首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gene encoding amylopullulanase (gt-apu) of the extremely thermophilic Geobacillus thermoleovorans NP33 was cloned and expressed in Escherichia coli. The gene has an open reading frame of 4,965 bp that encodes a protein of 1,655 amino acids with molecular mass of 182 kDa. The six conserved regions, characteristic of GH13 family, have been detected in gt-apu. The recombinant enzyme has only one active site for α-amylase and pullulanase activities based on the enzyme kinetic analyses in a system that contains starch as well as pullulan as competing substrates and response to inhibitors. The end-product analysis confirmed that this is an endoacting enzyme. The specific enzyme activities for α-amylase and pullulanase of the truncated amylopullulanase (gt-apuT) are higher than gt-apu. Both enzymes exhibited similar temperature (60 °C) and pH (7.0) optima, although gt-apuT possessed a higher thermostability than gt-apu. The overall catalytic efficiency (K cat/K m) of gt-apuT is greater than that of gt-apu, with almost similar substrate specificities. The C-terminal region of gt-apu appeared to be non-essential, and furthermore, it negatively affects the substrate binding and stability of the enzyme.  相似文献   

2.
Thermostable pullulanase was purified to homogeneity on sodium dodecyl sulfate-polyacrylamide gel from the culture supernatant of Bacillus stearothermophilus TRS128. However, multiformity of the pullulanase was suggested by activity staining on a pullulan-reactive red plate. The thermostability of the enzyme was tested. In the presence of Ca2+, the optimum temperature of the pullulanase was 75°C, and nearly 100% of the enzyme activity was retained even after treatment at 68°C for 60 min. Since the thermostable pullulanase gene (pulT) has been cloned, the nucleotide sequence was determined. Although the DNA sequence revealed only one large open reading frame, two possible pairs of SD sequence and initiation codon were found in the frame. To analyze the regulatory region, several mutations (deletion, insertion and substitution of nucleotides) were introduced in the flanking region of pulT, using site-directed mutagenesis. A putative promoter, SD sequence and initiation codon were inferred. The pulT gene was composed of 1974 bases and 658 amino acid residues (molecular weight 75,375). The deduced amino acid sequence of the thermostable pullulanase exhibited a fairly low homology with that of the thermolabile pullulanase from Klebsiella aerogenes. However, four consensus sequences containing catalytic and/or substrate binding sites for amylolytic enzymes were also found in the thermostable pullulanase and the thermolabile enzyme.  相似文献   

3.
Starch debranching enzyme (R-enzyme or pullulanase) was purified to homogeneity from developing endosperm of rice (Oryza sativa L. cv. Fujihikari) using a variety of high-performance liquid chromatography columns, and characterized. A cDNA clone encoding the full length of the rice endosperm debranching enzyme was isolated and its nucleotide sequence was determined. The cDNA contains an open reading frame of 2958 bp. The mature debranching enzyme of rice appears to be composed of 912 amino acids with a predicted relative molecular mass (Mr) of 102069 Da, similar in size to its Mr of about 100 000 Da estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The amino acid sequence of rice debranching enzyme is substantially similar to that of bacterial pullulanase, while it bears little similarity to that of bacterial isoamylase or to glycogen debranching enzymes from human muscle and rabbit muscle. Southern blot analyses strongly suggest that the debranching enzyme gene is present as a single copy in the rice genome. Analysis by restriction fragment length polymorphism with a probe including the 3′-untranslated region of cDNA for rice debranching enzyme confirmed that the debranching enzyme gene is located on chromosome 4.  相似文献   

4.
A gene encoding the β-amylase of Bacillus circulans was isolated from a lambda library and sequenced. The structural gene consists of a 1725 bp open reading frame encoding a polypeptide with a predicted molecular wt of 62830 Daltons. Two active forms of the enzyme were found when the gene was expressed In E. coli. The larger 60 kD form was approximately 3 kD larger than the mature β-amylase secreted from B. circulans, suggesting that processing of this protein is different between the two species. The smaller 49 kD form is also present at a low level in B. circulans and may result from proteolytic cleavage. The enzyme has a temperature optimum of 50°C. Two other genes, one encoding an α-amylase and one a pullulanase, were also isolated from the lambda library.  相似文献   

