首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suspensions of freshly isolated rat hepatocytes and renal tubular cells contain high levels of reduced glutathione (GSH), which exhibits half-lives of 3-5 and 0.7-1 h, respectively. In both cells types the availability of intracellular cysteine is rate limiting for GSH biosynthesis. In hepatocytes, methionine is actively converted to cysteine via the cystathionine pathway, and hepatic glutathione biosynthesis is stimulated by the presence of methionine in the medium. In contrast, extracellular cystine can support renal glutathione synthesis; several disulfides, including cystine, are rapidly taken up by renal cells (but not by hepatocytes) and are reduced to the corresponding thiols via a GSH-linked reaction sequence catalyzed by thiol transferase and glutathione reductase (NAD(P)H). During incubation, hepatocytes release both GSH and glutathione disulfide (GSSG) into the medium; the rate of GSSG efflux is markedly enhanced during hydroperoxide metabolism by glutathione peroxidase. This may lead to GSH depletion and cell injury; the latter seems to be initiated by a perturbation of cellular calcium homeostasis occurring in the glutathione-depleted state. In contrast to hepatocytes, renal cells metabolize extracellular glutathione and glutathione S-conjugates formed during drug biotransformation to the component amino acids and N-acetyl-cysteine S-conjugates, respectively. In addition, renal cells contain a thiol oxidase acting on extracellular GSH and several other thiols. In conclusion, our findings with isolated cells mimic the physiological situation characterized by hepatic synthesis and renal degradation of plasma glutathione and glutathione S-conjugates, and elucidate some of the underlying biochemical mechanisms.  相似文献   

2.
Macrophages consume cystine and generate approximately equivalent amounts of acid-soluble thiol. Stimulation of macrophages with bacterial lipopolysaccharide (LPS) or tumor necrosis factor (TNF) strongly augments the amount of thiol released into the culture supernatant. Cysteine constitutes most of the acid-soluble thiol. The intracellular glutathione level and the DNA synthesis activity in mitogenically stimulated lymphocytes are strongly increased by either exogenously added cysteine, or (syngeneic) macrophages. This cysteine dependency is observed even in the presence of relatively high extracellular cystine concentration as they occur in the blood plasma. The extracellular cysteine concentration also has a strong influence on the intracellular glutathione concentration, viability, and DNA synthesis of cycling T cell clones. Moreover, the cysteine concentration in the culture medium on Day 3 and Day 4 of a 5-day allogeneic mixed lymphocyte culture (i.e., in the late phase of incubation) has a strong influence on the generation of cytotoxic T cell activity, indicating that regulatory effects of cysteine are not restricted to the early phase of the blastogenic response. The inhibitory effect of cysteine starvation on the DNA synthesis of the T cell clones and on the activation of cytotoxic T lymphocytes can be explained essentially by the depletion of intracellular glutathione, since similar effects are observed after treatment with buthionine sulfoximine (BSO), a specific inhibitor of the glutathione biosynthesis. BSO has practically no influence, however, on the N alpha-benzyloxycarbonyl Ne-t-butyloxycarbonyl-L-lysine-thiobenzyl-ester (BLT)-esterase activity and hemolytic activity of the cell lysates from cytotoxic T cells against sheep red blood cells (perforin activity). Taken together, our experiments indicate that cysteine has a regulatory role in the immune system analogous to the hormone-like lymphokines and cytokines. It is released by macrophages at a variable and regulated rate and regulates immunologically relevant functions of lymphocytes in the vicinity.  相似文献   

3.
Confluent human umbilical vein endothelial (HUVE) cells were readily (within 1 h) depleted of their glutathione (GSH) by diethylmaleate (0.1-1.0 mM), but dose-dependent cell detachment was noted. Buthionine sulfoximine (BSO, 25 microM) depleted cell GSH with sigmoidal kinetics, showing an initial half-life of depletion of 4-6 h and greater than 95% depletion by 48 h without morphological changes to the cells. However, BSO-dependent depletion of cell GSH was only partially reversible by cell washing and reincubation with complete medium. Likewise, incubation of the cells in sulfur-free medium depleted cell GSH again without morphological changes to the cells. However, unlike with BSO, these cells readily resynthesized GSH when resupplied with complete medium, fresh plasma, or whole blood, with a characteristic overloading of cell GSH (up to 200%) by 12 h. By use of the sulfur-free medium, it was shown that both cystine and cysteine are effective precursors to GSH synthesis in HUVE cells in culture and that cystine is the most likely precursor in vivo. During cystine-supported resynthesis of GSH, high levels of cysteine accumulated in the cells (up to 10% of total soluble free thiol). Physiologically relevant concentrations of extracellular GSH were not as effective as cystine or cysteine in stimulating GSH biosynthesis, whereas nonphysiologically high (mM) concentrations resulted in substantial elevation of GSH levels above those of control cells in a BSO-insensitive manner. These findings provide a simple methodology for the manipulation of HUVE cell GSH in studies of endothelial-specific oxidant toxicity and the sulfur dependence of the biochemistry and turnover of GSH in these human cells.  相似文献   

