首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the absence of reductant substrates, and with excess H2O2, peroxidase (donor: hydrogen-peroxide oxidoreductase, EC 1.11.1.7) shows the kinetic behaviour of a suicide inactivation, H2O2 being the suicide substrate. From the complex (compound I-H2O2), a competition is established between two catalytic pathways (the catalase pathway and the compound III-forming pathway), and the suicide inactivation pathway (formation of inactive enzyme). A kinetic analysis of this system allows us to obtain a value for the inactivation constant, ki = (3.92 +/- 0.06) x 10(-3) x s-1. Two partition ratios (r), defined as the number of turnovers given by one mol of enzyme before its inactivation, can be calculated: (a) one for the catalase pathway, rc = 449 +/- 47; (b) the other for the compound III-forming pathway, rCoIII = 2.00 +/- 0.07. Thus, the catalase activity of the enzyme and, also, the protective role of compound III against an H2O2-dependent peroxidase inactivation are both shown to be important.  相似文献   

2.
3.
4.
A kinetic study has been carried out over the pH range of 2.63-9.37 for the reaction of horseradish peroxidase with hydrogen peroxide to form compound I of th;e enzyme. Analysis of the results, indicates that there are two kinetic influencing, ionizable groups on the enzyme with pKa values of 3.2 and 3.9. Protonation of these groups results in a decrease in the rate of reaction of the enzyme with H2O2. A previous study of the kinetics of cyanide binding to horseradish peroxidase (Ellis, W.D. & Dunford, H.B.: Biochemistry 7, 2054-2062 (1968)) has been extended to down to pH 2.55, and analysis of these results also indicates the presence of two kinetically important ionizable groups on the enzyme with pKa values of 2.9 and 3.9.  相似文献   

5.
Molecular mimics of the enzyme glutathione peroxidase (GPx) are increasingly being evaluated as redox active drugs. Their molecular mechanism of action parallels that of the native enzyme; however, a major distinction is that GPx mimics can use alternative thiol substrates to glutathione. This generic thiol peroxidase activity implies that it is necessary to assess a GPx mimic's recognition of a range of cellular thiols in order to determine its potential therapeutic effects. We report an electrochemical assay that, by measuring the rate of decrease of the peroxide substrate, allows the activity of GPx mimics to be directly compared against an array of thiols. The derived pseudo zero-order rate constants, k(obs), for representative GPx mimics range between 0 and 6.6min(-1) and can vary by more than an order of magnitude depending on the thiol electron donor. An additional advantage of the assay is that it enables synergistic interactions between GPx mimics and cellular proteins to be evaluated. Here we report that glutathione disulfide reductase, which is commonly used to evaluate GPx mimic activity, recognizes the GPx mimic ebselen as a substrate, increasing its apparent k(obs). Therefore, reports relying on glutathione disulfide reductase to evaluate GPx mimic activity may exaggerate drug antioxidant action.  相似文献   

6.
The reaction of Euphorbia characias latex peroxidase (ELP) with hydrogen peroxide as the sole substrate was studied by conventional and stopped-flow spectrophotometry. The reaction mechanism occurs via three distinct pathways. In the first (pathway I), ELP shows catalase-like activity: H2O2 oxidizes the native enzyme to compound I and subsequently acts as a reducing substrate, again converting compound I to the resting ferric enzyme. In the presence of an excess of hydrogen peroxide, compound I is still formed and further reacts in two other pathways. In pathway II, compound I initiates a series of cyclic reactions leading to the formation of compound II and compound III, and then returns to the native resting state. In pathway III, the enzyme is inactivated and compound I is converted into a bleached inactive species; this reaction proceeds faster in samples illuminated with bright white light, demonstrating that at least one of the intermediates is photosensitive. Calcium ions decrease the rate of pathway I and accelerate the rate of pathways II and III. Moreover, in the presence of calcium the inactive stable verdohemochrome P670 species accumulates. Thus, Ca2+ ions seem to be the key for all catalytic pathways of Euphorbia peroxidase.  相似文献   

