首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
While neuronal desynchronization in the mu (10Hz) and beta (20Hz) frequency bands has long been known to be an EEG index of sensorimotor activity, this method has rarely been employed to study auditory perception. In the present study, we measured mu and beta event-related desynchronisation (ERD) while participants were asked to listen to vocal and triangle-wave melodies and to sing them back. Results showed that mu and beta ERD began earlier and were stronger when listening to vocal compared to non-vocal melodies. Interestingly, this humanness effect was stronger for less accurate singers. These results show that voice perception favors an early involvement of motor representations.  相似文献   

2.
Event-related synchronization (ERS) and desynchronization (ERD) in delta, theta1, theta2, alpha1, alpha2, beta1, beta2, beta3, and gamma were measured in 20 healthy right-handed subjects in response to IAPS stimuli with low, moderate, and high arousal reactions. The 62-channel EEG was simultaneously recorded while subjects viewed sequentially presented pictures and subjectively rated them after each presentation. The results show that emotionally loaded stimuli induced higher ERS in the delta, theta1, theta2, beta1, beta3, and gamma bands along with combined ERD and ERS effects in alpha2 band. As to hemispheric asymmetries, the effects of emotional arousal were restricted not only to right parietal (theta1 and theta2 ERS, alpha2 ERD) but also to left frontal (theta2 ERS) regions. In terms of affective chronometry, lower theta was the first to catch the affective salience of incoming stimuli (time window 0-600 ms after the stimulus input). For theta2, alpha2, and gamma bands this process was delayed to 600-1000 ms.  相似文献   

3.
This study investigated the neuromagnetic activities of self-paced finger lifting task and electrical median nerve stimulation in ten writer''s cramp patients and fourteen control subjects. The event-related de/synchronizations (ERD/ERS) of beta-band activity levels were evaluated and the somatosensory cortical activity levels were analyzed using equivalent-current dipole modeling. No significant difference between the patients and control subjects was found in the electrical stimulation-induced beta ERS and electrical evoked somatosensory cortical responses. Movement-related beta ERD did not differ between controls and patients. Notably, the amplitude of the beta ERS after termination of finger movement was significantly lower in the patients than in the control subjects. The reduced movement-related beta ERS might reflect an impairment of motor cortex deactivation. In conclusion, a motor dependent dysregulation of the sensorimotor network seems to be involved in the functional impairment of patients with writer''s cramp.  相似文献   

4.
The 62-channel EEG was recorded while control non-alexithymic (n = 21) and alexithymic (n = 20) participants viewed sequentially presented neutral, pleasant and unpleasant pictures and subjectively rated them after each presentation. The event-related synchronization (ERS) to these stimuli was assessed in the theta-1 (4-6 Hr) and theta-2 (6-8 Hz) frequency bands. The obtained findings indicate that alexithymia influences perception of only emotional stimuli. In the upper theta over anterior cortical regions alexithymia vs control individuals in response to both pleasant and unpleasant stimuli manifested decreased left hemisphere ERS in the early test period of 0-200 ms along with enhanced ERS in response to negative vs positive and neutral stimuli in the right hemisphere at 200-600 ms after stimulus onset. The findings provide the first EEG evidence that alexithymia construct, associated with a cognitive deficit in initial evaluation of emotion, is indexed by disrupted early frontal synchronization in the upper theta band that can be best interpreted to reflect disregulation during appraisal of emotional stimuli.  相似文献   

5.
The 62-channel EEG was recorded while low (LA, n = 18) and high (HA, n = 18) trait-anxious subjects viewed sequentially presented neutral, threatening and pleasant IAPS stimuli. Event-related desynchronization (ERD) and synchronization (ERS) were studied in the delta, theta1, theta2, alpha1, alpha2, beta1, beta2, beta3, and gamma frequency bands. Between-group differences, related to stimulus emotionality, were linked to theta1 and theta2 bands. In the low theta at prefrontal sites in the test period of 100-700 ms after stimulus onset HA exhibited relative predominance of the left hemisphere in response to both threatening and pleasant stimuli, whereas LA yielded larger right than left hemisphere activity in response to all the three stimulus categories. In the upper theta band between group differences were associated with posterior cortical regions and the test period of 0-1000 ms after stimulus onset: HA exhibited the largest ERS to threatening, whereas LA prompted the largest ERS to pleasant stimuli. Finally, according to the ERD data, in the alpha1 band HA participants in comparison with LA revealed enhanced left hemisphere activation in response to all the stimulus categories. It is suggested that as it is indexed by theta-ERS relative predominance of the left hemisphere at prefrontal sites along with the largest bilateral activity of posterior cortical regions (i.e., enhanced higher order visual processing) to threatening stimuli could form the basis for general bias towards threatening information in HA at the very early stages of emotional processing.  相似文献   

