首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of bound sulfate groups and uronic acid residues of glycosaminoglycans on their behavior in chromatography on hydrophobic gel was examined by the use of several pairs of depolymerized chondroitin, chondroitin 4- or 6-sulfate, and dermatan sulfate having comparable degree of polymerization. Chromatography on Phenyl-Sepharose CL-4B in 4.0-2.0 ammonium sulfate containing 10m hydrochloric acid showed that: (a) The retention of depolymerized chondroitin 4- or 6-sulfate on the gel varies with the temperature, whereas the depolymerized samples of chondroitin and dermatan sulfate does not show a temperature dependence (this is not the case for hyaluronic acid or dextrans). (b) Among depolymerized samples of chondroitin and chondroitin 4- and 6-sulfate that have a similar degree of polymerization, chondroitin 4- and 6-sulfate showed the highest retention. (c) The retention on the gel of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate decreased in this order. The solubility in ammonium sulfate solution of the polysaccharides agreed well with the chromatographic behavior, suggesting that the fractionation by the hydrophobic gel largely depends on the ability to precipitate on the gel rather than on the hydrophobic interaction between gel and polysaccharide.  相似文献   

2.
The catabolism of 35S-labeled aggrecan and loss of tissue glycosaminoglycans was investigated using bovine articular cartilage explant cultures maintained in medium containing 10(-6) M retinoic acid or 40 ng/ml recombinant human interleukin-1alpha (rHuIL-1alpha) and varying concentrations (1-1000 microg/ml) of sulfated glycosaminoglycans (heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate) and calcium pentosan polysulfate (10 microg/ml). In addition, the effect of the sulfated glycosaminoglycans and calcium pentosan polysulfate on the degradation of aggrecan by soluble aggrecanase activity present in conditioned medium was investigated. The degradation of 35S-labeled aggrecan and reduction in tissue levels of aggrecan by articular cartilage explant cultures stimulated with retinoic acid or rHuIL-1alpha was inhibited by heparin and heparan sulfate in a dose-dependent manner and by calcium pentosan polysulfate. In contrast, chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate and keratan sulfate did not inhibit the degradation of 35S-labeled aggrecan nor suppress the reduction in tissue levels of aggrecan by explant cultures of articular cartilage. Heparin, heparan sulfate and calcium pentosan polysulfate did not adversely affect chondrocyte metabolism as measured by lactate production, incorporation of [35S]-sulfate or [3H]-serine into macromolecules by articular cartilage explant cultures. Furthermore, heparin, heparan sulfate and calcium pentosan polysulfate inhibited the proteolytic degradation of aggrecan by soluble aggrecanase activity. These results suggest that highly sulfated glycosaminoglycans have the potential to influence aggrecan catabolism in articular cartilage and this effect occurs in part through direct inhibition of aggrecanase activity.  相似文献   

3.
The synthesis of sulfated glycosaminoglycans was analysed in mouse fibroblasts during the transition from exponential growth to quiescent monolayers. 'Normal' Swiss 3T3 fibroblasts were compared with SV40 transformed 3T3, C6, ST1 and HeLa cells. p-Nitrophenyl-beta-D-xyloside, an artificial acceptor for glycosaminoglycans synthesis, was used as a probe. Exponentially growing 'normal' 3T3 cells synthesized both dermatan sulfate and chondroitin 4-sulfate, retaining the latter and releasing the former to the medium. Upon reaching quiescence these cells switched to retention of dermatan sulfate and release of chondroitin 4-sulfate. SV3T3 cells synthesized several fold less sulfated glycosaminoglycans than 'normal' 3T3. Even though SV3T3 cells are able to synthesize dermatan sulfate, they only retained chondroitin 4-sulfate, never switching to retention of dermatan sulfate. These results indicated that the transition from rapidly proliferating to resting G0 state in normal cells is accompanied by a switch from chondroitin-sulfate rich to dermatan-sulfate-rich cells. This switching was not observed with transformed cells, which are unable to enter the G0 state. Phenylxyloside caused a several fold increase in glycosaminoglycans released to the medium in both cell types, but it did not interfere with either growth rate or cell morphology. Particularly the phenylxyloside treatment led to an increase of more than 10-fold in production of dermatan and chondroitin sulfate by SV3T3, C6, ST1 and HeLa cells. This demonstrated that transformed cells have a high capacity for glycosaminoglycan synthesis. Analysis of enzymatic degradation products of glycosaminoglycans, synthesized in the presence of phenylxyloside, by normal and transformed cells, led to the finding of 4- and 6-sulfated iduronic and glucuronic acid-containing disaccharides. This result indicated that the xyloside causes the synthesis of a peculiar chondroitin sulfate/dermatan sulfate, in both normal and transformed cells.  相似文献   