4.
Blood plasma samples from HIV-1-infected persons contain elevated glutamate concentrations up to 6-fold the normal level and relatively low concentrations of acid-soluble thiol (i.e. decreased cysteine concentrations). The intracellular glutathione concentration in peripheral blood-mononuclear cells (PBMC) and monocytes from HIV antibody-positive persons are also significantly decreased. Therapy with azidothymidine (AZT) causes a substantial recovery of the plasma thiol levels; but glutamate levels remain significantly elevated and intracellular glutathione levels remain low. Cell culture experiments with approximately physiological amino-acid concentrations revealed that variations of the extracellular cysteine concentration have a strong influence on the intracellular glutathione level and the rate of DNA synthesis [( 3H]thymidine incorporation) in T cell clones and human and murine lymphocyte preparations even in the presence of several-fold higher cystine and methionine concentrations. Cysteine cannot be replaced by a corresponding increase of the extracellular cystine or methionine concentration. These experiments suggest strongly that the low cysteine concentration in the plasma of HIV-infected persons may play a role in the pathogenetic mechanism of the acquired immunodeficiency syndrome.  相似文献   

5.
Abstract. Previous studies have shown that intracellular glutathione, a ubiquitous intracellular thiol, is related to cell proliferation and that cysteine or its disulphide form, cystine, also induces cell proliferation. Cysteine is a thiol containing amino acid and a rate-limiting precursor of glutathione. Therefore, it is still unresolved as to whether the proliferative effect of cysteine or cystine is entirely mediated by a change in the intracellular glutathione status. The objective of this study was to delineate the relationship among cysteine/cystine (thereafter referred to as cyst(e)ine), intracellular glutathione and cell proliferation in the human colon cancer CaCo-2 cell line. CaCo-2 cells were cultured in cyst(e)ine-free Dulbecco's Modified Eagle Medium without serum, and treated with 200 µ m cysteine and/or 200–400 µ m cystine for 24 h. In the presence of DL-buthionine-[S, R]-sulfoximine (BSO), a glutathione synthesis inhibitor, exogenously administered cyst(e)ine did not change the intracellular glutathione content, but increased the intracellular cysteine as well as cystine level. Addition of exogenous cyst(e)ine following 5 m m BSO treatment significantly increased cell proliferation as measured by 3H-thymidine incorporation and protein content. Cell cycle analyses revealed that cyst(e)ine promoted cell progression from the G1 phase to the S phase. Correspondingly, cyst(e)ine treatment induced expression of cyclin D1 and phosphorylation of retinoblastoma protein (Rb). In conclusion, these data indicate that both cysteine and cystine have proliferative effects in CaCo-2 cells independent of an increase in intracellular glutathione. Induction of cyclin D1, phosphorylation of Rb, and subsequent facilitation of G1-to-S phase transition were involved in the proliferative effect of exogenous cyst(e)ine.  相似文献   

6.
Astrocytes provide cysteine to neurons by releasing glutathione   总被引:21,自引:0,他引:21  
Cysteine is the rate-limiting precursor of glutathione synthesis. Evidence suggests that astrocytes can provide cysteine and/or glutathione to neurons. However, it is still unclear how cysteine is released and what the mechanisms of cysteine maintenance by astrocytes entail. In this report, we analyzed cysteine, glutathione, and related compounds in astrocyte conditioned medium using HPLC methods. In addition to cysteine and glutathione, cysteine-glutathione disulfide was found in the conditioned medium. In cystine-free conditioned medium, however, only glutathione was detected. These results suggest that glutathione is released by astrocytes directly and that cysteine is generated from the extracellular thiol/disulfide exchange reaction of cystine and glutathione: glutathione + cystine<-->cysteine + cysteine-glutathione disulfide. Conditioned medium from neuron-enriched cultures was also assayed in the same way as astrocyte conditioned medium, and no cysteine or glutathione was detected. This shows that neurons cannot themselves provide thiols but instead rely on astrocytes. We analyzed cysteine and related compounds in rat CSF and in plasma of the carotid artery and internal jugular vein. Our results indicate that cystine is transported from blood to the CNS and that the thiol/disulfide exchange reaction occurs in the brain in vivo. Cysteine and glutathione are unstable and oxidized to their disulfide forms under aerobic conditions. Therefore, constant release of glutathione by astrocytes is essential to maintain stable levels of thiols in the CNS.  相似文献   