5.
6.
Sphingomonas sp. strain HV3 (formerly Pseudomonas sp. HV3), which degrades aromatics and chloroaromatics, harbors a mega-plasmid, pSKY4. A sequenced 4 kb fragment of the plasmid reveals a novel gene organization for catechol meta-pathway genes. The putative meta operon starts with the cmpF gene encoding a 2-hydroxymuconic semialdehyde hydrolase. The gene has a 6 bp overlap with the previously characterized ring-cleavage gene, catechol 2,3-dioxygenase, cmpE. Downstream of cmpE is a 429 bp open reading frame of unknown function. Gene cmpC, encoding a 2-hydroxymuconic semialdehyde dehydrogenase, starts 44 bp further downstream. It has the highest homology to 2-hydroxymuconic semialdehyde dehydrogenases of dmp and xyl pathways and to XylC from the marine oligotroph Cycloclasticus oligotrophus. The gene organization is different from other known meta pathways. This is the first report of organization of plasmid-encoded meta-pathway genes in the genus Sphingomonas.  相似文献   

7.
A previously identified insert expressing an endopeptidase from a Lactobacillus helveticus CNRZ32 genomic library was characterized. Nucleotide sequence analysis revealed an open reading frame of 1,941 bp encoding a putative protein of 71.2 kDa which contained a zinc-protease motif. Protein homology searches revealed that this enzyme has 40% similarity with endopeptidase O (PepO) from Lactococcus lactis P8-2-47. Northern hybridization revealed that pepO is monocistronic and is expressed throughout the growth phase. CNRZ32 derivatives lacking PepO activity were constructed via gene replacement. Enzyme assays revealed that the PepO mutant had significantly reduced endopeptidase activity when compared to CNRZ32 with two of the three substrates examined. Growth studies indicated that PepO has no detectable effect on growth rate or acid production by Lactobacillus helveticus CNRZ32 in amino acid defined or skim milk medium.  相似文献   

8.
A full-length cDNA clone encoding a soluble starch synthase I (SSSI) from Amaranthus cruentus L. was isolated and characterized. The cDNA clone is 2,076?bp in length and contains an open reading frame of 1,821?bp that encodes 606 amino acid residues. Comparison of the cDNA and genomic sequences indicated that the amaranth SSSI gene contains 14 introns, of which exons 1?C15 contribute to the coding sequence. Sequencing of the cloned cDNA showed that it has 65.1% identity with Arabidopsis SSSI and 61.1?C64.7% identity with SSSI genes from other plant species. Comparison of the SSSI locus from 24 amaranth accessions of diverse geographical provenances revealed a high level of nucleotide polymorphism. A total of 54 single nucleotide polymorphisms and 17 insertions/deletions were identified, which were classifiable into eight different molecular types. Of these types, Type VIII was detected only in Old World accessions. Expression pattern analysis showed that the SSSI gene is expressed constitutively during seed maturation. In addition, this gene was expressed well in different organs including the leaf, petiole, stem and root. This finding indicated that expression of SSSI is not specific to non-storage or storage tissues in A. cruentus.  相似文献   

9.

Objectives

To identify novel pullulanases from microorganisms and to investigate their biochemical characterizations.

Results

A novel pullulanase gene (BmPul) from Bacillus megaterium WW1210 was cloned and heterologously expressed in Escherichia coli. The gene has an ORF of 2814 bp encoding 937 amino acids. The recombinant pullulanase (BmPul) was purified to homogeneity and biochemically characterized. BmPul has an MW of approx. 112 kDa as indicated by SDS-PAGE. Optimum conditions were at 55 °C and pH 6.5. The enzyme was stable below 40 °C and from pH 6.5?8.5. The Km values of BmPul towards pullulan and amylopectin were 3.3 and 3.6 mg/ml, respectively. BmPul hydrolyzed pullulan to yield mainly maltotriose, indicating that it should be a type I pullulanase.