6.
Examining real-time cortical dynamics is crucial for understanding time perception. Using magnetoencephalography we studied auditory duration discrimination of short (<.5 s) versus long tones (>.5 s) versus a pitch control. Time-frequency analysis of event-related fields showed widespread beta-band (13-30 Hz) desynchronization during all tone presentations. Synthetic aperture magnetometry indicated automatic primarily sensorimotor responses in short and pitch conditions, with activation specific to timing in bilateral inferior frontal gyrus. In the long condition, a right lateralized network was active, including lateral prefrontal cortices, inferior frontal gyrus, supramarginal gyrus and secondary auditory areas. Activation in this network peaked just after attention to tone duration was no longer necessary, suggesting a role in sustaining representation of the interval. These data expand our understanding of time perception by revealing its complex cortical spatiotemporal signature.  相似文献   

7.
Up to now, mechanisms of neurovisceral integration are not clear. The main objective of the present investigation consisted in studying cortical concomitants of sympathetic activity during emotional perception. The 62-channel EEG and skin conductance response (SCR) were recorded while right-handed healthy participants (n-33) viewed sequentially presented neutral, pleasant, and unpleasant pictures. The event-related synchronization (ERS) and desynchronization were measured in different frequency bands. Relying on median split of SCR amplitudes elicited by the presented stimuli the participants were segregated into groups with low (SCR-) and high (SCR+) autonomous activity. In was revealed that group differences were associated with power changes in the low (4-6 Hz) theta band only. For both groups in the early test period (up to 1 s after stimulus onset), emotional vs. neutral stimuli induced larger theta-ERS over posterior cortical regions with greater impact on the right parieto-temporo-occipital regions. At the later phases (2-6 s after stimulus onset), only the SCR group retained emotion-related greater right hemisphere synchronization. It is concluded that the right parieto-temporo-occipital cortex mediates mechanisms of motivated attention and sympathetic activation.  相似文献   

8.
靶刺激和干扰刺激的不一致性会造成人类的行为冲突.特别地,连续的冲突情境能诱发大脑对冲突的适应.然而,目前的研究结果还不能清楚地阐释冲突适应的认知和神经机制.为了考察冲突适应的神经振荡过程,采用冲突观察实验范式,记录了15个健康成人被试在完成字母Flanker任务时的行为和脑电数据.对EEG数据进行时频分析,结果揭示了冲突适应的神经振荡机制.在观察任务中,对于不一致条件,α频带(9~13 Hz,480~980 ms)在左前额叶和中前区展现了显著的事件相关异步性(ERD);对于一致条件,α频带在这些区域展现了显著的事件相关同步性(ERS).在反应任务中,θ频带(6~8 Hz,50~1000 ms)的ERS在左前额叶和中前区表现为iI〈cI,反映了冲突适应.这些结果表明,冲突能诱发特定频带范围内大脑能量的调整,从而使大脑对冲突进行有效的控制.  相似文献   

9.
It is common knowledge among brain researchers that certain events, such as motor imagery, can elicit event-related synchronization/desynchronization (ERD/ERS) of neurons in the brain, and that these phenomena manifest themselves in terms of band power changes in brain signals. There are, however, also important phase related changes in the brain signals associated with ERD/ERS which we investigate here. We quantify for the first time the “delta-phase” component of the Complex Band Power (CBP) features introduced in [G. Townsend, B. Graimann, G. Pfurtscheller, A comparison of common spatial patterns with complex band power features in a four-class BCI Experiment, IEEE Trans. Biomed. Eng. 53 (2006) 642–651] and [G. Townsend, Brain Computer Interfaces: Phase Features and Post Processing Issues, Ph.D. Thesis, 2006, p. 97]. Although this component, which makes explicit use of phase, is known from these earlier studies to provide improved classification results in a brain–computer interface (BCI), this phenomenon has never been investigated purely in the context of a physiological phenomenon. The importance of this study is to fill this gap in our knowledge by providing an analysis and quantification of this new feature so that an improved understanding of its nature will allow further exploitation of this feature to further improve BCI systems. Given that the primary use of BCIs is as an assistive technology for the disabled, the importance of this work to society cannot be overstated. Changes in band power in the context of ERD/ERS have been investigated in the past using a visualization tool called an ERD/ERS map [B. Graimann, Movement-Related Patterns in ECoG and EEG: Visualization and Detection, Ph.D. Thesis, 2003, p. 107]. We present and discuss here for the first time, an equivalent tool called the delta-phase map used to visualize the occurrence of delta-phase in different frequency bands and over the time courses of motor imagery trials. In this study, the delta-phase feature is shown to be proportional to frequency and is quantified and presented in that context for clarity. It was found that the most prominent ERD activity occurring in the frequency bands studied here are correlated to the activity captured in the delta-phase maps. The underlying nature of ERD/ERS is explored based on evidence provided by the delta-phase feature.  相似文献   

