首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic electroconvulsive shock (ECS) induced a significant decrease in noradrenaline- and forskolin-stimulated cyclic AMP production in rat cortical slices, whereas a single ECS had a much smaller effect. In a cortical membrane preparation, adenylate cyclase activity in response to stimulation by forskolin, guanosine-5'-(beta,gamma-imido) triphosphate, and Mn2+ ions was significantly increased in membranes derived from rats that had received chronic ECS, but was either unchanged or reduced in membranes from rats that received a single treatment only. The results are interpreted in terms of changes occurring at components of the adenylate cyclase enzyme distal to the receptor.  相似文献   

2.
Accumulation of inositol-1-phosphate after labeling with [3H]inositol and stimulation with noradrenaline, carbachol, and serotonin was measured in rat cortical, caudate nucleus, and hippocampal slices. The response to noradrenaline was significantly increased in cortical slices from animals that had received either a single electroconvulsive shock (ECS) or a series of 10 daily ECS but was unchanged in caudate nucleus or hippocampal slices. The response to carbachol, a muscarinic cholinergic agonist, was unchanged in cortical or caudate nucleus slices but was significantly reduced in hippocampal slices from animals that had received chronic ECS. The response to serotonin in cortical slices was not affected by the treatment. The results are correlated with changes in receptor number, which have been demonstrated to occur after administration of ECS.  相似文献   

3.
We developed transgenic (Tg) mice modeling an autosomally inherited mitochondrial disease, chronic progressive external ophthalmoplegia, patients with which sometimes have comorbid mood disorders. The mutant animals exhibited bipolar disorder-like phenotypes, such as a distorted day-night rhythm and a robust activity change with a period of 4-5 days, and the behavioral abnormalities were improved by lithium. In this study, we tested the effect of electroconvulsive stimulation (ECS) on the behavioral abnormalities of the model. Electroconvulsive therapy, which has long been used in clinical practice, provides fast-acting relief to depressive patients and drug-resistant patients. We performed long-term recordings of wheel-running activity of Tg and non-Tg mice. While recording, we administrated a train of ECS to mice, six times over two weeks or three times over a week. The treatment ameliorated the distorted day-night rhythm within three times of ECS, but it had no effect on the activity change with a period of 4-5 days in the female mice. To study the mechanism of the action, we investigated whether ECS could alter the circadian phase but found no influence on the circadian clock system. The potent and fast-acting efficacy of ECS in the mutant mice supports the predictive validity of the mice as a model of bipolar disorder. This model will be useful in developing a safe and effective alternative to lithium or electroconvulsive therapy.  相似文献   

4.
Acute seizures and other stimuli that increase neuronal activity cause a rapid induction of the immediate-early genes c-fos and c-jun, also referred to as nuclear proto-oncogenes, in the nervous system. In the present study, rats were administered one or more electroconvulsive seizures (ECS) and the responsiveness of c-fos and c-jun to an acute, "test" seizure was examined. Four hours after a single ECS, the induction of c-fos mRNA by a test seizure was blocked, in agreement with earlier findings, but by 18 h the levels of c-fos mRNA could be reinduced by the test seizure, suggesting that 1 day is sufficient to "reset" the responsiveness of this system. However, it was found that chronic, daily ECS treatments resulted in a time-dependent decrease in the expression of c-fos mRNA in response to a test seizure administered 18 h after the last daily ECS; this effect was maximal after 8-10 days of treatment, at which time the induction of c-fos mRNA by the test seizure was blocked dramatically. Chronic ECS also blocked the induction of c-jun in response to an acute, test seizure. The effect of chronic ECS on levels of Fos protein was also investigated. It was found that basal levels of Fos protein were reduced after chronic (10 days) ECS and were not induced by a test seizure. Because levels of Fos protein remain elevated 4 h after a single seizure this finding suggests that the mechanisms by which acute (4 h) and chronic (8-10 days) ECS block the induction of c-fos may differ.  相似文献   

