首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A semicontinuous process has been developed to recover heterologous proteins at increased concentrations and purities. Proteins attached to mammalian cell membranes by glycosylphosphatidylinositol (GPI) anchors can be selectively released into the supernatant by the enzyme phosphatidylinositol-phospholipase C (PI-PLC). Chinese hamster ovary (CHO) cells, genetically engineered to express the GPI anchored, human melanoma antigen (p97), were used as a model system. These cells were grown in protein containing growth medium. During a brief harvesting phase the medium was replaced by phosphate buffered saline (PBS) containing 10 mU/mL of PI-PLC and the GPI anchored protein was cleaved from the cell surface and recovered in soluble form at up to 30% purity. After harvesting, the cells were returned to growth medium where the protein was re-expressed within 40 h. The growth rate, viability, and protein production of cells, repeatedly harvested over a 44-day period, were not adversely affected. This continuous cyclic harvesting process allowed recovery of a heterologous protein at high purity and concentrations and could be applied to the recovery of other GPI anchored proteins and genetically engineered GPI anchored fusion proteins. (c) 1993 John Wiley & Sons, Inc.  相似文献   

2.
Recent studies have demonstrated the existence of glycosyl-phosphatidylinositol (GPI)-anchored proteins in higher plants. In this study we tested whether GPI-addition signals from diverse evolutionary sources would function to link a GPI-anchor to a reporter protein in plant cells. Tobacco protoplasts were transiently transfected with a truncated form of the Clostridium thermocellum endoglucanase E reporter gene (celE') fused with a tobacco secretion signal (PR-1a) at the N-terminus and either a yeast (GAS1), mammalian (Thy-1) or putative plant (LeAGP-1) GPI-anchor addition signal at the C-terminus. The yeast and plant C-terminal signals were found to be capable of directing the addition of a GPI-anchor to the endoglucanase protein (EGE') as shown by the sensitivity of the lipid component of GPI to phosphatidylinositol-specific phospholipase C (PI-PLC) digestion. In contrast, the mammalian signal was poorly processed for anchor addition. When EGE' was fused to a truncated form of the LeAGP-1 signal (missing three amino acids predicted to be critical to signal cleavage and anchor addition), a GPI-anchor was not linked to the EGE' protein indicating the necessity for the missing amino acids. Our results show the conservation of the properties of GPI-signals in plant cells and that there may be some similar preferences in GPI-addition signal sequences for yeast and plant cells.  相似文献   

3.
死亡结构域相关蛋白Daxx可以敏化多种肿瘤细胞的凋亡过程,但对于肝肿瘤细胞株HepG2的影响未见报道.为了研究Daxx增加肝HepG2细胞对药物敏感性的影响及机制,为开发药物新的药理作用提供理论依据,分别转染pEGFP-C1和pEGFP-C1-Daxx这两个载体到HepG2细胞.实验分组如下:(1)正常对照组(未转染细胞组);(2)pEGFP-C1空载体转染组(HepG2/GFP细胞);(3)pEGFP-C1-Daxx表达载体转染组(nepG2/GFP-Daxx细胞).筛选稳定细胞株,用逆转录聚合酶链反应检测mRNA的表达;用过氧化氢孵育24h诱导细胞凋亡,采用MTT法和流式细胞术检测细胞凋亡率,Western blot检测蛋白质的表达.经G418筛选稳定的细胞运用RT-PCR技术分析其mRNA,结果显示,转染绿色荧光蛋白Daxx表达载体的细胞Daxx的mRNA明显上调:用荧光显微镜观察到Daxx蛋白主要定位于细胞核.用过氧化氢诱导HepG2细胞凋亡,观察到过氧化氢呈浓度依赖性地抑制HepG2细胞活性.正常对照细胞、HepG2/GFP、HepG2/GFP-Daxx 3组细胞的IC50值分别是0.72、0.76、0.49mmol/L.并且运用流式细胞仪检测到HepG2/GFP-Daxx组细胞凋亡率明显高于转染空载体质粒组与未转染组((42.9±8.42)vs(27.3±6.38)or(28.5±4.71)).提示HepG2/GFP-Daxx细胞对过氧化氢的反应性较未转染细胞和HepG2/GFP敏感.还运用Western-blot检测到活化的caspase3在Daxx转染组细胞表达最强,达到(204.66±19.68)%,而未转染和HepG2/GFP组细胞分别是(100±3.1)%、(107.39±20.1)%,进一步说明了Daxx可以增加HepG2细胞对于过氧化氢的敏感性.同时,观察到过氧化氢处理24h后,Daxx转染组细胞磷酸化的JNK表达明显高于空载体转染组和未转染细胞组.上述结果表明:a.Daxx可以增加肝HepG2细胞对过氧化氢诱导的细胞凋亡敏感性;b.Daxx蛋白敏化过氧化氢诱导的HepG2细胞凋亡可能与协同增加JNK活性有关.  相似文献   