4.
We compared the glycosaminoglycan content of human venous and arterial walls. The most abundant glycosaminoglycan in human veins is dermatan sulfate whereas chondroitin 4/6-sulfate is preponderant in arteries. The concentrations of chondroitin 4/6-sulfate and heparan sulfate are approximately 4.8- and approximately 2.5-fold higher in arteries than in veins whereas dermatan sulfate contents are similar in the two types of blood vessels. Normal and varicose saphenous veins do not differ in their glycosaminoglycan contents. It is known that certain glycosaminoglycan species from the arterial wall, mainly high-molecular-weight fractions of dermatan sulfate+chondroitin 4/6-sulfate have greater affinity for plasma LDL. These types of glycosaminoglycans can be identified on a LDL-affinity column. We now demonstrated that a similar population of glycosaminoglycan also occurs in veins, although with a lower concentration than in the arteries due to less chondroitin 4/6-sulfate with affinity for LDL. The concentrations of dermatan sulfate species, which interact with LDL, are similar in arteries and veins. The presence of these glycosaminoglycans with affinity to plasma LDL in veins raises interesting questions concerning the role of these molecules in the pathogenesis of atherosclerosis. Possibly, the presence of these glycosaminoglycans in the vessel wall are not sufficient to cause retention of LDL and consequently endothelial dysfunction, but may require additional intrinsic factors and/or the hydrodynamic of the blood under the arterial pressure.  相似文献   

5.
6.
Human skin fibroblast monolayer cultures from two normal men, three Type I diabetic men, and one Type I diabetic woman were incubated with [3H]glucosamine in the presence of diminished concentrations of sulfate. Although total synthesis of [3H]chondroitin/dermatan glycosaminoglycans varied somewhat between cell lines, glycosaminoglycan production was not affected within any line when sulfate levels were decreased from 0.3 mM to 0.06 mM to 0.01 mM to 0 added sulfate. Lowering of sulfate concentrations resulted in diminished sulfation of chondroitin/dermatan in a progressive manner, so that overall sulfation dropped to as low as 19% for one of the lines. Sulfation of chondroitin to form chondroitin 4-sulfate and chondroitin 6-sulfate was progressively and equally affected by decreasing the sulfate concentration in the culture medium. However, sulfation to form dermatan sulfate was preserved to a greater degree, so that the relative proportion of dermatan sulfate to chondroitin sulfate increased. Essentially all the nonsulfated residues were susceptible to chondroitin AC lyase, indicating that little epimerization of glucuronic acid residues to iduronic acid had occurred in the absence of sulfation. These results confirm the previously described dependency of glucuronic/iduronic epimerization on sulfation, and indicate that sulfation of the iduronic acid-containing disaccharide residues of dermatan can take place with sulfate concentrations lower than those needed for 6-sulfation and 4-sulfation of the glucuronic acid-containing disaccharide residues of chondroitin. There were considerable differences among the six fibroblast lines in susceptibility to low sulfate medium and in the proportion of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate. However, there was no pattern of differences between normals and diabetics.  相似文献   

7.
The glycosaminoglycan content in pus from patients with purulent pleurisy was studied. The uronic acid content rose in the first 4 hospital days, continued at a high level during hospital days 5-8, and then fell to a low level after 9 hospital days. Four glycosaminoglycans were isolated from the preparation; they were identified as hyaluronic acid, chondroitin 4-sulfate, chondroitin 6-sulfate, and dermatan sulfate. Hyaluronic acid was the main component and its relative proportion increased with increasing hospital days. The relative proportions of chondroitin 4-sulfate and chondroitin 6-sulfate were low during the first 4 day and during Days 10-21, whereas they were high during Days 5-9. The proportion of dermatan sulfate was high during the early hospital days, and thereafter decreased with increasing hospital days.  相似文献   