5.
Many aspects of visual cortical functional architecture, such as orientation and ocular dominance columns, are present before animals have had any visual experience, indicating that the initial formation of cortical circuitry takes place without the influence of environmental cues. For this reason, it has been proposed that spontaneous activity within the developing visual pathway carries instructive information to guide the early establishment of cortical circuits. Recently developed recording and stimulation techniques are revealing new information about the in vivo organization of this spontaneous activity and its contribution to cortical development. Multielectrode recordings in the developing lateral geniculate nucleus (LGN) of ferrets demonstrate that retinal spontaneous activity is not simply relayed to the visual cortex, but is reshaped and transformed by a variety of mechanisms including cortical feedback and endogenous oscillatory activity. The resulting patterns are consistent with many of the predictions of correlation-based models of cortical development. In addition, the introduction of artificially correlated activity into the visual pathway disrupts some but not all aspects of orientation tuning development. Thus, while these results support an instructive role of spontaneous activity in shaping cortical development, there still appears to be a number of aspects of this process that cannot be accounted for by activity alone.  相似文献   

6.
During speaking, auditory feedback is used to adjust vocalizations. The brain systems mediating this integrative ability have been investigated using a wide range of experimental strategies. In this report we examined how vocalization alters speech-sound processing within auditory cortex by directly recording evoked responses to vocalizations and playback stimuli using intracranial electrodes implanted in neurosurgery patients. Several new findings resulted from these high-resolution invasive recordings in human subjects. Suppressive effects of vocalization were found to occur only within circumscribed areas of auditory cortex. In addition, at a smaller number of sites, the opposite pattern was seen; cortical responses were enhanced during vocalization. This increase in activity was reflected in high gamma power changes, but was not evident in the averaged evoked potential waveforms. These new findings support forward models for vocal control in which efference copies of premotor cortex activity modulate sub-regions of auditory cortex.  相似文献   

7.
丹扬 《生命科学》2008,20(5):692-694
活动依赖的神经可塑性在视觉皮层信息处理过程中起着很重要的作用。该文将讲述几个关于视觉刺激引起皮层反应发生快速变化的研究工作。在体膜片钳的实验结果表明,将视觉刺激与能够诱发孽个视皮层神经元发放动作电位的电刺激相偶联可以改变神经元的感受野特性。单电极和多电极胞外记录的实验结果显示,反复地给予自然图形电影刺激,不仅能增加视皮层神经元反应的可靠性,而且能造成之后的自发活动中存在“记忆的痕迹”。最后,用电压敏感染料成像的方法对群体细胞活动进行考察,结果提示视觉活动之后的皮层回放可能是由皮层波介导的。  相似文献   

8.
The effects of electroconvulsive shock (ECS) on rectal temperature (TR) and on protein synthesis in brain and liver were compared in rabbit, rat, and mouse. Protein synthesis status was assessed using an in vitro amino acid incorporation method which provides information equivalent to polyribosome profiles. In the rabbit, TR rose from 39.5 +/- 0.4 degrees C to 40.4 +/- 0.2 degrees C within 10 min following a single ECS, and significant hyperthermia persisted for at least 60 min. This effect was markedly attenuated in animals housed at 4 degrees C. In vitro protein synthesis activities of rabbit brain and liver preparations were significantly reduced following ECS only in those animals whose TR exceeded 40 degrees C. In the rat, ECS gave rise to a significant hyperthermia, but in no case did TR exceed 40 degrees C, and protein synthesis activity of brain supernatants was not affected. In the mouse, ECS reduced TR and had no effect on in vitro protein synthesis activity. These results demonstrate that the unique sensitivity of protein synthesis in rabbit tissues to electroconvulsive shock is a direct consequence of the hyperthermia that arises following ECS in this species.  相似文献   

