首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Native collagen has a two-bonded structure   总被引:1,自引:0,他引:1  
An intermediate in the assembly of bacteriophage φX174 virions that sediments at 12 S and contains equimolar amounts of the capsid proteins coded by genes F and G was characterized. A functional B gene product seems necessary for the synthesis of this aggregate, that results from the joining of one 6 S particle (containing five molecules of G protein) to one 9 S particle (a pentamer of F protein). B protein is not found in the 12 S structure.  相似文献   

2.
The complex, multistep aggregation kinetic and structural behavior of human recombinant interleukin-1 receptor antagonist (IL-1ra) was revealed and characterized by spectral probes and techniques. At a certain range of protein concentration (12-27 mg/mL) and temperature (44-48°C), two sequential aggregation kinetic transitions emerge, where the second transition is preceded by a lag phase and is associated with the main portion of the aggregated protein. Each kinetic transition is linked to a different type of aggregate population, referred to as type I and type II. The aggregate populations, isolated at a series of time points and analyzed by Fourier-transform infrared spectroscopy, show consecutive protein structural changes, from intramolecular (type I) to intermolecular (type II) β-sheet formation. The early type I protein spectral change resembles that seen for IL-1ra in the crystalline state. Moreover, Fourier-transform infrared data demonstrate that type I protein assembly alone can undergo a structural rearrangement and, consequently, convert to the type II aggregate. The aggregated protein structural changes are accompanied by the aggregate morphological changes, leading to a well-defined population of interacting spheres, as detected by scanning electron microscopy. A nucleation-driven IL-1ra aggregation pathway is proposed, and assumes two major activation energy barriers, where the second barrier is associated with the type I → type II aggregate structural rearrangement that, in turn, serves as a pseudonucleus triggering the second kinetic event.  相似文献   

3.
Phospholipase C-γ1 (PLC-γ1) mediates cell adhesion and migration through an undefined mechanism. Here, we examine the role of PLC-γ1 in cell-matrix adhesion in a hanging drop assay of cell aggregation. Plcg1 Null (−/−) mouse embryonic fibroblasts formed aggregates that were larger and significantly more resistant to dissociation than cells in which PLC-γ1 is re-expressed (Null+ cells). Aggregate formation could be disrupted by inhibition of fibronectin interaction with integrins, indicating that fibronectin assembly may mediate aggregate formation. Fibronectin assembly was mediated by integrin α5β1 in both cell lines, while assays measuring fibronectin assembly revealed increased assembly in the Null cells. Null and Null+ cells exhibited equivalent fibronectin mRNA levels and equivalent levels of fibronectin protein in pulse-labeling experiments. However, levels of secreted fibronectin in the conditioned medium were increased in Null cells. The data implicates a negative regulatory role for PLC-γ1 in cell aggregation by controlling the secretion of fibronectin into the media and its assembly into fibrils.  相似文献   

4.
Prions consist of misfolded proteins that have adopted an infectious amyloid conformation. In vivo, prion biogenesis is intimately associated with the protein quality control machinery. Using electron tomography, we probed the effects of the heat shock protein Hsp70 chaperone system on the structure of a model yeast [PSI+] prion in situ. Individual Hsp70 deletions shift the balance between fibril assembly and disassembly, resulting in a variable shell of nonfibrillar, but still immobile, aggregates at the surface of the [PSI+] prion deposits. Both Hsp104 (an Hsp100 disaggregase) and Sse1 (the major yeast form of Hsp110) were localized to this surface shell of [PSI+] deposits in the deletion mutants. Elevation of Hsp104 expression promoted the appearance of this novel, nonfibrillar form of the prion aggregate. Moreover, Sse1 was found to regulate prion fibril length. Our studies reveal a key role for Sse1 (Hsp110), in cooperation with Hsp104, in regulating the length and assembly state of [PSI+] prion fibrils in vivo.  相似文献   

5.
Sedimentation velocity experiments showed that tetraalkylammonium salts, with alkyl chain lengths ranging from methyl to pentyl and in the concentration range from 0.02 to 0.16 m, decrease the aggregation of C-phycocyanin in sodium phosphate buffers, pH 6.0 and 7.0, I 0.1, at 23 °C.Tetrabutylammonium and tetrapentylammonium bromides and chlorides disaggregate 11S and 17S C-phycocyanin aggregates to produce a 6S subunit. The larger alkyl group produces the greater effect. An explanation for this effect would be that hydrophobic and possibly ionic interactions between the protein and the tetraalkylammonium cation effectively block assembly of the 6S to 11S aggregate. These salts may provide a novel means for the control of protein assembly.Recent studies on the effect of neutral aromatic compounds on C-phycocyanin aggregation were extended to saturated solutions of α- and β-naphthol, with concentrations of <0.003 and <0.006 m, respectively. Sedimentation velocity experiments and absorption spectroscopy suggest that the aggregation of C-phycocyanin is increased by naphthol binding to the protein.  相似文献   