7.
Sequential detections of different proteins on Western blot save time and precious samples. The main problem concerning reprobing is that stripping buffers can unbind both the antibody and the tested antigen. An original reprobing method has been set up based on horseradish peroxidase (HRP) inhibition after enhanced chemiluminescence detection. Instead of removing previously fixed antibodies as common stripping buffers do, the HRP activity linked to the secondary antibody is irreversibly inhibited by excess of hydrogen peroxide. A 15-min incubation allows one to perform at least five different sequential detections without losing significant amounts of blotted proteins.  相似文献   

8.
Abstract. In experiments where mung beans ( Vigna radiata L.) and peas ( Pisum sativum L.) have been pre-exposed to ethylene and afterwards treated with ozone, it has been shown that such ethylenepretreated plants may become more resistant to ozone. Further experiments with hydrogen peroxide (H2O2) and the herbicide paraquat suggest that this increased resistance against ozone depends on the stimulation of ascorbate peroxidase activity which provides cells with increased resistance against the formation of H2O2 which is also formed when plants are fumigated with ozone. These results explain why increased production of ethylene can be observed in plants exposed with ozone or other oxidative stress and clearly demonstrate that in plants, as well as animals, peroxidases protect cells against harmful concentrations of hydroperoxides.  相似文献   

9.
In an earlier work using tissue printing method, we found that the PR-10 stress protein was observed in leaf petiole of lupin seedling where lead was not detected (Przymusiński et al. 2001). These results suggested the presence of substance(s) mediating a signal transduction from directly affected cells to distant organs. As the hydrogen peroxide was found to be involved in signal transduction pathway, in the present paper, we analysed the level of H2O2 in the organ of lupin seedlings exposed to Pb2+ with spectrophotometric method and tissue printing technique. It was unequivocally demonstrated that the level of H2O2 and the activity of peroxidase increased in every tested organ of lead-treated lupin seedling. Both the level of H2O2 and the activity of POX were correlated with amount of Pb2+ ions in the cells (Przymusiński et al. 2001) and decreased in tissues more and more distant from the site of metal application. On the other hand, there was no correlation between the histological localization of H2O2 and peroxidase. Our results seem to confirm the hypothesis that H2O2 may act as a signalling substance involved in the induction of PR protein synthesis. It was indicated that there is high degree of correlation between the localization of H2O2 and the histological localization of PR-10 proteins (Przymusiński et al. 2001) in every tested organ of lupin seedling. The presented hypothesis is also supported by the fact that H2O2 and PR-10 proteins are detected in organs and tissues where Pb2+ was not found at all.  相似文献   

10.
Hydrogen peroxide, the oxidant substrate of peroxidase, is also an inactivating agent of this enzyme. The reductant substrates protect the enzyme from the inactivating process. A reaction mechanism is proposed, in which two competitive routes exist for Compound I of peroxidase; one catalytic and one inactivating. The analytical solution produced at the end of the reaction supports the proposed mechanism and shows the dependence between the number of turnovers of the enzyme (r) and the ratio of both substrates.  相似文献   

11.
Degradation of 2,6-dichlorophenol (2,6-DCP) was accomplished by oxidation catalyzed by Coprinus cinereus peroxidase. Immobilization of the enzyme in a polyacrylamide matrix enhanced DCP oxidation. Hydrogen peroxide, peroxidase's natural substrate, was produced enzymatically in situ to avoid peroxidase inactivation by its too high concentration. In the case of larger scale utilization, the method would also avoid direct handling of this hazardous reagent.  相似文献   

12.
Although cysteine cathepsins, including cathepsin K, are sensitive to oxidation, proteolytically active forms are found at inflammatory sites. Regulation of cathepsin K activity was analyzed in the presence of H2O2 to gain an insight into these puzzling observations. H2O2 impaired processing of procathepsin K and inactivated its mature form in a time- and dose-dependent mode. However, as a result of the formation of a sulfenic acid, as confirmed by trapping in the presence of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazol, approximately one-third of its initial activity was restored by dithiothreitol. This incomplete inactivation may partially explain why active cysteine cathepsins are still found during acute lung inflammation.  相似文献   