10.
Measures of event-related band power such as event-related desynchronization (ERD) are conventionally analyzed within fixed frequency bands, although it is known that EEG frequency varies as a function of a variety of factors. The question of how to determine these frequency bands for ERD analyses is discussed and a new method is proposed. The rationale of this new method is to adjust the frequency bands to the individual alpha frequency (IAF) for each subject and to determine the bandwidth for the alpha and theta bands as a percentage of IAF. As an example, if IAF equals 12 Hz, the widths of the alpha and theta bands are larger as compared to a subject with an IAF of, e.g., only 8 Hz. The results of an oddball paradigm show that the proposed method is superior to methods that are based on fixed frequencies and fixed bandwidths. Received: 22 July 1997 / Accepted in revised form: 22 April 1998  相似文献   

11.
Recognition of noisy pictures of Arabic numerals was accompanied by an increase in EEG coherence in the frontal cortical regions, especially in the left hemisphere, and between the frontal and occipital areas in both left and right hemispheres. Coherence values decreased in the temporo-centro-occipital areas of both hemispheres. A correlation was found between the coherence pattern in the prestimulus period and the quality of subsequent activity. Correct recognition was preceded by left-side asymmetry of the EEG coherence. Before erroneous recognition, EEG coherence levels were higher than before a correct response, and the increase in coherence was widely generalized over the cortex (especially in the Δ, ?, and α1 frequency bands). The frequency of expression of an increased integral EEG coherence was higher before erroneous recognition than before a correct response. These changes in coherence were symmetrical.  相似文献   

12.
Brains were built by evolution to react swiftly to environmental challenges. Thus, sensory stimuli must be processed ad hoc, i.e., independent—to a large extent—from the momentary brain state incidentally prevailing during stimulus occurrence. Accordingly, computational neuroscience strives to model the robust processing of stimuli in the presence of dynamical cortical states. A pivotal feature of ongoing brain activity is the regional predominance of EEG eigenrhythms, such as the occipital alpha or the pericentral mu rhythm, both peaking spectrally at 10 Hz. Here, we establish a novel generalized concept to measure event-related desynchronization (ERD), which allows one to model neural oscillatory dynamics also in the presence of dynamical cortical states. Specifically, we demonstrate that a somatosensory stimulus causes a stereotypic sequence of first an ERD and then an ensuing amplitude overshoot (event-related synchronization), which at a dynamical cortical state becomes evident only if the natural relaxation dynamics of unperturbed EEG rhythms is utilized as reference dynamics. Moreover, this computational approach also encompasses the more general notion of a “conditional ERD,” through which candidate explanatory variables can be scrutinized with regard to their possible impact on a particular oscillatory dynamics under study. Thus, the generalized ERD represents a powerful novel analysis tool for extending our understanding of inter-trial variability of evoked responses and therefore the robust processing of environmental stimuli.  相似文献   

13.
脑电事件相关去同步化和同步化的神经元群模型   总被引:5,自引:0,他引:5  
利用基于丘脑-皮层网络的神经元群模型,研究被试者在某种认知状态下脑功能区的连接状态。模型包括三个模块,分别对应脑电头皮电极C3、Cz、C4记录的三个皮质区。模型外部输入包括用高斯白噪声表示的上行传入感受器信号、用直流偏移表示的皮质对丘脑的兴奋性输入、用指数衰减表示的来自脑千和前脑基底神经元的调制信号。模型输出的兴奋性神经元群的平均膜电位反映脑电记录的局部电位。改变模型输入,进行多次仿真试验并进行线性和非线性分析。研究结果显示:仿真输出信号的alpha频带功率谱有与实际脑机接口实验一致的事件相关去同步化和同步化现象;模型中功能相近的区域间有更强的耦合,随着耦合强度的增加,输出信号间的相关性和同步性均增加。  相似文献   