6.
Bacteriophage P22 serves as a model for the assembly and maturation of other icosahedral double-stranded DNA viruses. P22 coat and scaffolding proteins assemble in vitro into an icosahedral procapsid, which then expands during DNA packaging (maturation). Efficient in vitro assembly makes this system suitable for design and production of monodisperse spherical nanoparticles (diameter ≈ 50 nm). In this work, we explore the possibility of controlling the outcome of assembly by scaffolding protein engineering. The scaffolding protein exists in monomer-dimer-tetramer equilibrium. We address the role of monomers and dimers in assembly by using three different scaffolding proteins with altered monomer-dimer equilibrium (weak dimer, covalent dimer, monomer). The progress and outcome of assembly was monitored by time-resolved X-ray scattering, which allowed us to distinguish between closed shells and incomplete assembly intermediates. Binding of scaffolding monomer activates the coat protein for assembly. Excess dimeric scaffolding protein resulted in rapid nucleation and kinetic trapping yielding incomplete shells. Addition of monomeric wild-type scaffold with excess coat protein completed these metastable shells. Thus, the monomeric scaffolding protein plays an essential role in the elongation phase by activating the coat and effectively lowering its critical concentration for assembly.  相似文献   

7.
The groE protein, which is involved in the morphogenesis of several bacteriophages, was isolated using a hybrid bacteriophage λ strain which overproduces it. The protein was characterized using biophysical methods, electron microscopy and digital image processing. We postulate that the gp groE complex contains 14 subunits in a cylindrical aggregate with 7-fold rotational symmetry. Possible mechanisms are discussed for the action of this complex in phage morphogenesis.  相似文献   

8.
The full-length human papillomavirus 16 major capsid protein L1 is expressed in Saccharomyces cerevisiae as virus-like particles (VLPs). However, yeast-expressed human papillomavirus 16 particles are irregular in shape and are prone to aggregate. When disassembled and reassembled, the resulting particles have improved stability and solubility. We have examined VLP dissociation and reassembly to define the important features of the assembly mechanism. We found that the VLPs rapidly disassemble at pH 8.2 and low ionic strength in the presence of low concentrations of reducing agents. The pH dependence of assembly kinetics and extent of assembly under reducing conditions were differentially sensitive to ionic strength. Assembly at pH 5.2 was very fast and led to heavily aggregated particles. This sort of kinetic trap is expected for overinitiated assembly. We observed that reassembly at pH 6.2, 7.2, and 8.2 yielded regular particles over a broad range of ionic strength. At these three pH values, assembly was quantitative at 1 M NaCl. At pH 7.2, much more than at pH 6.2 or pH 8.2, assembly decreased monotonically with ionic strength. The free energy of association ranged from − 8 to − 10 kcal/mol per pentamer. The effect of pH on assembly was further investigated by examining dissociation of reassembled particles. Though indistinguishable by negative stain electron microscopy, particles assembled at pH 7.2 disassembled slower than pH 5.2, 6.2, or 8.2 VLPs. We hypothesize that pH 7.2 assembly reactions lead to formation of particles with conformationally different interactions.  相似文献   

9.
We have estimated the effects of hyper-mannosylation of dockerin-type cellulase on cellulosome assembly by using Saccharomyces cerevisiae and 44 protein glycosylation mutants, because the heterologous protein displayed on yeast is assumed to be modified by yeast-specific hyper-mannosylation. First, we constructed the yeast strain CtminiCipA, which displays a heterologous scaffolding protein (miniCipA from Clostridium thermocellum) on its cell surface, and glycosylation mutants secreting a dockerin-type cellulase (Cel8Aenz-Cel48Sdoc: a fusion protein of the catalytic domain of C. thermocellum Cel8A and the dockerin domain of C. thermocellum Cel48S). Next, minicellulosomes were assembled by mixing the CtminiCipA strain and the dockerin-type cellulase secreted by each glycosylation mutant. By using an endoglucanase assay and flow cytometric analysis, we showed that some glycosylation mutants enhanced cellulosome assembly; in particular, disruption of glycosylation genes located in the endoplasmic reticulum showed intense enhancement. These findings suggest that inhibition of the core complex or precursor formation in protein glycosylation enhances cellulosome assembly, meaning that absence of glycosylation is more important for cellulosome assembly than reducing the size of the glycochain.  相似文献   

