridization histochemistry, we investigated the induction of COX-1 and COX-2 mRNA expression after systemic administration of a pyrogen, lipopolysaccharide (LPS), in kidney and adrenal gland in the rat. The COX-2 mRNA signals dramatically increased 1 h after LPS treatment in the kidney outer medulla and adrenal cortex, where almost no or little expression was observed in nontreated animals, and returned to control levels within 24 h. COX-2 mRNA levels increased in the kidney inner medulla 6 h after treatment. There was also a significant increase in mRNA levels in the kidney cortex and adrenal medulla. On the other hand, COX-1 mRNA levels did not show any detectable changes except in the kidney inner medulla, where a significant downregulation of mRNA expression was observed after LPS treatment. Light and electron immunocytochemistry using COX-2 antibodies showed that strong COX-2 immunoreactivity was localized to certain cortical cells of the thick ascending limb of Henle. In addition, based on double-staining with antiserum to nitric oxide synthase (NOS) four further cell populations could be identified in kidney cortex, including weakly COX-2-positive, NOS-positive macula densa cells. After LPS treatment, changes in COX-2 immunoreactivity could be observed in interstitial cells in the kidney medulla and in inner cortical cells in the adrenal gland. These results show that COX-2 is a highly induced enzyme that can be up-regulated in specific cell populations in kidney and adrenal gland in response to inflammation, leading to the elevated levels of prostaglandins seen during fever. In contrast COX-1 mRNA levels remained unchanged in this experimental situation, except for a decrease in kidney inner medulla.  相似文献   

12.
13.
Nonsteroidal anti-inflammatory drugs (NSAID) are well known to induce gastric mucosal damage including bleeding, ulceration and perforation in humans and animals too. These effects are related with the inhibition of the enzyme cyclooxygenase, which is the main established mechanism of action for these drugs. Fasted rats were given piroxicam, preferential COX-1 inhibitor (10-20 mg/kg) or meloxicam, preferential COX-2 inhibitor (7.5-15 mg/kg) orally. Six or nine hours (h) later, respectively, the stomach was excised, the severity of the damage assessed and myeloperoxidase (MPO) activity measured, as well as prostaglandin PGE(2) content. Furthermore, in order to assess the effects of these oxicams over previously damaged gastric mucosa, 1 ml of 0.6 N HCl was administered p.o. followed, 1 h after, of the correspondent dose of each NSAID, and the same parameters were determined. Oral administration of both drugs dose-dependently caused acute gastric haemorrhage erosions. Myeloperoxidase activity was significantly increased by piroxicam administration. In addition, PGE(2) content was significantly reduced. The association between the administration of the acid and NSAID caused a worsening of the damage and, while myeloperoxidase activity did not modify by both piroxicam and meloxicam, PGE(2) levels were reduced. These results suggest that the PG derived from both COX-1 and COX-2 pathway plays a beneficial role in the gastroprotection, and thus caution should be exercise in the clinical use of preferential COX-2 inhibitors.  相似文献   

14.
Traditional non-steroidal anti-inflammatory drugs, cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) inhibitors control inflammation. While these drugs are formulated to reduce one of the cardinal signs of inflammation by reducing prostaglandin levels at the site of inflammation, COX-1 inhibitors induce inflammation in the stomach as well as the small bowel. The COX-2 inhibitors, a large portion of the non-steroidal anti-inflammatory drug market, provide a gastro-intestinally safer class of drugs. However, COX-2 inhibitors induce vasoconstriction via actions in renal and cardiovascular tissues. Since COX-2 inhibitors also have anticancer potential, it is worthwhile to design drug formulations that will not cause hypertension or cardiovascular damage. An attempt has thus been made in this article to formulate a hypothesis to circumvent the COX inhibitors induced inflammation and vasoconstriction through COX independent activation of calcitonin gene-related peptide (CGRP), a potent vasodilator neuropeptide found throughout the vascular and sensory nervous system.  相似文献   