9.
The effect of repeated treatment with electroconvulsive shock (ECS) on the turnover of cortical alpha 1-adrenoceptors in rats was measured using the N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)-induced irreversible receptor inactivation method. Repeated treatment with ECS did not affect parameters (the synthesis rate constant r, the degradation rate constant k) of alpha 1-adrenoceptor turnover. Because increase in the density of alpha 1-adrenoceptors in the ECS-treated group disappears later during measurement of turnover, several calculation possibilities were discussed. The present data confirm that repeated treatment with ECS produces a short-lasting up-regulation of cortical alpha 1-adrenoceptors, but does not affect the turnover of this receptor type.  相似文献   

10.
Neurophysiology of the BOLD fMRI signal in awake monkeys   总被引:3,自引:0,他引:3  
BACKGROUND: Simultaneous intracortical recordings of neural activity and blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in primary visual cortex of anesthetized monkeys demonstrated varying degrees of correlation between fMRI signals and the different types of neural activity, such as local field potentials (LFPs), multiple-unit activity (MUA), and single-unit activity (SUA). One important question raised by the aforementioned investigation is whether the reported correlations also apply to alert subjects. RESULTS: Monkeys were trained to perform a fixation task while stimuli within the receptive field of each recording site were used to elicit neural responses followed by a BOLD response. We show -- also in alert behaving monkeys -- that although both LFP and MUA make significant contributions to the BOLD response, LFPs are better and more reliable predictors of the BOLD signal. Moreover, when MUA responses adapt but LFP remains unaffected, the BOLD signal remains unaltered. CONCLUSIONS: The persistent coupling of the BOLD signal to the field potential when LFP and MUA have different time evolutions suggests that BOLD is primarily determined by the local processing of inputs in a given cortical area. In the alert animal the largest portion of the BOLD signal's variance is explained by an LFP range (20-60 Hz) that is most likely related to neuromodulation. Finally, the similarity of the results in alert and anesthetized subjects indicates that at least in V1 anesthesia is not a confounding factor. This enables the comparison of human fMRI results with a plethora of electrophysiological results obtained in alert or anesthetized animals.  相似文献   

11.
The early positive cortical evoked potential to somatosensory stimuli is regularly increased in amplitude in patients receiving lithium carbonate treatment. This may reflect a unique neurochemical effect of lithium since similar changes have not been observed in humans following other drugs. To investigate this finding, cortical evoked potentials to peripheral somatosensory stimulation were obtained in rats and cats with implanted epidural electrodes. In rats, increasing doses of oral lithium chloride, up to 5 meq/kg/d which approached the LD 50, produced no reliable change in the early positive evoked response amplitude. In cats, an increased amplitude of the early positive-negative cortical potential was observed in every instance and the serum lithium levels were within the range used clinically in humans. The increased cortical evoked response amplitude in cats did not directly correlate with serum lithium levels but was delayed 1 to 5 days after serum lithium levels reached their peak. The findings in cats are similar to the human studies. The negative results observed in rats may reflect important species differences regarding lithium.  相似文献   

12.
Electroconvulsive shock (ECS) activates MAPKs in rat brain and also induces immediate early genes. We investigated whether ECS induces MKP-1, a specific MAPK phosphatase and an immediate early gene, for feedback regulation of MAPK activity. ECS induced MKP-1 in the cortex, but MAPK activity returned to its basal level before MKP-1 protein increased, within 10 min of ECS. MKP-1 protein amount peaked 1 hr after ECS. MKP-1 induced did not lower the basal level of MAPK activity or attenuate MAPK activation by second ECS. MAPK activation in cerebellum was very weak, but the MKP-1 induction was faster and more prominent than in the cortex. These results suggest that ECS induces MKP-1 in various rat brain regions, however, the induction may not be related to the activation of MAPK and the MKP-1 induced may be independent of the regulation of MAPK activity after ECS.  相似文献   