13.
Heterogeneous inhibition of horseradish peroxidase activity by cadmium   总被引:1,自引:0,他引:1  
Inhibition of horseradish peroxidase (HRP) activity by cadmium was studied under steady-state kinetic conditions after preincubation of the enzyme with millimolar concentrations of Cd(2+) for various periods of time. The H(2)O(2)-mediated oxidation of o-dianisidine by HRP was used to assess the enzymatic activity. Cd(2+) was found to be either a noncompetitive inhibitor of HRP or a mixed inhibitor of HRP depending both on the duration of incubation with HRP and on Cd(2+) concentration. Furthermore, for the same inhibition type, K(i) values dropped as incubation time increased. These results suggested that Cd(2+) would slowly bind to the enzyme and progressively induce conformational changes. Spectrophotometric analysis showed that indeed Cd(2+) altered the heme Soret absorption band on binding HRP and exhibited a K(d) which decreased as the incubation time of HRP with Cd(2+) increased. Hill plots suggested a cooperative binding of up to three Cd(2+) ions per molecule of HRP. Thus, Cd(2+) binding to HRP resulted in progressive inhibition of enzymatic activity with a change in the inhibition type as the number of Cd(2+) ions per HRP molecule increased. Results also illustrated the potential danger of long-term exposure to heavy metals, even for enzymes with low affinity for them.  相似文献   

14.
15.
Lin  Chuan Chi  Kao  Ching Huei 《Plant and Soil》2001,230(1):135-143
The changes in cell-wall peroxidase (POD) activity and H2O2 level in roots of NaCl-stressed rice seedlings and their correlation with root growth were investigated. Increasing concentrations of NaCl from 50 to 150 mM progressively reduced root growth and increased ionically bound cell-wall POD activity. NaCl had no effect on covalently bound cell-wall POD activities. The reduction of root growth by NaCl is closely correlated with the increase in H2O2 level. Exogenous H2O2 was found to inhibit root growth of rice seedlings. Since ammonium and proline accumulation are associated with root growth inhibition caused by NaCl, we determined the effects of NH4Cl or proline on root growth, cell-wall POD activity and H2O2level in roots. External application of NH4Cl or proline markedly inhibited root growth, increased cell-wall POD activity and increased H2O2 level in roots of rice seedlings in the absence of NaCl. An increase in cell-wall POD activity and H2O2 level preceded inhibition of root growth caused by NaCl, NH4Cl or proline. NaCl or proline treatment also increased NADH-POD and diamine oxidase (DAO) activities in roots of rice seedlings, suggesting that NADH-POD and DAO contribute to the H2O2 generation in the cell wall of NaCl- or proline-treated roots. NH4Cl treatment increased NADH-POD activity but had no effect on DAO activity, suggesting that NADH-POD but not DAO is responsible for H2O2 generation in cell wall of NH4Cl-treated roots.  相似文献   

16.
Although human cancers are widely treated with anthracycline drugs, these drugs have limited use because they are cardiotoxic. To clarify the cardiotoxic action of the anthracycline drug adriamycin (ADM), the inhibitory effect on succinate dehydrogenase (SDH) by ADM and other anthracyclines was examined by using pig heart submitochondrial particles. ADM rapidly inactivated mitochondrial SDH during its interaction with horseradish peroxidase (HRP) in the presence of H(2)O(2) (HRP-H(2)O(2)). Butylated hydroxytoluene, iron-chelators, superoxide dismutase, mannitol and dimethylsulfoxide did not block the inactivation of SDH, indicating that lipid-derived radicals, iron-oxygen complexes, superoxide and hydroxyl radicals do not participate in SDH inactivation. Reduced glutathione was extremely efficient in blocking the enzyme inactivation, suggesting that the SH group in enzyme is very sensible to ADM activated by HRP-H(2)O(2). Under anaerobic conditions, ADM with HRP-H(2)O(2) caused inactivation of SDH, indicating that oxidized ADM directly attack the enzyme, which loses its activity. Other mitochondrial enzymes, including NADH dehydrogenase, NADH oxidase and cytochrome c oxidase, were little sensitive to ADM with HRP-H(2)O(2). SDH was also sensitive to other anthracycline drugs except for aclarubicin. Mitochondrial creatine kinase (CK), which is attached to the outer face of the inner membrane of muscle mitochondria, was more sensitive to anthracyclines than SDH. SDH and CK were inactivated with loss of red color of anthracycline, indicating that oxidative activation of the B ring of anthracycline has a crucial role in inactivation of enzymes. Presumably, oxidative semiquinone or quinone produced from anthracyclines participates in the enzyme inactivation.  相似文献   