10.
During meiosis, homologous chromosomes pair at close proximity to form the synaptonemal complex (SC). This association is mediated by transverse filament proteins that hold the axes of homologous chromosomes together along their entire length. Transverse filament proteins are highly aggregative and can form an aberrant aggregate called the polycomplex that is unassociated with chromosomes. Here, we show that the Ecm11-Gmc2 complex is a novel SC component, functioning to facilitate assembly of the yeast transverse filament protein, Zip1. Ecm11 and Gmc2 initially localize to the synapsis initiation sites, then throughout the synapsed regions of paired homologous chromosomes. The absence of either Ecm11 or Gmc2 substantially compromises the chromosomal assembly of Zip1 as well as polycomplex formation, indicating that the complex is required for extensive Zip1 polymerization. We also show that Ecm11 is SUMOylated in a Gmc2-dependent manner. Remarkably, in the unSUMOylatable ecm11 mutant, assembly of chromosomal Zip1 remained compromised while polycomplex formation became frequent. We propose that the Ecm11-Gmc2 complex facilitates the assembly of Zip1 and that SUMOylation of Ecm11 is critical for ensuring chromosomal assembly of Zip1, thus suppressing polycomplex formation.  相似文献   

11.
The mechanisms linking deposits of insoluble amyloid fibrils to the debilitating neuronal cell death characteristic of neurodegenerative diseases remain enigmatic. Recent findings implicate transiently formed intermediates of mature amyloid fibrils as the principal toxic agent. Hence, determining which intermediate aggregates represent on-pathway precursors or off-pathway side branches is critical for understanding amyloid self-assembly, and for devising therapeutic approaches targeting relevant toxic species. We examined amyloid fibril self-assembly in acidic solutions, using the model protein hen egg-white lysozyme. Combining in situ dynamic light scattering with calibrated atomic-force microscopy, we monitored the nucleation and growth kinetics of multiple transient aggregate species, and characterized both their morphologies and physical dimensions. Upon incubation at elevated temperatures, uniformly sized oligomers formed at a constant rate. After a lag period of several hours, protofibrils spontaneously nucleated. The nucleation kinetics of protofibrils and the tight match of their widths and heights with those of oligomers imply that protofibrils both nucleated and grew via oligomer fusion. After reaching several hundred nanometers in length, protofibrils assembled into mature fibrils. Overall, the amyloid fibril assembly of lysozyme followed a strict hierarchical aggregation pathway, with amyloid monomers, oligomers, and protofibrils forming on-pathway intermediates for assembly into successively more complex structures.  相似文献   

12.
The interaction of TMV RNA with the disk aggregate of TMV protein at the initiation of assembly has been studied by using the techniques of RNA sequencing. The 5' end group has been identified, and shown not to be protected in the early stages of assembly from accessibility to nuclease digestion. A population of RNA fragments of average length 250 nucleotides, originating from a unique region of TMV RNA, is encapsidated by limited assembly, and sufficient sequence information is available to identify certain unusual features. The protected region does not contain highly reiterated simple repeating sequences, but may contain more complicated repeats. The length and complexity of the nucleation region may reflect adaptation to the efficient mediation of the conformational change from disk to helix of TMV protein, besides a requirement for binding to the disk, and this may be an important part of the mechanism of specificity in the nucleation of assembly.  相似文献   

13.
Visualization of specific molecules and their interactions in real time and space is essential to delineate how cellular dynamics and the signaling circuit are orchestrated. Spatial regulation of conformational dynamics and structural plasticity of protein interactions is required to rewire signaling circuitry in response to extracellular cues. We introduce a method for optically imaging intracellular protein interactions at nanometer spatial resolution in live cells, using photoactivatable complementary fluorescent (PACF) proteins. Subsets of complementary fluorescent protein molecules were activated, localized, and then bleached; this was followed by the assembly of superresolution images from aggregate position of sum interactive molecules. Using PACF, we obtained precise localization of dynamic microtubule plus-end hub protein EB1 dimers and their distinct distributions at the leading edges and in the cell bodies of migrating cells. We further delineated the structure–function relationship of EB1 by generating EB1-PACF dimers (EB1wt:EB1wt, EB1wt:EB1mt, and EB1mt:EB1mt) and imaging their precise localizations in culture cells. Surprisingly, our analyses revealed critical role of a previously uncharacterized EB1 linker region in tracking microtubule plus ends in live cells. Thus PACF provides a unique approach to delineating spatial dynamics of homo- or heterodimerized proteins at the nanometer scale and establishes a platform to report the precise regulation of protein interactions in space and time in live cells.  相似文献   