4.
Many eukaryotic cell-surface proteins are anchored to the membrane via glycosylphosphatidylinositol (GPI). There are at least 26 genes involved in biosynthesis and remodeling of GPI anchors. Hypomorphic coding mutations in seven of these genes have been reported to cause decreased expression of GPI anchored proteins (GPI-APs) on the cell surface and to cause autosomal-recessive forms of intellectual disability (ARID). We performed homozygosity mapping and exome sequencing in a family with encephalopathy and non-specific ARID and identified a homozygous 3 bp deletion (p.Leu197del) in the GPI remodeling gene PGAP1. PGAP1 was not described in association with a human phenotype before. PGAP1 is a deacylase that removes an acyl-chain from the inositol of GPI anchors in the endoplasmic reticulum immediately after attachment of GPI to proteins. In silico prediction and molecular modeling strongly suggested a pathogenic effect of the identified deletion. The expression levels of GPI-APs on B lymphoblastoid cells derived from an affected person were normal. However, when those cells were incubated with phosphatidylinositol-specific phospholipase C (PI-PLC), GPI-APs were cleaved and released from B lymphoblastoid cells from healthy individuals whereas GPI-APs on the cells from the affected person were totally resistant. Transfection with wild type PGAP1 cDNA restored the PI-PLC sensitivity. These results indicate that GPI-APs were expressed with abnormal GPI structure due to a null mutation in the remodeling gene PGAP1. Our results add PGAP1 to the growing list of GPI abnormalities and indicate that not only the cell surface expression levels of GPI-APs but also the fine structure of GPI-anchors is important for the normal neurological development.  相似文献   

5.
Biosynthetic labelling experiments performed on P primaurelia strain 156, expressing the temperature-specific G surface antigen, 156G SAg, demonstrated that the purified 156G SAg contained the components characteristic of a GPI-anchor. [3H]ethanolamine, [3H]myo-inositol, [32P]phosphoric acid and [3H]myristic acid could all be incorporated into the surface antigen. Myristic acid labelling was lost after treatment in vitro with Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (PI-PLC). After complete digestion by pronase, a fragment containing the intact GPI-anchor of 156G surface antigen was isolated. This fragment was shown to be hydrophobic and glycosylated and to possess an epitope found specifically in the GPI component of GPI-anchored proteins. The role of the GPI-tail in anchoring the 156G surface antigen into the membrane was assessed by determining that purified 156G molecules with the GPI-anchor could be incorporated into lipid vesicles and red cell ghosts whereas the 156G molecules lacking the GPI-anchor, as result of treatment with B thuringiensis PI-PLC, could not. It has also been shown that the membrane-bound form and the soluble form, obtained after cleavage of the 156G SAg lipid moiety either by an endogenous PI-PLC or by a bacterial PI-PLC, displayed identical circular dichroic spectra.  相似文献   