Conclusions

A novel type I pullulanase from Bacillus megaterium was identified, heterologously expressed and biochemically characterized. Its properties makes this enzyme as a good candidate for the food industry.
  相似文献   

10.
Genome sequencing of the thermophilic archaeon Pyrococcus horikoshii OT3 revealed a gene which had high sequence similarity to the gene encoding the carboxypeptidase of Sulfolobus solfataricus and also to that encoding the aminoacylase from Bacillus stearothermophilus. The gene from P. horikoshii comprises an open reading frame of 1,164 bp with an ATG initiation codon and a TGA termination codon, encoding a 43,058-Da protein of 387 amino acid residues. However, some of the proposed active-site residues for carboxypeptidase were not found in this gene. The gene was overexpressed in Escherichia coli with the pET vector system, and the expressed enzyme had high hydrolytic activity for both carboxypeptidase and aminoacylase at high temperatures. The enzyme was stable at 90°C, with the highest activity above 95°C. The enzyme contained one bound zinc ion per one molecule that was essential for the activity. The results of site-directed mutagenesis of Glu367, which corresponds to the essential Glu270 in bovine carboxypeptidase A and the essential Glu in other known carboxypeptidases, revealed that Glu367 was not essential for this enzyme. The results of chemical modification of the SH group and site-directed mutagenesis of Cys102 indicated that Cys102 was located at the active site and was related to the activity. From these findings, it was proven that this enzyme is a hyperthermostable, bifunctional, new zinc-dependent metalloenzyme which is structurally similar to carboxypeptidase but whose hydrolytic mechanism is similar to that of aminoacylase. Some characteristics of this enzyme suggested that carboxypeptidase and aminoacylase might have evolved from a common origin.  相似文献   

11.
《Gene》1997,193(1):115-118
A gene coding for SEC14p from Candida glabrata has been cloned and characterized. Nucleotide (nt) sequence analysis reveals an open reading frame of 909 bp and predicts the synthesis of a polypeptide of 302 amino acid (aa) residues. Comparison of nt and aa sequences shows that the gene exhibits a much higher homology to the Saccharomyces cerevisiae (72% and 87%, respectively) than to the Candida albicans (55% and 65%, respectively) SEC14 gene.  相似文献   

12.
13.
14.
Dihydrofolate reductase is an essential bacterial enzyme necessary for the maintenance of intracellular folate pools in a biochemically active reduced state. In this report, the Mycobacterium avium folA gene was identified by functional genetic complementation, sequenced, and expressed for the first time. It has an open reading frame of 543 bp with a G+C content of 73%. The translated polypeptide sequence shows 58% identity to the consensus sequence of the conserved regions from eight other bacterial dihydrofolate reductases. Recombinant M. avium dihydrofolate reductase was expressed actively in Escherichia coli, and SDS-PAGE analysis revealed a 20 kDa species, agreeable with that predicted from the polypeptide sequence.  相似文献   

15.
16.
Biochemical investigations of the muconate and chloromuconate cycloisomerases from the chlorophenol-utilizing strain Rhodococcus opacus (erythropolis) 1CP had previously indicated that the chlorocatechol catabolic pathway of this strain may have developed independently from the corresponding pathways of proteobacteria. To test this hypothesis, we cloned the chlorocatechol catabolic gene cluster of strain 1CP by using PCR with primers derived from sequences of N termini and peptides of purified chlorocatechol 1,2-dioxygenase and chloromuconate cycloisomerase. Sequencing of the clones revealed that they comprise different parts of the same gene cluster in which five open reading frames have been identified. The clcB gene for chloromuconate cycloisomerase is transcribed divergently from a gene which codes for a LysR-type regulatory protein, the presumed ClcR. Downstream of clcR but separated from it by 222 bp, we detected the clcA and clcD genes, which could unambiguously be assigned to chlorocatechol 1,2-dioxygenase and dienelactone hydrolase. A gene coding for a maleylacetate reductase could not be detected. Instead, the product encoded by the fifth open reading frame turned out to be homologous to transposition-related proteins of IS1031 and Tn4811. Sequence comparisons of ClcA and ClcB to other 1,2-dioxygenases and cycloisomerases, respectively, clearly showed that the chlorocatechol catabolic enzymes of R. opacus 1CP represent different branches in the dendrograms than their proteobacterial counterparts. Thus, while the sequences diverged, the functional adaptation to efficient chlorocatechol metabolization occurred independently in proteobacteria and gram-positive bacteria, that is, by functionally convergent evolution.  相似文献   