14.
Motor imagery (MI), sharing similar neural representations to motor execution, is regarded as a window to investigate the cognitive motor processes. However, in comparison to simple limb motor imagery, significantly less work has been reported on brain oscillatory patterns induced by compound limb motor imagery which involves several parts of limbs. This study aims to investigate differences of the electroencephalogram (EEG) patterns as well as cognitive process between simple limb motor imagery and compound limb motor imagery. Ten subjects participated in the experiment involving three tasks of simple limb motor imagery (left hand, right hand, feet) and three tasks of compound limb motor imagery (both hands, left hand combined with right foot, right hand combined with left foot). Simultaneous imagination of different limbs contributes to the activation of larger cortical areas as well as two estimated sources located at corresponding motor areas within beta rhythm. Compared with simple limb motor imagery, compound limb motor imagery presents a network with more effective interactions overlying larger brain regions, additionally shows significantly larger causal flow over sensorimotor areas and larger causal density over both sensorimotor areas and neighboring regions. On the other hand, compound limb motor imagery also shows significantly larger 10–11 Hz alpha desynchronization at occipital areas and central theta synchronization. Furthermore, the phase-locking value (PLV) between central and occipital areas of left/right hand combined with contralateral foot imagery is significantly larger than that of simple limb motor imagery. All these findings imply that there exist apparent intrinsic distinctions of neural mechanism between simple and compound limb motor imagery, which presents a more complex effective connectivity network and may involve a more complex cognitive process during information processing.  相似文献   

15.
Coherence function of the EEG in the bands of 8-13 (alpha rhythm) and 14-25 Hz (beta rhythm) was analyzed in 35 healthy adult subjects during formation and testing of a visual cognitive set to pictures of faces with different emotional expressions. The intra- and interhemispheric coherences of the potentials in the frontal area and coherence between the right frontal and temporal derivation were shown to increase at the stage of set actualization. The results of the analysis confirm the suggestion that the frontal cortical areas are predominantly involved in formation and actualization of the set to facial emotional expression. The conclusion is based on the idea that the spatial synchronization of the brain electrical potentials is an index of the functional relations between the corresponding cortical areas and their cooperative involvement in a certain kind of activity (their simultaneous activation).  相似文献   

16.
During preparation, execution and recovery from simple movements, the EEG power spectrum undergoes a sequence of changes. The power in the beta band (13-25 Hz) decreases during preparation and execution of movement, but during recovery it reaches a level higher than that in the reference period (not affected by the event). These effects are known as event-related beta desynchronization and beta rebound. The power in the gamma band (>30 Hz) increases significantly just before the onset of the movement. This effect is known as event-related gamma synchronization. There are numerous observations concerning these effects but the underlying physiological mechanisms and functional role are not clear. We propose a lumped computational model of a cortical circuit. The model consists only of a pyramidal and an interneuronal population. Each population represents averaged properties of constituting neurons. The output of the model represents a local field potential, with a power spectrum peak either in the beta or in the gamma band. The model elucidates the mechanisms of transition between slower and faster rhythms, gamma synchronization and beta desynchronization and rebound effects. The sufficient conditions to observe the effects in the model are changes of the external excitation level and of the connection strength between excitatory and inhibitory populations attributed to short-time plasticity. The present model presents the role of the pyramidal neurons to interneuron connection in the oscillatory behavior of the two populations. We conclude that the pronounced facilitation of the pyramidal to fast spiking interneuron connections, initiated by robust excitation of the motor cortex neurons, may be essential for the effect of beta rebound. Further experiments concerning short-time plasticity during behavioral tasks would be of great value in studies of functional local cortical circuits.  相似文献   