8.
Chondroitin sulfates, dermatan sulfate, heparan sulfate, heparin, keratan sulfate, and oligosaccharides derived from these sulfated glycosaminoglycans have been used for the measurement of sulfatase activity of rat skin extracts. Chromatographic fractionation of the extracts followed by specificity studies demonstrated the existence of five different sulfatases, specific for 1) the nonreducing N-acetylglucosamine 6-sulfate end groups of heparin sulfate and keratan sulfate, 2) the nonreducing N-acetylgalactosamine (or galactose) 6-sulfate end groups of chondroitin sulfate (or keratan sulfate), 3) the nonreducing N-acetylgalactosamine 4-sulfate end groups of chondroitin sulfate and dermatan sulfate, 4) certain suitably located glucosamine N-sulfate groups of heparin and heparan sulfate, or 5) certain suitably located iduronate sulfate groups of heparan sulfate and dermatan sulfate. Two arylsulfatases, one of which was identical in its chromatographic behaviors with the third enzyme described above, were also demonstrated in the extracts. These results taken together with those previously obtained from studies on human fibroblast cultures suggest that normal skin fibroblasts contain at least five specific sulfatases and diminished activity of any one may result in a specific storage disease.  相似文献   

9.
The physiological effects of the second messenger cAMP are displayed by cAMP-dependent protein kinase-medicated phosphorylation of specific target proteins which in turn control diverse cellular functions. We have determined this enzyme substrate phosphorylation in the presence of various glycosaminoglycans using a cAMP-dependent protein kinase isolated from rat liver. The results indicate that sulfated and unsulfated polysaccharides are able to inhibit phosphorylation of histone type IIa catalysed by cAMP-dependent protein kinase. Based on their impact upon substrate phosphorylation, glycosaminoglycans can be divided into three groups: group I with the highest inhibitory effect: dermatan sulfate and heparan sulfate; group II: chondroitin 4-sulfate and group III with the lowest inhibitory effect: chondroitin 6-sulfate, keratan sulfate and hyaluronic acid.  相似文献   

10.
Platelet heparin neutralizing activity (platelet factor 4) is released from human blood platelets by thrombin in the form of a high molecular weight proteoglycan-platelet factor 4 complex. This complex was partially purified by isoelectric precipitation and gel filtration. At high ionic strength (I = 0.75) the complex dissociates into the active component (mol. wt 29000) and the proteoglycan carrier. The components were separated by gel filtration and the proteoglycan further purified by Na2SO4 treatment. The molecular weight of the purified carrier was 59000. The carbohydrate moieties of the proteoglycan isolated after papain digestion and ion-echange chromatography were shown to consist of chondroitin 4-sulfate by chemical, physical and electrophoretic analysis. The multichain proteoglycan consists of four chondroitin 4-sulfate chains (mol. wt 12000) in covalent linkage to a single polypeptide. The molecular weight (350000) of the fully saturated proteoglycan carrier suggests that 4 moles of platelet factor 4 are bound per mole of proteoglycan and that the carrier occurs in the form of a dimer consisting of 8 moles of platelet factor 4 and 2 moles of proteoglycan. The isolated chondroitin 4-sulfate moieties combine with platelet factor 4 at a binding ratio of one mole of platelet factor 4 per carbohydrate chain. Heparin completely displaces platelet factor 4 from both the saturated proteoglycan and chondroitin 4-sulfate complexes. Heparitin sulfate, dermatan sulfate and chondroitin 6-sulfate also combine stoichiometrically with platelet factor 4 and are displaced by equimolar amounts of heparin. Hyaluronic acid did not combine with platelet factor 4. The relative binding capacities of glycosaminoglycans for platelet factor 4 were shown to be: heparin (100), heparitin sulfate (75), chondroitin 4-sulfate (50), dermatan sulfate (50), chondroitin 6-sulfate (50), and hyaluronic acid (o). Chondroitin 4-sulfate was identified as the major glycosaminoglycan in all platelet subcellular fractions; in addition, the soluble fraction contains a minor amount of hyaluronic acid. Subcellular distribution studies revealed that 55% of both the proteoglycan carrier and platelet factor 4 activity were localized in the “granule rich” fraction. This data together with the low recovery of both these components in the membrane fraction, suggest that they occur together as a complex within specific granules and are released in this form under physiologic conditions.  相似文献   