17.
A 2.9 kbp EcoRi fragment from chloroplast DNA of a tree species Populus deltoides, has been cloned. Nucleotide sequence analysis led to the identification of a 1062 bp open reading frame located at one end of the recombinant clone. This open reading frame has more than 94% nucleotide sequence homology with tobacco and cotton psbA genes. The deduced amino acid sequence from poplar psbA gene is highly homologous to tobacco and differs only by 2 amino acids located at C-terminus of the protein. An AT rich region, capable of forming a potential stem-loop structure was located down stream to the psbA gene. Our Southern hybridization data confirms the presence of IR region as well as the location of the psbA gene near one of the IR in P. deltoides.  相似文献   

18.
A transposable element has been isolated from the entomopathogenic fungus Beauveria bassiana by trapping it in the nitrate reductase structural gene, which has been cloned from this species. The element had inserted in the first exon of the nia gene and appeared to have duplicated the sequence TA at the site of insertion. It was 3336?bp long with 30-bp imperfect, inverted, terminal repeats. The element, called hupfer, contained an open reading frame encoding a 321-amino acid protein similar to the IS630- or mariner-Tc1-like transposases, and a residual sequence of about 2?kb which was not significantly similar to any published sequence. There are fewer than five copies of this transposable element present per genome in the fungus.  相似文献   

19.
The gene encoding a type I pullulanase was identified from the genome sequence of the anaerobic thermoalkaliphilic bacterium Anaerobranca gottschalkii. In addition, the homologous gene was isolated from a gene library of Anaerobranca horikoshii and sequenced. The proteins encoded by these two genes showed 39% amino acid sequence identity to the pullulanases from the thermophilic anaerobic bacteria Fervidobacterium pennivorans and Thermotoga maritima. The pullulanase gene from A. gottschalkii (encoding 865 amino acids with a predicted molecular mass of 98 kDa) was cloned and expressed in Escherichia coli strain BL21(DE3) so that the protein did not have the signal peptide. Accordingly, the molecular mass of the purified recombinant pullulanase (rPulAg) was 96 kDa. Pullulan hydrolysis activity was optimal at pH 8.0 and 70°C, and under these physicochemical conditions the half-life of rPulAg was 22 h. By using an alternative expression strategy in E. coli Tuner(DE3)(pLysS), the pullulanase gene from A. gottschalkii, including its signal peptide-encoding sequence, was cloned. In this case, the purified recombinant enzyme was a truncated 70-kDa form (rPulAg′). The N-terminal sequence of purified rPulAg′ was found 252 amino acids downstream from the start site, presumably indicating that there was alternative translation initiation or N-terminal protease cleavage by E. coli. Interestingly, most of the physicochemical properties of rPulAg′ were identical to those of rPulAg. Both enzymes degraded pullulan via an endo-type mechanism, yielding maltotriose as the final product, and hydrolytic activity was also detected with amylopectin, starch, β-limited dextrins, and glycogen but not with amylose. This substrate specificity is typical of type I pullulanases. rPulAg was inhibited by cyclodextrins, whereas addition of mono- or bivalent cations did not have a stimulating effect. In addition, rPulAg′ was stable in the presence of 0.5% sodium dodecyl sulfate, 20% Tween, and 50% Triton X-100. The pullulanase from A. gottschalkii is the first thermoalkalistable type I pullulanase that has been described.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号