14.
Amyloidosis is a class of diseases caused by protein aggregation and deposition in various tissues and organs. In this paper, a yeast amyloid-forming protein Sup35 was used as a model for understanding amyloid fiber formation. The dynamics of amyloid formation by Sup35 were studied with scanning force microscopy. We found that: 1) the assembly of Sup35 fibers begins with individual NM peptides that aggregate to form large beads or nucleation units which, in turn, form dimers, trimers, tetramers and longer linear assemblies appearing as a string of beads; 2) the morphology of the linear assemblies differ; and 3) fiber assembly suggests an analogy to the aggregation of colloidal particles. A dipole assembly model is proposed based on this analogy that will allow further experimental testing.  相似文献   

15.
The percentage of T and B lymphocytes expressing a distinct cytoplasmic aggregate enriched in spectrin, ankyrin, and in several other proteins including protein kinase C greatly increases following various activation protocols. Members of the 70 kDa family of heat shock proteins (hsp70) temporarily bind to and stabilize unfolded segments of other proteins, a function apparently required for proper protein folding and assembly. Considering the multiprotein and dynamic nature of the lymphocyte aggregate, the possibility that hsp70 also might be associated with componets of this structure is considered here. Double immunofluorescence analysis indicates that hsp70 is a component of the lymphocyte aggregate and is coincident with spectrin in a subpopulation of freshly isolated, untreated lymphocytes from various murine tissues and in a T-lymphocyte hybridoma. When cell lysates of lymph node T cells are immunoprecipitated using an antibody against hsp70 or spectrin and then analyzed by Western blot utilizing the alternate antibody, it was found that hsp70 and spectrin coprecipitated with one another. Moreover, this coprecipitation could be abolished by addition of ATP. This latter observation was extended to lymphoid cells using a transient permeabilization procedure, and it was shown that addition of exogenous ATP results in the dissipation of the aggregate structure itself. Finally, conditions that result in T-cell activation and aggregate formation, i.e., treatment with the phorbol ester PMA or T-cell receptor cross-linking, also lead to the repositioning of hsp70 into the aggregate from a membrane/cytosolic locale in congruence with spectrin. These data suggest that hsp70 is an active component of the aggregate and that it may function in the interactions believed to occur in this unique activation-associated organelle. © 1995 Wiley-Liss, Inc.  相似文献   

16.
Recent studies using cell culture infection systems that recapitulate the entire life cycle of hepatitis C virus (HCV) indicate that several nonstructural viral proteins, including NS2, NS3, and NS5A, are involved in the process of viral assembly and release. Other recent work suggests that Ser-168 of NS2 is a target of CK2 kinase–mediated phosphorylation, and that this controls the stability of the genotype 1a NS2 protein. Here, we show that Ser-168 is a critical determinant in the production of infectious virus particles. Substitution of Ser-168 with Ala (or Gly) ablated production of infectious virus by cells transfected with a chimeric viral RNA (HJ3-5) containing core-NS2 sequences from the genotype 1a H77 virus within the background of genotype 2a JFH1 virus. An S168A substitution also impaired production of virus by cells transfected with JFH1 RNA. This mutation did not alter polyprotein processing or genome replication. This defect in virus production could be rescued by expression of wt NS2 in trans from an alphavirus replicon. The trans-complementing activities of NS2 from genotypes 1a and 2a demonstrated strong preferences for rescue of the homologous genotype. Importantly, the S168A mutation did not alter the association of core or NS5A proteins with host cell lipid droplets, nor prevent the assembly of core into particles with sedimentation and buoyant density properties similar to infectious virus, indicating that NS2 acts subsequent to the involvement of core, NS5A, and NS3 in particle assembly. Second-site mutations in NS2 as well as in NS5A can rescue the defect in virus production imposed by the S168G mutation. In aggregate, these results indicate that NS2 functions in trans, in a late-post assembly maturation step, perhaps in concert with NS5A, to confer infectivity to the HCV particle.  相似文献   