7.
The thiol redox status of cultured human bronchial fibroblasts has been characterized at various growth conditions using thiol-reactive monobromobimane, with or without the combination of dithiotreitol, a strong reducing agent. This procedure has enabled measurement of the cellular content of reduced glutathione (GSH), total glutathione equivalents, cysteine, total cysteine equivalents, protein sulfhydryls, protein disulfides, and mixed disulfides. Passage of cells with trypsin perturbs the cellular thiol homeostasis and causes a 50% decrease in the GSH content, whereas the total cysteine content is subsequently increased severalfold during cell attachment. During subsequent culture, transient severalfold increased levels of GSH, protein-bound thiols, and protein disulfides are reached, whereas the total cysteine content gradually declines. These changes in the redox balance of both low-molecular-weight thiols and protein-bound thiols correlate with cell proliferation and mostly precede the major growth phase. When the onset of proliferation is inhibited by maintenance of cells in medium containing decreased amounts of serum, the GSH content remains significantly increased. Subsequent stimulation of growth by addition of serum results in decreased GSH levels at the onset of proliferation. In thiol-depleted medium, proliferation is also inhibited, whereas GSH levels are increased to a lesser extent than in complete medium. Exposure to buthionine sulfoximine inhibits growth, prevents GSH synthesis, and results in accumulation of total cysteine, protein-bound cysteine, and protein disulfides. For extracellular cystine, variable rates of cellular uptake correlate with the initial increase in the total cysteine content observed following subculture and with the GSH peak that precedes active proliferation. The results strongly suggest that specific fluctuations in the cellular redox balance of both free low-molecular-weight thiols and protein sulfhydryls are involved in growth regulation of normal human fibroblasts.  相似文献   

8.
Antioxidative and prooxidative effects of quercetin on A549 cells   总被引:5,自引:0,他引:5  
Quercetin, a common plant polyphenol, has been reported to show both antioxidant and prooxidant properties. We studied the effects of quercetin on A549 cells in in vitro culture. We found that low concentrations of the flavonoid stimulated cell proliferation and increased total antioxidant capacity (TAC) of the cells; while higher concentrations of the flavonoid decreased cell survival and viability, thiol content, TAC and activities of superoxide dismutase, catalase and glutathione S-transferase. Quercetin decreased production of reactive oxygen species in the cells but produced peroxides in the medium. The cellular effects of quercetin are therefore complex and include both antioxidant effects and induction of oxidative stress due to formation of reactive oxygen species in the extracellular medium.  相似文献   

9.
Even moderate variations of the extracellular cysteine concentration were previously shown to affect T cell functions in vitro despite high concentrations of cystine. We therefore analyzed the membrane transport activities of T cells for cysteine and cystine, and the role of low molecular weight thiol in T cell-mediated host responses against a T cell tumor in vivo. A series of T cell clones and tumors including the highly malignant lymphoma L5178Y ESb and its strongly immunogenic variant ESb-D was found to express extremely weak transport activity for cystine but strong transport activity for cysteine. However, not all cells showed the expected requirement for cysteine (or 2-mercaptoethanol (2-ME)) in the culture medium. One group of clones and tumors including the malignant ESb-lymphoma did not respond to changes of extracellular cystine concentrations and was strongly thiol dependent. This group released only little acid soluble thiol (cysteine) if grown in cystine-containing cultures. The other T cell lines, in contrast, were able to maintain high intracellular GSH levels and DNA synthesis activity in cystine-containing culture medium without cystein or 2-ME and released substantial amounts of thiol. This group included the immunogenic ESb-D line. Additional thiol-releasing ESb variants were obtained by culturing large numbers of L5178Y ESb tumor cells in cultures without cysteine or 2-ME. All of these ESb variants showed a significantly decreased tumorigenicity and some of them induced cytotoxic and protective host responses even against the malignant ESb parent tumor. Taken together, our experiments suggest that the host response against a tumor may be limited in certain cases by the failure of the stimulator (i.e., the tumor) cell to deliver sufficient amounts of cysteine to the responding T cells.  相似文献   

