首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Saccharomyces cerevisiae the uptake of cytosine, uracil and uridine is mediated by three permeases. Using mutants blocked in the metabolic utilization of these three compounds we were able to study their specific uptake. Cytosine and uridine show simple saturation kinetics, whereas uracil uptake is a biphasic process. A comparison of the effects of several inhibitors of energy metabolism on these uptake systems was made. Striking differences were found. 2,4-Dinitrophenol (10?3 M) and NaN3 (10?2 M) inhibit the entry of the three compounds to similar extent, but chlorhexidine (10?5 M) and Dio 9 (50 μg/ml) which are ATPase inhibitors in vitro strongly impaired cytosine and uridine entry and remained without effect on uracil uptake.We provisionally conclude that these systems may be energized by different mechanisms. In the case of cytosine and uridine permease, a membrane ATPase is possibly involved in the process of energetic coupling whereas this does not seem to be so for uracil.  相似文献   

2.
Abstract: Adenosine transport inhibitors as enhancers of extracellular levels of endogenous adenosine would, presumably, only be effective if, for example, (1) the inhibitors block influx to a greater degree than efflux (release) of intracellular adenosine or (2) the inhibitors block equally well the influx and efflux of adenosine, but significant amounts of adenosine are formed as a result of dephosphorylation of released adenine nucleotides. Limited information is available regarding the directional symmetry of adenosine transporters in neural cells. Using rat brain crude P2 synaptosomal preparations preloaded with l -[3H]adenosine, our objectives here were to determine (1) if l -[3H]adenosine, a substrate for adenosine transporters that is more metabolically stable than physiological d -adenosine, was being released from synaptosomal preparations, (2) the optimal conditions necessary to observe the release, and (3) the degree to which this release was mediated by efflux through bidirectional nucleoside transporters. l -[3H]Adenosine release was found to be concentration and time dependent, temperature sensitive, and linear with synaptosomal protein. l -[3H]Adenosine release was inhibited dose-dependently by dipyridamole, nitrobenzylthioinosine, and dilazep; at concentrations of 100 µM inhibition was at least 40% for dipyridamole, 52% for nitrobenzylthioinosine, and 49% for dilazep. After loading with l -[3H]adenosine alone or l -[3H]adenosine plus unlabeled l -adenosine, d -adenosine, or uridine, l -[3H]-adenosine release was inhibited 42% by l -adenosine, 69% by uridine, and 81% by d -adenosine. The inhibition of l -[3H]adenosine release from the synaptosomal preparations by substrates for or inhibitors of nucleoside transporters suggests that a portion of the release was mediated by nucleoside transporters. This experimental system may prove useful for evaluating the effects of pharmacological agents on bidirectional transport of adenosine.  相似文献   

3.
4.
The time course of uridine uptake by eggs and embryos of the tunicate Ascidia callosa was studied using 5-min pulses of [3H]uridine at intervals from the unfertilized egg to the 16-cell embryo. The unfertilized egg is permeable to uridine, but 5 min after fertilization uptake begins to drop, reaching a minimum of 30% of the unfertilized rate about 30 min after fertilization. At 45 min after fertilization, permeability begins to increase, reaching a plateau about 3 hr after fertilization at the two-cell stage. The initial decrease in permeability occurs at first polar body production; the increase at 45 min is coincident with the formation of the second polar body. Substrate concentration experiments up to 200 μM show strict concentration dependence for uridine uptake. The inhibitors p-chloromercuribenzoate (PCMB), dinitrophenol (DNP), and thymidine have little, if any effect on permeability. Cold (?1°C) and Na+-free sea water inhibit uptake 60% during all three developmental stages. The changes in permeability may be indicative of temporary reorganization of the plasma membrane during the fertilization-initiated completion of meiosis.  相似文献   