6.
Glaucocalyxin H (GLH) is a new compound isolated from a traditional Chinese medical herb Isodon japonica var. glaucocalyx which has been used for folk medicine. This study was carried out for the first time to investigate the potential role of GLH in anti-hepatoma activity and underlying mechanisms in it. GLH could inhibit the growth of tumor in mice and induce HepG2 cells to death as assessed by the tumor reduction assay, toxic assay, morphological change, and survival rate assay. Many antitumor drugs originated from plants could inhibit the growth of tumor by inducing cells to apoptosis. The morphological changes of HepG2 cells treated with different concentrations of GLH under fluorescence and electron microscope and apoptotic rates were detected to verify its effect on apoptosis. As shown in the study, GLH could induce HepG2 cells to apoptosis in a dose-dependent manner. Bcl2 and Bax proteins played important roles in apoptosis and the disequilibrium between Bcl2 and Bax might result in apoptosis. The expression of Bax protein was upregulated and Bcl2 protein was downregulated in HepG2 cells treated with GLH assessed by Western blotting, and they were in a dose-dependent manner. Taken together, GLH can inhibit the growth of hepatoma cells in vivo and in vitro by inducing cell apoptosis due to the decreased Bcl2 and increased Bax proteins suggesting that GLH could be a potential candidate as an anti-hepatoma agent for the therapeutic treatment of hepatoma.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-014-0227-3) contains supplementary material, which is available to authorized users.KEY WORDS: apoptosis, Glaucocalyxin H, hepatoma, HepG2 cell  相似文献   

7.
A common diagnostic feature of glycosylinositol phospholipid (GPI)-anchored proteins is their release from the membrane by a phosphatidylinositol-specific phospholipase C (PI-PLC). However, some GPI-anchored proteins are resistant to this enzyme. The best characterized example of this subclass is the human erythrocyte acetylcholinesterase, where the structural basis of PI-PLC resistance has been shown to be the acylation of an inositol hydroxyl group(s) (Roberts, W. L., Myher, J. J., Kuksis, A., Low, M. G., and Rosenberry, T. L. (1988) J. Biol. Chem. 263, 18766-18775). Both PI-PLC-sensitive and resistant GPI-anchor precursors (P2 and P3, respectively) have been found in Trypanosoma brucei, where the major surface glycoprotein is anchored by a PI-PLC-sensitive glycolipid anchor. The accompanying paper (Mayor, S., Menon, A. K., Cross, G. A. M., Ferguson, M. A. J., Dwek, R. A., and Rademacher, T. W. (1990) J. Biol. Chem. 265, 6164-6173) shows that P2 and P3 have identical glycans, indistinguishable from the common core glycan found on all the characterized GPI protein anchors. This paper shows that the single difference between P2 and P3, and the basis for the PI-PLC insusceptibility of P3, is a fatty acid, ester-linked to the inositol residue in P3. The inositol-linked fatty acid can be removed by treatment with mild base to restore PI-PLC sensitivity. Biosynthetic labeling experiments with [3H]palmitic acid and [3H]myristic acid show that [3H]palmitic acid specifically labels the inositol residue in P3 while [3H]myristic acid labels the diacylglycerol portion. Possible models to account for the simultaneous presence of PI-PLC-resistant and sensitive glycolipids are discussed in the context of available information on the biosynthesis of GPI-anchors.  相似文献   

8.
A phospholipase C which cleaves phosphatidylinositol and glycosylphosphatidylinositol (GPI) anchors was identified in Listeria monocytogenes. This 36 kDa protein is encoded by the gene plcA, and is homologous to the Bacillus cereus, Bacillus thuringiensis and eukaryotic phosphatidylinositol-specific phospholipases C (PI-PLC). Expression of the plcA gene in Escherichia coli correlates with the appearance of PI-PLC activity in the cells. In Listeria monocytogenes, the activity is secreted to the culture medium. PI-PLC activity was only found in the two pathogenic species of the genus Listeria, namely L. monocytogenes and L. ivanovii. PI-PLC activity was lost and virulence decreased when the plcA gene was disrupted in the chromosome. This suggests that the PI-PLC of L. monocytogenes might be involved in virulence.  相似文献   