10.
Glutamine (Gln) and keratinocyte growth factor (KGF) each stimulate intestinal epithelial cell growth, but regulatory mechanisms are not well understood. We determined whether Gln and KGF alter intra- and extracellular thiol/disulfide redox pools in Caco-2 cells cultured in oxidizing or reducing cell medium and whether such redox variations are a determinant of proliferative responses to these agents. Cells were cultured over a physiological range of oxidizing to reducing extracellular thiol/disulfide redox (Eh) conditions, obtained by varying cysteine (Cys) and cystine (CySS) concentrations in cell medium. Cell proliferation was determined by 5-bromo-2-deoxyuridine (BrdU) incorporation. Gln (10 mmol/l) or KGF (10 microg/l) did not alter BrdU incorporation at reducing Eh (-131 to -150 mV), but significantly increased incorporation at more oxidizing Eh (Gln at 0 to -109 mV; KGF at -46 to -80 mV). Cellular glutathione/glutathione disulfide (GSH/GSSG) Eh was unaffected by Gln, KGF, or variations in extracellular Cys/CySS Eh. Control cells largely maintained extracellular Eh at initial values after 24 h (-36 to -136 mV). However, extracellular Eh shifted toward a narrow physiological range with Gln and KGF treatment (Gln -56 to -88 mV and KGF -76 to -92 mV, respectively; P < 0.05 vs. control). The results indicate that thiol/disulfide redox state in the extracellular milieu is an important determinant of Caco-2 cell proliferation induced by Gln and KGF, that this control is independent of intracellular GSH redox status, and that both Gln and KGF enhance the capability of Caco-2 cells to modulate extremes of extracellular redox.  相似文献   

11.
The requirements and influence of thiols on the production of nitric oxide (NO) were examined in cultured porcine aortic endothelial cells. NO production was diminished when cells were pretreated with thiol-depleting agents (IC50: N-ethylmaleimide, 30 microM; 1-chloro-2,4-dinitrobenzene, 200 microM; diamide, 1.5 mM; diethyl maleate, 20 mM). The depletion of glutathione (45-99% loss at the various IC50 values) and protein thiols (3-25% loss at IC50) showed no consistent relationship to decreased NO production. The effects of the agents on NO production were not linked to altered sensitivity to the stimulant (calcium ionophore A23187; maximal effect at 10 microM), but roughly paralleled the appearance of cell damage (17-44% lactate dehydrogenase release at IC50). The decrease in NO production due to 1-chloro-2,4-dinitrobenzene was partially reversed by cysteine, dithioerythritol, and dihydrolipoate, whereas cystine partially reversed the decrease due to diamide or diethyl maleate. On the other hand, several thiols diminished NO production in control cells. Overall, alterations of NO production did not parallel the depletion or replenishment of either glutathione, protein thiol, or soluble thiol pools, and so the results argue against hypotheses that cellular thiols are either substrates or necessary cofactors in the pathway of NO synthesis in endothelial cells.  相似文献   