17.
Gender differences in the functional hemispheric organization during memorization of dichotically presented verbal information in the situation of focused or non-focused attention were studied. Analysis of EEG coherence reactivity in six frequency bands (4-30 Hz) showed that the focused attention to stimuli presented to one ear as compared to divided attention between both ears was accompanied by an increase in the interhemispheric interaction in the thetal frequency band between the frontal cortical areas in men and between the parietoccipital areas in women. In the betal band, the focused attention was associated with a contralateral increase in the intrahemispheric coherence in men, whereas no significant difference in the intrahemispheric coherence was found in women. On the basis of coherence changes in the thetal and betal bands depending on the attention conditions together with the obtained correlation between coherence reactivity and word-recall scores, it may be suggested that verbal memorization in men is associated, predominantly, with the regulation from the anterior system of attention and from the posterior system in women.  相似文献   

18.
第一和第二语言Stroop任务中EEG同步化分析   总被引:2,自引:0,他引:2  
采用基于多元自回归的瞬时EEG相干方法研究了十位汉英双语者执行Stroop任务时脑神经电活动及其功能皮层区的协同作用。结果显示:在β1(13-18Hz)频段,无论是汉语(第一语言,L1)还是英语(第二语言,L2)呈现的刺激,不一致条件的EEG相干值明显大于一致条件的EEG相干值,表明β1频段对刺激类型敏感;与L2相比,L1的Stroop任务中,额一顶区的相干值显著增强。EEG相干值反映了不同脑皮层间的相互作用强度。因此研究结果表明:判断和处理冲突信息(如Stroop的不一致条件)时脑功能皮层区之间的协同作用增强;相对于第二语言,第一语言处理过程中额一顶区之间的通信协作增加。  相似文献   

19.
Electroencephalograms (EEGs) were recorded in 19 standard derivations in 88 healthy subjects (students) in the state of rest with eyes open and during memorization (learning) of verbal bilingual semantic pairs (the Latin and Russian languages) and retrieval of information from memory (control). The estimates of EEG coherence in these states were compared for the following frequency bands: θ (4–7 Hz), α1 (7–10 Hz), α2 (10–13 Hz), β1 (13–18 Hz), β2 (18–30 Hz), and γ (30–40 Hz). Compared to the state of rest, the decrease in coherence in the pairs of derivations from the frontal and central cortical areas in all EEG frequency bands was the most pronounced for memorization, and the increase in coherence in the interhemispheric derivation pairs of the parietal-occipital region in most of the frequency bands was the most pronounced for retrieval. In addition, in the pairs formed by derivations from the parietal-occipital region with derivations from the frontal and central regions, retrieval is also characterized by an increase in coherence in the β2 and γ bands along with its decrease in the low-frequency ranges. The dynamics of EEG coherence, when comparing the states of memorization and retrieval, is more statistically significant in the interhemispheric and cross-hemispheric pairs of derivations than in the intrahemispheric pairs. The revealed topographic specificity of the dynamics of EEG coherence owing to the change of state is considered in terms of the notion on cognitive-specific forms of sustained goal-directed mental attention.  相似文献   

20.
To illuminate candidate neural working mechanisms of Mindfulness-Based Cognitive Therapy (MBCT) in the treatment of recurrent depressive disorder, parallel to the potential interplays between modulations in electro-cortical dynamics and depressive symptom severity and self-compassionate experience. Linear and nonlinear α and γ EEG oscillatory dynamics were examined concomitant to an affective Go/NoGo paradigm, pre-to-post MBCT or natural wait-list, in 51 recurrent depressive patients. Specific EEG variables investigated were; (1) induced event-related (de-) synchronisation (ERD/ERS), (2) evoked power, and (3) inter-/intra-hemispheric coherence. Secondary clinical measures included depressive severity and experiences of self-compassion. MBCT significantly downregulated α and γ power, reflecting increased cortical excitability. Enhanced α-desynchronisation/ERD was observed for negative material opposed to attenuated α-ERD towards positively valenced stimuli, suggesting activation of neural networks usually hypoactive in depression, related to positive emotion regulation. MBCT-related increase in left-intra-hemispheric α-coherence of the fronto-parietal circuit aligned with these synchronisation dynamics. Ameliorated depressive severity and increased self-compassionate experience pre-to-post MBCT correlated with α-ERD change. The multi-dimensional neural mechanisms of MBCT pertain to task-specific linear and non-linear neural synchronisation and connectivity network dynamics. We propose MBCT-related modulations in differing cortical oscillatory bands have discrete excitatory (enacting positive emotionality) and inhibitory (disengaging from negative material) effects, where mediation in the α and γ bands relates to the former.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号