15.
The aim of this study was to investigate the effects of cold stress on the expression levels of heat shock proteins (Hsps90, 70, 60, 40, and 27) and inflammatory factors (iNOS, COX-2, NF-κB, TNF-α, and PTGEs) and oxidative indexes in hearts of chickens. Two hundred forty 15-day-old male chickens were randomly divided into 12 groups and kept at the temperature of 12 ± 1 °C for acute and chronic cold stress. There were one control group and five treatment groups for acute cold stress, three control groups, and three treatment groups for chronic cold stress. After cold stress, malondialdehyde level increased in chicken heart; the activity of superoxide dismutase and glutathione peroxidase in the heart first increased and then decreased. The inflammatory factors mRNA levels were increased in cold stress groups relative to control groups. The histopathological analysis showed that heart tissues were seriously injured in the cold stress group. Additionally, the mRNA levels of Hsps (70, 60, 40, and 27) increased significantly (P < 0.05) in the cold stress groups relative to the corresponding control group. Meanwhile, the mRNA level and protein expression of Hsp90 decreased significantly (P < 0.05) in the stress group, and showed a gradually decreasing tendency. These results suggested that the levels of inflammatory factors and Hsps expression levels in heart tissues can be influenced by cold stress. Hsps commonly played an important role in the protection of the heart after cold stress.  相似文献   

16.
The purpose of this investigation is to determine whether the levels of cyclooxygenase-2 (COX-2) expression are cell cycle dependent. We used a serum-starved human foreskin fibroblast model to determine changes in COX-2 mRNA, protein, and promoter activity in response to stimulation with interleukin-1b (IL-1b) and phorbol 12-myristate 13-acetate (PMA) at G0, G1, S and G2/M phases of the cell cycle. IL-1b (1 ng/ml) and PMA (100 nM) induced robust COX-2 expression in the G0 cells, and the level of COX-2 expression declined progressively after the cells had entered the cell cycle. The COX-2 mRNA level at G1, S and G2/M phases of the cell cycle was 76%, 46%, and 30% of that at G0, respectively. A 5-flanking promoter fragment of COX-2 constructed into a luciferase expression vector was transfected into cells. The promoter activity in response to PMA stimulation was significantly higher in G0 than in S phase cells. These results imply that G0 cells are the key players in inflammation and other COX-2-dependent pathophysiological processes. When the cells are in the proliferative phase, COX-2 inducibility becomes restrained probably by an endogenous control mechanism to avoid COX-2 mediated oxidative DNA damage.  相似文献   

17.
18.
19.
20.
Gastrin, PGs, and growth factors have important roles in maintaining gastrointestinal mucosal integrity. Cyclooxygenases (COX-1 and COX-2) are the key enzymes involved in PG synthesis. This study aimed to clarify the mechanisms of gastric mucosal protection by gastrin. Fasted rats were administered subcutaneous gastrin 17 with or without gastrin receptor antagonist YM022 pretreatment. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) and COX-2 expression were examined using Western blot analysis. Another series of experiments investigated 1) PGE(2) levels in gastric mucosa, 2) the protective action of gastrin against gastric damage by acidified ethanol, 3) the effects of a specific HB-EGF-neutralizing antibody on gastrin-induced COX-2 expression, and 4) the effects of a specific COX-2 inhibitor NS-398 on PGE(2) synthesis and the mucosal protection afforded by gastrin. Gastrin dose-dependently increased HB-EGF, COX-2 expression, and PGE(2) levels and reduced gastric damage. However, pretreatment with YM022 dose-dependently abolished such effects of gastrin. A specific HB-EGF- neutralizing antibody and an EGF receptor inhibitor decreased gastrin-induced COX-2 expression. NS-398 blocked gastrin-induced PGE(2) synthesis and mucosal protection. In conclusion, this study demonstrates that gastrin enhances gastric mucosal integrity through COX-2, which is partially mediated by HB-EGF, and PGE(2) upregulation in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号