9.
1. Liver plasma membranes originating from the sinusoidal, lateral and canalicular surface domains of hepatocytes were covalently labelled with sulpho-N-hydroxysuccinamide-biotin. After solubilization in Triton X-114, treatment with a phosphatidylinositol-specific phospholipase C (PI-PLC), two-phase partitioning and 125I-streptavidin labelling of the proteins resolved by PAGE, six major polypeptides (molecular masses 110, 85, 70, 55, 38 and 35 kDa) were shown to be anchored in bile canalicular membrane vesicles by a glycosyl-phosphatidylinositol (G-PI) 'tail'. 2. Permeabilized 'early' and 'late' endocytic vesicles isolated from liver were also examined. Two polypeptides (110 and 35 kDa) were shown to be anchored by a G-PI tail in 'late' endocytic vesicles. 3. Analysis of marker enzymes in bile-canalicular vesicles treated with PI-PLC showed that 5'-nucleotidase and alkaline phosphatase, but not leucine aminopeptidase and ecto-Ca2(+)-ATPase activities were released from the membrane. A low release and recovery of alkaline phosphodiesterase activity was noted. The cleavage from the membrane of 5'-nucleotidase as a 70 kDa polypeptide was confirmed by Western blotting using an antibody to this enzyme. 4. Antibodies raised to proteins released from bile-canalicular vesicles by PI-PLC treatment, and purified by partitioning in aqueous and Triton X-114 phases, localized to the bile canaliculi in thin liver sections. Antibodies to proteins not hydrolysed by this treatment stained by immunofluorescence the sinusoidal and canalicular surface regions of hepatocytes. 5. Antibodies generated to proteins cleaved by PI-PLC treatment of canalicular vesicles were shown to identify, by Western blotting, a major 110 kDa polypeptide in these vesicles. Two polypeptides (55 and 38 kDa) were detected in MDCK and HepG-2 cultured cells. 6. Since two of the six G-PI-anchored proteins targeted to the bile-canalicular plasma membrane were also detected in 'late' endocytic vesicles, the results suggest that a junction where exocytic and endocytic traffic routes meet occurs in a 'late' endocytic compartment.  相似文献   

10.
Plasma cholesterol from low- and high-density lipoproteins (LDL and HDL) are cleared from the circulation by specific receptors that either totally degrade lipoproteins as the LDL receptor or selectively take up their cholesteryl esters (CE) like the scavenger receptor class B type I (SR-BI). The aim of the present study was to define the effect of apoC-I on the uptake of LDL and HDL3 by HepG2 cells. In experiments conducted with exogenously added purified apoC-I, no significant effect was observed on lipoprotein–protein association and degradation; however, LDL- and HDL3-CE selective uptake was significantly reduced in a dose-dependent manner. This study also shows that apoC-I has the ability to associate with HepG2 cells and with LDL and HDL3. Moreover, pre-incubation of HepG2 cells with apoC-I reduces HDL3-CE selective uptake and pre-incubation of LDL and HDL3 with apoC-I decreases their CE selective uptake by HepG2 cells. Thus, apoC-I can accomplish its inhibitory effect on SR-BI activity by either binding to SR-BI or lipoproteins. We conclude that by reducing hepatic lipoprotein-CE selective uptake, apoC-I has an atherogenic character.  相似文献   

11.
The folate receptor (FR) in HeLa cells was characterized as to ligandbinding mechanism, antigenic properties and membrane anchor in order toobtain information to be used for the design of biological agentstargeting FR in malignant tumors. The receptor displayed the followingbinding characteristics in equilibrium dialysis experiments(37°C, pH 7.4) with [3H] folate: a high-affinity type of bindingthat exhibited positive cooperativity with a Hill coefficient >1.0and an upward convex Scatchard plot, a slow radioligand dissociation atpH 7.4 becoming rapid at pH 3.5 and inhibition in the presence of otherfolates. The molecular size of the receptor was 100 kDa on gel filtrationwith Triton X-100, or similar to that of high molecular weight human milkfolate binding protein (FBP). The latter protein represents a 25 kDamolecule which equipped with a hydrophobic glycosylphosphatidylinositol (GPI) membrane anchor susceptible to cleavage byphosphatidylinositol specific phospholipase C (PI-PLC) formsmicelles of 100 kDa size with Triton X-100. The HeLa cell FRimmunoreacted with antibodies against purified human milk FBP inELISA, and in a fluorescence activated cell sorting system, whereHeLa cells exposed to increasing concentrations of antibody showed adose-dependent response. Exposure to PI-PLC decreased the fraction ofimmunolabeled cells indicating a linkage of FR to cell membranes by aGPI anchor. HeLa cells incubated with radiofolate showed a continuousuptake with time, however, with a complete suppression of uptake in thepresence of an excess of cold folate. Prewash of cells at acidic pH toremove endogenous folate increased the uptake. Binding and uptake of [3H]folate was increased in cells grown in a folate-deprived medium. The HeLaFR seems to be epitope related to human milk FBP.  相似文献   