12.
The role of glutathione (GSH) in the differentiated state of insulin-secreting cells was studied using 2-mercaptoethanol as a means of varying intracellular GSH levels. 2-Mercaptoethanol (50 microM) caused a marked increase of GSH in two rat insulinoma cell lines, RINm5F and INS-1, the latter being dependent on the presence of 2-mercaptoethanol for survival in tissue culture. The effect of 2-mercaptoethanol on GSH was shared by other thiol compounds. Since in other cell types 2-mercaptoethanol is thought to act on cystine transport, thereby increasing the supply of cysteine for GSH synthesis, we have studied [35S]cystine-uptake in INS-1 cells. At equimolar concentrations to cystine, 2-mercaptoethanol caused stimulation of [35S]cystine-uptake. The effect persisted in the absence of extracellular Na+, probably suggesting the involvement of the Xc- carrier system. INS-1 cells with a high GSH level, cultured 48 h with 2-mercaptoethanol, displayed a lower cystine uptake than control cells with a low GSH content. The effect of variations of the GSH levels on short-term insulin release was studied. No alteration of glyceraldehyde-induced or KCl-induced insulin release in RINm5F cells was detected. In contrast, both in islets and in INS-1 cells, a high GSH level was associated with a slightly lower insulin release. In INS-1 cells the effect was more marked at low glucose concentrations, resulting in an improved stimulation of insulin secretion. On the other hand, in islets, a decrease in the incremental insulin release evoked by glucose was seen. As in other cell types, oxidized glutathione (GSSG) was less than 5% of total GSH, and in INS-1 cells no change in the GSH/GSSG ratio was detected during glucose-induced or 3-isobutyl-1-methylxanthine-induced insulin release. In conclusion, 2-mercaptoethanol-dependent INS-1 cells, as well as RINm5F cells and islets of Langerhans, display a low capacity in maintaining intracellular levels of GSH in tissue culture without extracellular thiol supplementation; 2-mercaptoethanol possibly acts by promoting cyst(e)ine transport; changes in GSH levels caused a moderate effect on the differentiated function of insulin-secreting cells.  相似文献   

13.
Supplementation of IVM medium with cysteamine, beta-mercaptoethanol, cysteine and cystine induced bovine oocyte glutathione (GSH) synthesis, but only the effect of cysteamine on the developmental competence of these oocytes was tested. During IVM of sheep oocytes, cysteamine but not beta-mercaptoethanol increased embryo development. However, it is not known how long the high intracellular oocyte GSH levels obtained after IVM with thiol compounds, can be maintained. Thus, the present study was carried out to evaluate the effects of supplementing maturation medium with 100 microM beta-mercaptoethanol, 0.6 mM cysteine and 0.6 mM cystine on 1) intracellular GSH level after IVM, 2) after IVF, 3) in 6 to 8-cell embryos and 4) on embryo development. In oocytes after IVM and in presumptive zygotes after IVF, intracellular GSH levels were significantly higher in the treated groups (P < 0.05). While, GSH content in 6 to 8-cell embryos was similar among treatment groups (P > 0.05). Differences in cleavage rates and the percentage of embryos that developed to morula and blastocyst stages were significantly higher (P < 0.05) for treated oocytes than for those matured in the control medium. We conclude from the results that the high intracellular GSH levels after induction of GSH synthesis in bovine IVM by thiol compounds remain during IVF and are still present at the beginning of IVC, improving developmental rates. Moreover, the results indicate that this metabolic pathway is an important component of the cytoplasmic maturation process that affects the subsequent steps of in vitro embryo production.  相似文献   

14.
Mouse lymphoma L1210 cells (NCI line) that have low ability to take up cystine became deficient in cellular cysteine and glutathione in normal culture media. The cells entered the resting state during culture when they were seeded at high cell densities. They remained viable and were mostly present in the G1 or G0 phase. In the growth-arrested state, the cellular glutathione content was one order of magnitude lower than in the exponentially growing phase in the presence of 2-mercaptoethanol. In the arrested state, DNA synthesis was almost inhibited, and RNA and protein synthesis decreased markedly. Transfer of the cells to medium containing 2-mercaptoethanol, which improves the utilization of cystine by these cells, produced the rapid recovery of RNA and protein synthesis. DNA synthesis slowly increased, reaching a maximum after a lag period.  相似文献   

15.
Redox mechanisms function in regulation of cell growth, and variation in redox state of plasma thiol/disulfide couples occurs in various physiologic conditions, including diabetes, chemotherapy, and aging. The present study was designed to determine whether a systematic variation in extracellular thiol/disulfide redox state (E(h)) over a range (0 mV to -150 mV) that occurs in human plasma altered proliferation of cultured cells. Experiments were performed with a human colon carcinoma cell line (Caco2), which grows slowly in the absence of serum and responds to peptide growth factors with increased rate of cell division. The extracellular redox states were established by varying concentrations of cysteine and cystine, maintaining constant pool size in terms of cysteine equivalents. Incorporation of 5-bromo-2-deoxyuridine (BrdU) was used to measure DNA synthesis and was lowest at the most oxidized extracellular E(h) (0 mV). Incorporation increased as a function of redox state, attaining a 100% higher value at the most reduced condition (-150 mV). Addition of insulin-like growth factor-1 (IGF-1) or epidermal growth factor (EGF) increased the rate of BrdU incorporation at more oxidizing redox conditions (0 to -80 mV) but had no effect at -150 mV. Cellular GSH was not significantly affected by variation in extracellular E(h). In the absence of growth factors, extracellular E(h) values were largely maintained for 24 h. However, IGF-1 or EGF stimulated a change in extracellular redox to values similar to that for cysteine/cystine redox in plasma of young, healthy individuals. The results show that extracellular thiol/disulfide redox state modulates cell proliferation rate and that this control interacts with growth factor signaling apparently independently of cellular glutathione.  相似文献   