13.
A prospective study of fractures of the femoral neck was conducted over 12 months in order to ascertain the relevance of generalised osteoporosis as determined by metacarpal morphometry. A series of some 200 women sustaining a fracture of the femoral neck after minor trauma had bone mass measurements similar to those of a control population of normal women, and 16% were not osteoporotic. A history of previous fractures was documented in one third of the women, but this was unrelated to the presence or severity of osteoporosis, although over half of the fractures had occurred within the previous four years. Trochanteric fractures were seen more commonly in severely osteoporotic women (p less than 0.005), whereas cervical fractures predominated in those who were not osteoporotic. These findings support the hypothesis that postural instability is the major determinant for femoral neck fracture and that generalised osteoporosis, rather than being a prerequisite for fracture, merely determines the type of fracture sustained.  相似文献   

14.
Han L  Zhang Y  Lou Y  Xiong Y 《PloS one》2012,7(4):e34837
Auditory cortical plasticity can be induced through various approaches. The medial geniculate body (MGB) of the auditory thalamus gates the ascending auditory inputs to the cortex. The thalamocortical system has been proposed to play a critical role in the responses of the auditory cortex (AC). In the present study, we investigated the cellular mechanism of the cortical activity, adopting an in vivo intracellular recording technique, recording from the primary auditory cortex (AI) while presenting an acoustic stimulus to the rat and electrically stimulating its MGB. We found that low-frequency stimuli enhanced the amplitudes of sound-evoked excitatory postsynaptic potentials (EPSPs) in AI neurons, whereas high-frequency stimuli depressed these auditory responses. The degree of this modulation depended on the intensities of the train stimuli as well as the intervals between the electrical stimulations and their paired sound stimulations. These findings may have implications regarding the basic mechanisms of MGB activation of auditory cortical plasticity and cortical signal processing.  相似文献   

15.
In two subjects: a male phlegmatic, 56, and a female melancholic, 22, the EEG was recorded at resting. The EEG patterns were juxtaposed with the geomagnetic activity index Ar and the solar activity index SF, as well as between themselves. The results revealed qualitatively similar biphasic responses: a generalised diminishing of the EEG spatial synchronisation and, on the next day, a generalised augmentation of the phenomenon, as compared with a prolonged quiet period. A general unspecific stress response is supposed to underlie the aforementioned dynamics, whereas a reduced cortical tone during a magnetic storm and an enhanced one after its cessation correspond to the two phases observed. Specifics of responses in both subjects corresponded to their individual profiles of interhemisphere asymmetry.  相似文献   

16.
Li B  Suemaru K  Cui R  Araki H 《Life sciences》2007,80(16):1539-1543
Electroconvulsive therapy is considered an effective treatment for severe depression. However, the mechanisms for its long-lasting antidepressant efficacy are poorly understood. In the present study, we investigated changes of the immobility time in the forced swim test and brain-derived neurotrophic factor (BDNF) protein after withdrawal from 14-day repeated electroconvulsive stimuli (ECS, 50 mA, 0.2 s) in rats. Immobility time in the forced swim test was markedly decreased 6 h after withdrawal following 14-day ECS treatment. Thereafter, prolongation of the withdrawal period gradually diminished the decreasing effect of immobility time, but significant effects persisted for up to 3 days after the withdrawal. Locomotor activity in the open-field test increased 6 h after withdrawal from the ECS treatment, and the enhanced effect persisted for at least 7 days. The BDNF protein level in the hippocampus was markedly increased 6 h after the withdrawal, and remained high for at least 7 days. These findings provide further evidence that repeated ECS has long-lasting effect on increase in BDNF and locomotor activity and decrease in immobility time in the forced swim test.  相似文献   