11.
Aggregated complexes of acridine orange with dermatan and chondroitin sulfates have been studied in aqueous solution by absorption and circular dichroism spectroscopy. Aggregation was found to be favored at high-dye and glycosaminoglycan concentrations, and in solutions where anionic sites of the glycosaminoglycan are effectively complexed with dye. The aggregates can be removed from solution by centrifugation at 27,000 × g for 1 hr or by filtration through a membrane containing pores of 0.1 μm diameter. The aggregated complexes exhibit large-magnitude-ellipticity circular dichroism bands. In addition, the circular dichroism spectrum observed for a solution containing aggregated acridine orange/chondroitin 4-sulfate complexes is nearly a mirror image of that obtained for aggregated acridine orange/dermatan sulfate complexes. Cooperative alterations (sharp transitions) in the circular dichroism ellipticities of the aggregates occur at elevated temperatures, and result in spectroscopically distinct aggregates upon cooling. The circular dichroism properties and temperature effects are attributed to a supramolecular ordering of acridine orange/glycosaminoglycan complexes within the aggregates, which can be reorganized to a more stable form at high temperatures. Mixed aggregates, containing two different glycosaminoglycans, can be formed. The circular dichroism properties of the mixed aggregates also indicate the existence of long-range order in the arrangement of the complexes. Mixed aggregates containing dermatan sulfate and either chondroitin 4-sulfate or chondroitin 6-sulfate resemble pure dermatan sulfate aggregates in circular dichroism characteristics.  相似文献   

12.
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), which transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 6 of N-acetylgalactosamine 4-sulfate in chondroitin sulfate and dermatan sulfate, was purified 19,600-fold to apparent homogeneity from the squid cartilage. SDS-polyacrylamide gel electrophoresis of the purified enzyme showed a broad protein band with a molecular mass of 63 kDa. The protein band coeluted with GalNAc4S-6ST activity from Toyopearl HW-55 around the position of 66 kDa, indicating that the active form of GalNAc4S-6ST may be a monomer. The purified enzyme transferred sulfate from PAPS to chondroitin sulfate A, chondroitin sulfate C, and dermatan sulfate. The transfer of sulfate to chondroitin sulfate A and dermatan sulfate occurred mainly at position 6 of the internal N-acetylgalactosamine 4-sulfate residues. Chondroitin sulfate E, keratan sulfate, heparan sulfate, and completely desulfated N-resulfated heparin were not efficient acceptors of the sulfotransferase. When a trisaccharide or a pentasaccharide having sulfate groups at position 4 of N-acetylgalactosamine was used as acceptor, efficient sulfation of position 6 at the nonreducing terminal N-acetylgalactosamine 4-sulfate residue was observed.  相似文献   

13.
Aggregation of hydroxyapatite crystals   总被引:1,自引:0,他引:1  
A system to study the aggregation of hydroxyapatite crystals was developed. The effect of several factors (Ca2+ × Pi product, Ca2+ /Pi ratio, pH, and various substances) were tested. Pb2+, Zn2+, Mg2+ and methyleneblue had only small effects; citrate inhibited aggregation. Pyrophosphate was a strong inhibitor and the diphosphonates disodium ethane-1-hydroxy-1,1-diphosphonate and disodium duchloromethylene diphosphonate were even more potent. The monophosphonate pentanemonophosphonate had no effect. Potent inhibition also occurred with glycosaminoglycans: heparin > hyaluronic acid > dermatan sulfate > chondroitin 4-sulfate > chondroitin 6-sulfate. Urine also showed high inhibitory activity. The inhibition of heparin but not that of hyaluronic acid, PPi or urine was abolished by egg white lysozyme. The effects described might be relevant in the normal mineralization process as well as in the mechanisms leading to pathological calcification, such as urinary stone formation.  相似文献   

14.
Hot-water extraction of defatted skin of the fish Labeo rohita yielded a viscous, glycoprotein solution. This was extensively digested with pronase, and then treated with trichloroacetic acid to remove the proteins and nucleic acids. On precipitation with ethanol, the solution furnished a mixture of several glycosaminoglycans which was fractionated by complexing with cetylpyridinium chloride and alkaline copper solution to yield three pure fractions. From analyses, specific rotation values, i.r. data, and enzymic studies, the three fractions were fully characterized to be dermatan sulfate, chondroitin 4-sulfate, and hyaluronic acid. The viscosity-average molecular weight of dermatan sulfate was found to be 2.3 x 104, and that of hyaluronic acid, 1.78 x 105.  相似文献   

15.
Incorporation of (35S)-sulfate into glycosaminoglycans (GAG) of toadfish islets of Langerhans in vitro was examined. (35S)-sulfated GAG were synthesized by a component of the microsomal fraction, and subsequently transferred to the secretion granules, mitochondria and nuclei. The predominant type of GAG synthesized was heparan sulfate, but chondroitin 4- and 6-sulfate and dermatan sulfate were also found.  相似文献   