16.
17.
Maintenance of isolated retinal Müller (glial) cells in glutamate-free solutions over 7 h causes a significant loss of their initial glutathione content; this loss is largely prevented by the blockade of glutamine synthesis using methionine sulfoximine (5 mM). Anoxia does not reduce the glutathione content of Müller cells when glucose (11 mM), glutamate and cystine (0.1 mM each) are present. In contrast, simulation of total ischemia (i.e., anoxia plus removal of glucose) decreases the glutathione levels dramatically, even in the presence of glutamate and cystine. Less severe effects are caused by high extracellular K+ (40 mM). Reactive oxygen species are generated in the retina under various conditions, such as anoxia, ischemia, and reperfusion. One of the crucial substances protecting the retina against reactive oxygen species is glutathione, a tripeptide constituted of glutamate, cysteine and glycine. It was recently shown that glutathione can be synthesized in retinal Müller glial cells and that glutamate is the rate-limiting substance. In this study, glutathione levels were determined in acutely isolated guinea-pig Müller cells using the glutathione-sensitive fluorescent dye monochlorobimane. The purpose was to find out how the glial glutathione content is affected by anoxia/ischemia and accompanying pathophysiological events such as depolarization of the cell membrane. Our results further strengthen the view that glutamate is rate-limiting for the glutathione synthesis in glial cells. During glutamate deficiency, as caused by e.g., impaired glutamate uptake, this amino acid is preferentially delivered to the glutamate-glutamine pathway, at the expense of glutathione. This mechanism may contribute to the finding that total ischemia (but not anoxia) causes a depletion of glial glutathione. In situ depletion may be accelerated by the ischemia-induced increase of extracellular K+, decreasing the driving force for glutamate uptake. The ischemia-induced lack of glutathione is particularly fatal considering the increased production of reactive oxygen species under this condition. Therefore the therapeutic application of exogenous free radical scavengers is greatly recommended.  相似文献   

18.
Glutathione (GSH) is a major antioxidant in the brain and ammonia neurotoxicity is associated with oxidative stress. In this study, we show that intracerebral administration of ammonium chloride (“ammonia”, final concentration 5 mM) via a microdialysis probe, increases by 80% the glutathione content in cerebral cortical microdialysates, and tends to increase its content in striatal microdialysates. Treatment with ammonia in vitro dose-dependently increased the glutathione content in cultured cerebral cortical astrocytes and a C6 glioma cell line. Significant effects have been observed after 1 h (astrocytes) or 3 h (C6 cells) of exposure and were sustained up to 72 h of incubation. A gradual decrease of the GSH/GSSG ratio noted during 3 h (astrocytes) or 24 h (C6 cells) of exposure, was followed by an partial recovery after 24 h of incubation, the latter phase possibly reflecting increased availability of de novo synthesized glutathione. In our hands, cystine, the precursor for astrocytic glutathione synthesis, was transported to astrocytes almost exclusively by system XAG, while in C6 cells the transport engaged both system xc (60% of uptake) and XAG (40% of uptake). Ammonia in either cell type stimulated cystine uptake without changing the relative contribution of the uptake systems. The results are consistent with the concept of increased astrocytic glutathione synthesis as an adaptive response of the brain to ammonia challenge, and emphasize upregulation of cystine uptake as a factor contributing to this response.  相似文献   

19.
Logarithmically growing human embryonic diploid cells started to die in cystine-free medium within 18 hours. Glutathione accounted for almost all the acid-solube sulfhydryl compound of the cells and cellular glutathione level decreased rapidly after cystine depletion. By adding vitamin E the cells survived over 6 days in cystine-free medium, though glutathione content of the cells was reduced to less than 1% of the normal level. Synthetic antioxidants had similar effect, and mechanism by which cells die in cystine-free medium was suggested.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号