17.
A fluorescent, high-molecular-weight, lipid-protein aggregate was partially isolated from the cytosol fraction of rat liver by gel filtration on columns of Sepharose 4B or 6B. This aggregate was composed of approximately equal parts of protein and of lipid (mainly triglycerides), and was found to contain approximately 19% of the total liver vitamin A (predominantly as retinyl esters). Most of the liver cellular retinol-binding protein (CRBP) was found associated with the fluorescent, lipid-protein aggregate, along with much of the retinyl palmitate hydrolase activity present in the liver cytosol. The lipid-protein aggregate, and its several vitamin A-related components, all displayed an apparent hydrated density between 1.052 and 1.090 in the ultracentrifuge. CRBP in association with the lipid-protein aggregate was not immunoreactive in the CRBP radioimmunoassay. CRBP was, however, released from this aggregate and rendered immunoreactive by addition of detergents (e.g., Triton X-100). Three other lipid hydrolytic activities were also found in association with the lipid-protein aggregate, namely, triolein, cholesteryl oleate, and dipalmitoyl phosphatidylcholine hydrolase activities. These several hydrolytic activities were all found to be stimulated optimally by the addition of either sodium cholate or bovine serum albumin. With the information available, it is not clear whether this lipid-protein aggregate is formed in vitro, during liver homogenization, or whether it represents a specific lipoprotein with a significant functional role that exists in vivo in the liver cell.  相似文献   

18.
Many single-stranded RNA viruses self-assemble their protein containers around their genomes. The roles that the RNA plays in this assembly process have mostly been ignored, resulting in a protein-centric view of assembly that is unable to explain adequately the fidelity and speed of assembly in such viruses. Using bacteriophage MS2, we demonstrate here via a combination of mass spectrometry and kinetic modelling how viral RNA can bias assembly towards only a small number of the many possible assembly pathways, thus increasing assembly efficiency. Assembly reactions have been studied in vitro using phage coat protein dimers, the known building block of the T = 3 shell, and short RNA stem-loops based on the translational operator of the replicase cistron, a 19 nt fragment (TR). Mass spectrometry has unambiguously identified two on-pathway intermediates in such reactions that have stoichiometry consistent with formation of either a particle 3-fold or 5-fold axis. These imply that there are at least two sub-pathways to the final capsid. The flux through each pathway is controlled by the length of the RNA stem-loop triggering the assembly reaction and this effect can be understood in structural terms. The kinetics of intermediate formation have been studied and show steady-state concentrations for intermediates between starting materials and the T = 3 shell, consistent with an assembly process in which all the steps are in equilibrium. These data have been used to derive a kinetic model of the assembly reaction that in turn allows us to determine the dominant assembly pathways explicitly, and to estimate the effect of the RNA on the free energy of association between the assembling protein subunits. The results reveal that there are only a small number of dominant assembly pathways, which vary depending on the relative ratios of RNA and protein. These results suggest that the genomic RNA plays significant roles in defining the precise assembly sub-pathway followed to create the final capsid.  相似文献   

19.
The 2-oxoglutarate (2OG)/Fe2 +-dependent oxygenases (2OG oxygenases) are a large family of proteins that share a similar overall three-dimensional structure and catalyze a diverse array of oxidation reactions. The Jumonji C (JmjC)-domain-containing proteins represent an important subclass of the 2OG oxygenase family that typically catalyze protein hydroxylation; however, recently, other reactions have been identified, such as tRNA modification. The Escherichia coli gene, ycfD, was predicted to be a JmjC-domain-containing protein of unknown function based on primary sequence. Recently, YcfD was determined to act as a ribosomal oxygenase, hydroxylating an arginine residue on the 50S ribosomal protein L-16 (RL-16). We have determined the crystal structure of YcfD at 2.7 Å resolution, revealing that YcfD is structurally similar to known JmjC proteins and possesses the characteristic double-stranded β-helix fold or cupin domain. Separate from the cupin domain, an additional globular module termed α-helical arm mediates dimerization of YcfD. We further have shown that 2OG binds to YcfD using isothermal titration calorimetry and identified key binding residues using mutagenesis that, together with the iron location and structural similarity with other cupin family members, allowed identification of the active site. Structural homology to ribosomal assembly proteins combined with GST (glutathione S-transferase)-YcfD pull-down of a ribosomal protein and docking of RL-16 to the YcfD active site support the role of YcfD in regulation of bacterial ribosome assembly. Furthermore, overexpression of YcfD is shown to inhibit cell growth signifying a toxic effect on ribosome assembly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号