16.
The effects of three glycosaminoglycans (chondroitin 6-sulfate, dermatan sulfate, and hyaluronate) and a proteoglycan on the kinetics of fibril formation and on the thermal stability of the in vitro assembled collagen fibrils, under physiological conditions of ionic strength and pH, have been examined. The glycosaminoglycans were found to influence the kinetics of collagen precipitation but not the thermal stability of the in vitro assembled fibrils. The proteoglycan was found to influence the kinetics of collagen precipitation and to reduce the thermal stability of the in vitro assembled fibrils. Comparison of the interaction occurring between chondroitin 6-sulfate and collagen under acidic conditions (0.05M acetic acid) and that occurring under physiological conditions showed that markedly different interaction products were formed under the different conditions.  相似文献   

17.
18.
In the plasma kallikrein-kinin system, it has been shown that when plasma prekallikrein (PK) and high molecular weight kininogen (HK) assemble on endothelial cells, plasma kallikrein (huPK) becomes available to cleave HK, releasing bradykinin, a potent mediator of the inflammatory response. Because the formation of soluble glycosaminoglycans occurs concomitantly during the inflammatory processes, the effect of these polysaccharides on the interaction of HK on the cell surface or extracellular matrix (ECM) of two endothelial cell lines (ECV304 and RAEC) was investigated. In the presence of Zn+2, HK binding to the surface or ECM of RAEC was abolished by heparin; reduced by heparan sulfate, keratan sulfate, chondroitin 4-sulfate or dermatan sulfate; and not affected by chondroitin 6-sulfate. By contrast, only heparin reduced HK binding to the ECV304 cell surface or ECM. Using heparin-correlated molecules such as low molecular weight dextran sulfate, low molecular weight heparin and N-desulfated heparin, we suggest that these effects were mainly dependent on the charge density and on the N-sulfated glucosamine present in heparin. Surprisingly, PK binding to cell- or ECM-bound-HK and PK activation was not modified by heparin. However, the hydrolysis of HK by huPK, releasing BK in the fluid phase, was augmented by this glycosaminoglycan in the presence of Zn2+. Thus, a functional dichotomy exists in which soluble glycosaminoglycans may possibly either increase or decrease the formation of BK. In conclusion, glycosaminoglycans that accumulated in inflammatory fluids or used as a therapeutic drug (e.g., heparin) could act as pro- or anti-inflammatory mediators depending on different factors within the cell environment.  相似文献   

19.
Cartilage chondroitin sulfate isolated directly from rat rib or from in vitro culture of rat rib constitutes a population of glycosaminoglycans which is heterogeneous with respect to size, degree of sulfation and content of N-acetylgalactosamine 4-sulfate. Fractions elute from Dowex-1 in order of increasing molecular size and degree of sulfation up to a certain limit. Unsulfated disaccharides and disulfated disaccharides are present in both the undersulfated chondroitin sulfate fractions and in the average or more representative chondroitin sulfate. A small content of disaccharide 6-sulfate is present in all fractions and appears to be an integral part of the chondroitin 4-sulfate molecules. Rat gastric chondrosulfatase hydrolyzes sulfate preferentially from the larger chondroitin 4-sulfate molecules, and the sulfate is removed primarily from the disaccharide 4-sulfate units.  相似文献   

20.
Characteristics of the 1H-n.m.r. spectra of heparin admixed with other glycosaminoglycans are described with respect to the identification of the latter as possible contaminants of pharmaceutical heparins. Chemical shift differences are sufficiently large, particularly with the aid of resolution enhancement, to allow for the detection of dermatan sulfate, chondroitin 4- or 6-sulfate, hyaluronic acid, or heparan sulfate as a minor constituent in the presence of heparin. The acetamidomethyl resonance region (delta 1.95-2.15) is especially useful in this context, both for identification and quantitative estimation. Whereas dermatan sulfate is a common contaminant of pharmaceutical heparin preparations, in some instances comprising 10-15 percent of the polymer mixture, the other glycosaminoglycans, by contrast, were not detected in such preparations. Two-dimensional heterocorrelation and homo-correlation n.m.r. experiments have provided 1H- and 13C-chemical shift data that complete or verify (or both) previous information available for heparin, dermatan sulfate, and chondroitin 4- and 6-sulfates (chondroitins A and C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号