12.
The cellular prion protein (PrP(C)) plays a fundamental role in prion disease. PrP(C) is a glycosylphosphatidylinositol (GPI)-anchored protein with two variably occupied N-glycosylation sites. In general, GPI-anchor and N-glycosylation direct proteins to apical membranes in polarized cells whereas the majority of mouse PrP(C) is found in basolateral membranes in polarized Madin-Darby canine kidney (MDCK) cells. In this study we have mutated the first, the second, and both N-glycosylation sites of PrP(C) and also replaced the GPI-anchor of PrP(C) by the Thy-1 GPI-anchor in order to investigate the role of these signals in sorting of PrP(C) in MDCK cells. Cell surface biotinylation experiments and confocal microscopy showed that lack of one N-linked oligosaccharide leads to loss of polarized sorting of PrP(C). Exchange of the PrP(C) GPI-anchor for the one of Thy-1 redirects PrP(C) to the apical membrane. In conclusion, both N-glycosylation and GPI-anchor act on polarized sorting of PrP(C), with the GPI-anchor being dominant over N-glycans.  相似文献   

13.
GPI-anchored proteins and lipid rafts   总被引:2,自引:0,他引:2  
Several proteins are anchored to membranes via a post-translational lipid modification, the glycosylphosphatidylinositol (GPI) anchor. In mammals and other vertebrates, GPI-anchored proteins have been found in almost all tissues and cells examined. Several studies have provided significant insight into the functions of this ubiquitous modification. An intriguing relevant feature of GPI-anchored proteins is their association with lipid rafts, specialized regions of elevated cholesterol and sphingolipid content, that are present within most cell membranes. In addition to the structure and biosynthesis of the GPI-anchor, recent researches have focused on its molecular interaction with lipid rafts and the biological meaning of such interaction. The aim of this review is to examine the emerging evidences of association between lipid rafts and GPI-anchored proteins, and their relationship with the modulation of important cellular functions such as protein/lipid sorting, signaling mechanisms and with human disease.  相似文献   

14.
The relative affinity of specific antibody secreted by mouse spleen cells following primary immunization with SRBC was estimated by competitive inhibition assay of antibody secreted by PFC as well as by inhibition of observed PFC number. Inhibition of direct and of indirect anti-SRBC plaque assays by the addition of specific antigen (SRBC stromata) gave sigmoid inhibition profiles from which the concentration of antigen required to inhibit 50% of the plaques (PI50) was determined, Alternatively, the sum of the cube of individual plaque diameters (Σd3) provided a measure of total anti-SRBC antibody secreted by PFCs from which the concentration of antigen required to inhibit 50% of the antibody (Ab50) was determined. Ab50, rather than PI50: (a) was a more sensitive measure of inhibition by antigen; (b) decreased following immunization indicating a progressive increase in mean antibody affinity; and (c) correlated with the results of hemolysin transfer experiments, an independent measure of mean affinity of circulating anti-SRBC antibody. From theoretical considerations, estimation of mean antibody affinity requires quantitative analysis of fractional antibody inhibition by antigen. Determination of Ab50, rather than PI50, provides an estimate of bound and of free antibody and therefore should provide a more valid estimate of the relative antibody affinity at the cellular level. Experimentally, utilizing Ab50 analysis, the IgM and IgG responses of C3H mice to immunization with SRBC demonstrated a progressive increase in affinity during maturation of the immune response.  相似文献   