17.
We studied the effects of chitooligosaccharides (ChOS) with a mol wt of 5 kD, the degree of acetylation of 65%, and the concentrations from 0.01 to 100 mg/l on the content of hydrogen peroxide in incubation medium and the activity of anionic peroxidase (pI 3.5) in the segments of wheat (Triticum aestivum) coleoptiles. H2O2 production and peroxidase activity were found to be dependent on the ChOS concentration. After 3 h of incubation, the highest H2O2 level in medium was observed at 0.01 mg/l ChOS, whereas after 6h, at 1 mg/l. After 3 h of incubation, ChOS suppressed peroxidase activity. After 6 h of incubation, high ChOS concentrations enhanced peroxidase activity. IAA favored H2O2 accumulation in medium and suppressed anionic peroxidase. The involvement of ChOS in the control of the level of reactive oxygen species and anionic peroxidase activity in plant cells is suggested.Translated from Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 238–242.Original Russian Text Copyright © 2005 by Yusupova, Akhmetova, Khairullin, Maksimov.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

18.
The catalytic cycle of horseradish peroxidase (HRP; donor:hydrogen peroxide oxidoreductase; EC 1.11.1.7) is initiated by a rapid oxidation of it by hydrogen peroxide to give an enzyme intermediate, compound I, which reverts to the resting state via two successive single electron transfer reactions from reducing substrate molecules, the first yielding a second enzyme intermediate, compound II. To investigate the mechanism of action of horseradish peroxidase on catechol substrates we have studied the oxidation of both 4-tert-butylcatechol and dopamine catalysed by this enzyme. The different polarity of the side chains of both o-diphenol substrates could help in the understanding of the nature of the rate-limiting step in the oxidation of these substrates by the enzyme. The procedure used is based on the experimental data to the corresponding steady-state equations and permitted evaluation of the more significant individual rate constants involved in the corresponding reaction mechanism. The values obtained for the rate constants for each of the two substrates allow us to conclude that the reaction of horseradish peroxidase compound II with o-diphenols can be visualised as a two-step mechanism in which the first step corresponds to the formation of an enzyme-substrate complex, and the second to the electron transfer from the substrate to the iron atom. The size and hydrophobicity of the substrates control their access to the hydrophobic binding site of horseradish peroxidase, but electron density in the hydroxyl group of C-4 is the most important feature for the electron transfer step.  相似文献   

19.
Horseradish peroxidase (HRP) is a plant enzyme widely used in biotechnology, including antibody-directed enzyme prodrug therapy (ADEPT). Here, we showed that HRP is able to catalyze the autoxidation of acetylacetone in the absence of hydrogen peroxide. This autoxidation led to generation of methylglyoxal and reactive oxygen species. The production of superoxide anion was evidenced by the effect of superoxide dismutase and by the generation of oxyperoxidase during the enzyme turnover. The HRP has a high specificity for acetylacetone, since the similar beta-dicarbonyls dimedon and acetoacetate were not oxidized. As this enzyme prodrug combination was highly cytotoxic for neutrophils and only requires the presence of a non-human peroxidase and acetylacetone, it might immediately be applied to research on the ADEPT techniques. The acetylacetone could be a starting point for the design of new drugs applied in HRP-related ADEPT techniques.  相似文献   

20.
The reaction of ribose with horseradish peroxidase in the presence of H2O2 is accompanied by light emission. The detection of horseradish peroxidase Compound II (FeO2+) indicates that the enzyme participates in a normal peroxidatic cycle. Hydrogen peroxide converts horseradish peroxidase into Compound I (FeO3+) which in turn is converted into Compound II by abstracting a hydrogen atom from ribose forming a ribosyl radical. In aerated solutions oxygen rapidly adds to the ribosyl radical. Based on the spectral characteristics and the enhancement of the chemiluminescence by chlorophyll-a, xanthene dyes, D2O and DABCO, it is suggested that the excited species, apparently triplet carbonyls and 1O2, are formed from the bimolecular decay of the peroxyl radicals via the Russell mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号