17.
Chen XL  Pan XL  Meng SY 《生理学报》2002,54(5):446-450
本研究旨在探讨闪光视觉诱发电位 (flashvisualevokedpotential,FVEP)与健康早产儿视神经及脑发育间的关系。应用自回归分析法对 36名健康早产儿 (胎龄 2 8周 2天~ 4 2周 )FVEP记录进行了分析 ,平均 8 5个(7~ 11个 )FVEP成分波被检出。依衰减频率分布的直方图将其分为 4组。总功率 (TP)、Ⅰ~Ⅳ组成分波功率(P)、Ⅱ~Ⅳ组衰减时间均随胎龄增加 ,有显著变化 (P <0 0 1orP <0 0 5 )。提示神经系统对闪光刺激的生物电反应在早产儿脑及视神经发育评价上具有重要的临床意义  相似文献   

18.
The mismatch negativity (MMN) provides a correlate of automatic auditory discrimination in human auditory cortex that is elicited in response to violation of any acoustic regularity. Recently, deviance-related responses were found at much earlier cortical processing stages as reflected by the middle latency response (MLR) of the auditory evoked potential, and even at the level of the auditory brainstem as reflected by the frequency following response (FFR). However, no study has reported deviance-related responses in the FFR, MLR and long latency response (LLR) concurrently in a single recording protocol. Amplitude-modulated (AM) sounds were presented to healthy human participants in a frequency oddball paradigm to investigate deviance-related responses along the auditory hierarchy in the ranges of FFR, MLR and LLR. AM frequency deviants modulated the FFR, the Na and Nb components of the MLR, and the LLR eliciting the MMN. These findings demonstrate that it is possible to elicit deviance-related responses at three different levels (FFR, MLR and LLR) in one single recording protocol, highlight the involvement of the whole auditory hierarchy in deviance detection and have implications for cognitive and clinical auditory neuroscience. Moreover, the present protocol provides a new research tool into clinical neuroscience so that the functional integrity of the auditory novelty system can now be tested as a whole in a range of clinical populations where the MMN was previously shown to be defective.  相似文献   

19.
Subterranean insect pests cause considerable economic damage but their concealment makes detection difficult. A portable acoustic system was developed and tested for its potential to rate the likelihood that trees in citrus groves were infested with Diaprepes abbreviatus (L.) larvae. The likelihood was rated independently by a computer program and an experienced listener that distinguished insect sounds from background noises. Diaprepes abbreviatus, Phyllophaga spp., or other pest insects were excavated from all 11 sites rated at high likelihood of infestation but were absent from 20 of 25 low-rated sites. There was a significant regression between the activity rate and the number of pest organisms present at recording sites although the correlation was weaker than between activity rate and likelihood of infestation. Although the system is at an early stage of development, the success of these field tests suggests that it has considerable potential as a tool to detect and monitor hidden infestations of insects in soil.  相似文献   

20.
We have previously demonstrated substantial increases in thyrotropin-releasing hormone (TRH) in specific regions of rat forebrain two days after single or repeated alternate-day electroconvulsive shock (ECS). To determine longer term effects of ECS-induced seizures on forebrain TRH content, we extended the time of the post-ECS observations to 6 and 12 days following 1 (ECS x 1) or 3 (ECS x 3) alternate-day ECS. Previous observations at 2 days post-ECS were confirmed except that hippocampal content of TRH was higher after ECS x 1. In pyriform cortex TRH remained elevated for 6 days after ECS x 1 and 3, and for 12 days after ECS x 3. In hippocampus TRH was elevated for 6 days after ECS x 1 and tended to remain elevated beyond 2 days after ECS x 3. In anterior cortex the increase persisted 6 days after ECS x 1 and 12 days after ECS x 3. These data show that convulsive seizures can induce sustained elevations of TRH beyond 48 h. This finding may be especially important in pyriform cortex and hippocampus where TRH may function as an endogenous anti-epileptic. Our data are also consistent with a possible role for TRH in affective regulation in the hippocampus, amygdala, pyriform and other cortical regions. Moreover, the present results further advance the analogy of the time-course of the TRH changes in rat to the course of the antidepressant response to electroconvulsive treatment in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号