15.
The glycosyl phosphatidylinositol (GPI) lipid anchor, which directs GPI‐anchored proteins to the apical cell surface in certain polarized epithelial cell types, has been proposed to act as an axonal protein targeting signal in neurons. However, as several GPI‐anchored proteins have been found on both the axonal and somatodendritic cell‐surface domains of a variety of neuronal cell types, the role of the GPI anchor in protein localization to the axon remains unclear. To begin to address the role of the GPI anchor in neuronal protein localization, we used a replication‐incompetent retroviral vector to express a model GPI‐anchored protein, human placental alkaline phosphatase (hPLAP), in early postnatal mouse cerebellar granule neurons developing in vitro. Purified granule neurons were cultured in large mitotically active cellular reaggregates to allow retroviral infection of undifferentiated, proliferating granule neuron precursors. To more easily visualize hPLAP localization during the sequence of differentiation of single postmitotic granule neurons, reaggregates were dissociated following infection, plated as high‐density monolayers, and maintained for 1–9 days under serum‐free culture conditions. As we previously demonstrated for uninfected granule neurons developing in monolayer culture, hPLAP‐expressing granule neurons likewise developed in vitro through a series of discrete temporal stages highly similar to those observed in situ. hPLAP‐expressing granule neurons first extended either a single neurite or two axonal processes, and subsequently attained a mature, well‐polarized morphology consisting of multiple short dendrites and one or two axons that extended up to 3 mm across the culture substratum. hPLAP was expressed uniformly on the entire cell surface at each stage of granule neuron differentiation. Thus, it appears that the GPI anchor is not sufficient to confer axonal localization to an exogenous GPI‐anchored protein expressed in a well‐polarized primary neuronal cell type in vitro; other signals, such asthose present in the extracellular domain of these proteins, may be necessary for the polarized targeting or retention of axon‐specific GPI‐anchored proteins. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 119–141, 1999  相似文献   

16.
The binary toxin (Bin) from Bacillus sphaericus crystals specifically binds to soluble midgut brush border membrane proteins from Culex pipiens larvae. A single 60 kDa midgut membrane protein is identified as the binding protein. This protein is anchored in the mosquito midgut membrane via a glycosyl-phosphatidylinositol (GPI) anchor, and is partially released by phosphatidylinositol specific-phospholipase C (PI-PLC). Fractionation of soluble proteins by anion exchange chromatography indicates that the binding protein does not co-elute with leucine aminopeptidase activity. After partial purification, the sequences of internal amino acid fragments of the 60 kDa protein were determined. The peptide sequences were compared with data in GenBank, and showed a very high degree of similarity with enzymes belonging to the alpha-amylase family. Further enzymatic investigation showed that the receptor of the Bin toxin in C. pipiens larval midgut may be an alpha-glucosidase.  相似文献   

17.
High-density lipoproteins are the putative vehicles for cholesterol removal from monocyte-derived macrophages, which are an important cell type in all stages of atherosclerosis. The role of HDL2, an HDL subclass that accounts for most variation in plasma HDL-cholesterol concentration, in cholesterol metabolism in monocyte-derived macrophages is not known. In this study, the dose-dependent effects of HDL2 on cellular cholesterol mass, efflux, and esterification, and on cellular cholesteryl ester (CE) hydrolysis using the mouse macrophage P388D1 cell line was investigated. HDL2 at low concentrations (40 μg protein/ml) decreased CE content without affecting cellular free cholesterol content (FC), CE hydrolysis, or cholesterol biosynthesis. In addition, HDL2 at low concentrations reduced cellular acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity and increased FC efflux from macrophages. Thus, HDL2 has two potential roles in reverse cholesterol transport. In one, HDL2 is an acceptor of macrophage FC. In the other, more novel role, HDL2 increases the availability of macrophage FC through the inhibition of ACAT. Elucidation of the mechanism by which HDL2 inhibits ACAT could identify new therapeutic targets that enhance the transfer of cholesterol from macrophages to the liver.  相似文献   

18.
M C Field  A K Menon    G A Cross 《The EMBO journal》1991,10(10):2731-2739
Cells of the insect (procyclic) stage of the life cycle of the African trypanosome, Trypanosoma brucei, express an abundant stage-specific glycosylated phosphatidylinositol (GPI) anchored glycoprotein, the procyclic acidic repetitive protein (PARP). The anchor is insensitive to the action of bacterial phosphatidylinositol-specific phospholipase C (PI-PLC), suggesting that it contains an acyl-inositol. We have recently described the structure of a PI-PLC resistant glycosylphosphatidylinositol, PP1, which is specific to the procyclic stage, and have presented preliminary evidence that the phosphatidylinositol portion of the protein-linked GPI on PARP has a similar structure. In this paper we show, by metabolic labelling with [3H]fatty acids, that the PARP anchor contains palmitate esterified to inositol, and stearate at sn-1, in a monoacylglycerol moiety, a structure identical to PP1. Using pulse-chase labelling, we show that both fatty acids are incorporated into the GPI anchor from a large pool of metabolic precursors, rather than directly from acyl-CoA. We also demonstrate that the addition of the GPI anchor moiety to PARP is dependent on de novo protein synthesis, excluding the possibility that incorporation of fatty acids into PARP can occur by a remodelling of pre-existing GPI anchors. Finally we show that the phosphatidylinositol (PI) species that are utilized for GPI biosynthesis are a subpopulation of the cellular PI molecular species. We propose that these observations may be of general validity since several other eukaryotic membrane proteins (e.g. human erythrocyte acetylcholine esterase and decay accelerating factor) have been reported to contain palmitoylated inositol residues.  相似文献   

19.
T-cadherin is a 95kDa glycoprotein member of the cadherin family of adhesion molecules attached to the extracellular surface of the cell membrane through a glycosyl-phosphatidylinositol (GPI)-anchor. Whether a T-cadherin ectodomain apical targeting signal or the GPI-anchor itself targets this protein to the apical membrane is not known. Chimeras of the reporter EGFP and T-cadherin have demonstrated that a minimal construct consisting of the C-terminal 25 amino acids including the N690 (omega-site) of T-cadherin was sufficient to GPI-anchor the EGFP protein. However, efficient GPI-anchor with minimal secretion of the protein required an additional 5 residues (omega-1 to omega-5). The GPI-anchored chimeras fractionated to the Triton X-100 detergent insoluble fraction and were released to the cell culture supernatant by phosphoinositide-specific phospho-lipase C digestion. When expressed in MDCK cells, all GPI-anchored chimeras targeted to the basolateral membrane, while the T/N-chimera and the wild-type T-cadherin targeted to the apical membrane. Therefore, T-cadherin is an example of another rare GPI-anchored protein where the anchor itself is not sufficient for apical targeting in MDCK cells.  相似文献   

20.
Experiments with plasma-membrane vesicles were performed in order to identify the attachment of hydrophobic nitrate reductase at the plasma membrane of Chlorella saccharophila. The enzyme was successfully removed from the plasma membrane with phosphoinositol-specific phospholipase C, and showed cross-reactivity with a monoclonal antibody (clone aGPI-3) raised against the glycosyl-phosphatidylinositol (GPI) anchor of Trypanosoma variant surface protein. The enzyme was labelled in vivo by feeding [3H]ethanolamine to the cells and underwent an hydrophobicity shift after treatment with phosphoinositol-specific phospholipase C. The attachment of this form of nitrate reductase to the plasma membrane via a GPI anchor was demonstrated.Abbreviations GPI glycosyl-phosphatidylinositol - NR nitratereductase - PI-PLC phosphoinositol-specific phospholipase C - PMNR Plasma-membrane-bound nitrate reductase The research was supported by a grant from Deutsche Forschungsgemeinschaft to R.T.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号