5.
The amounts of two growth inhibitors in diffusates from illuminatedhalves of phototropically stimulated oat (Avena sativa L.)coleoptile tips were larger than those from shaded halves. The less polarinhibitor was isolated from diffusates from oat coleoptile tips illuminatedwithblue light, and identified as uridine from 1H NMR spectrum. Thedistribution of endogenous uridine in diffusates from the illuminated andshadedsides of coleoptile tips unilaterally exposed to blue light for 3, causing a first positive phototropic curvature, and fromdark-control tips, was determined using a physicochemical assay. The uridineconcentration was significantly higher in the diffusates from the illuminatedside than in those from the shaded side and the dark-control. Uridine inhibitedthe growth of etiolated oat coleoptile tips at concentrations of 30 and above. These results suggest that uridine plays a role inthe phototropism of oat coleoptiles.  相似文献   

6.
Homogenates of Chironomus cells synthesize chitin as effectively as intact cells. Chitin is produced in a dose-dependent manner, when GlcN, GlcNAc, or UDP-GlcNAc is used as precursor. Due to the lability of UDP-GlcNAc incorporation of this substrate is underestimated. No allosteric effect is observed when GlcN or GlcNAc is used as a substrate. Chitin synthesis is stimulated by Mg2+ and inhibited by uridine monophosphate (UMP), uridine diphosphate (UDP), and uridine triphosphate (UTP). The apparent temperature optimum is 30°C, the apparent pH optimum is 5.5–6. Addition of the chitinase inhibitor allosamidin does not enhance chitin synthesis significantly. The time course of chitin formation reveals a lag period of about 12 h, which can be overcome by trypsin treatment. Addition of protease inhibitors prevents chitin synthesis.  相似文献   

7.
Aqueous extracts of murine embryonic or uterine tissue, or [6N]O2'-dibutyryl 3',5'-adenosine monophosphate (dbc-AMP) which were cytostatic for the murine mastocytoma P815Y in vitro also induced rapid changes in the incorporation of exogenous nucleosides into acid-insoluble material. However, these alterations were not a consequence of growth arrest. Different dose-response curves were obtained for cytostasis and inhibition of [3H]-nucleoside incorporation, and changes in [3H]thymidine uptake were detected within 15 min of treatment with the inhibitors. Also, there were differential effects of each inhibitor on the incorporation of 3H-labeled thymidine, uridine, adenosine, or choline into acid-insoluble material.  相似文献   

8.
Reversible arrest of Chinese hamster V79 cells in G2 by dibutytyl AMP.   总被引:4,自引:0,他引:4  
Mouse L cells 929 were cloned in supplemented Eagle's minimal medium enriched with lactalbumin and yeast extract and buffered with HEPES. Multiplication was followed photographically in single clones from the 8-cell stage through 6–7 days. Addition of the folic acid analogue methotrexate (amethopterin) in 5 × 10?6 M concentration slowed growth only after two cell generations; 10?4 M uridine had no effect on growth except when combined with methotrexate. The two agents together blocked cell division quickly and symptoms of thymine-less death developed in few days. The cells could be rescued before 48 h by removal of the inhibitors, or by addition of folic acid or thymidine. The combination of methotrexate with uridine blocks DNA synthesis in Tetrahymena by inhibition of thymidylate synthesis and of thymidine uptake from the complex medium. Apparently the same mechanisms operate in L cells grown in a complex medium containing thymidine.  相似文献   

9.
Pyrimidine metabolism in cotyledons of germinating alaska peas   总被引:4,自引:2,他引:2       下载免费PDF全文
Cotyledons from Pisum sativum L. cv. Alaska seeds were excised 12, 36, 108, 132, and 156 hours after imbibition in aerated distilled water. They were then incubated under aseptic conditions for 6 hours in solutions containing either uridine-2-14C or orotic acid-6-14C. Uridine was more extensively degraded to 14CO2 at all germination stages than was orotate, and these rates remained essentially constant at each stage. Incorporation of each compound into RNA increased about 2-fold from the 12th to the 156th hour, although the total RNA present decreased slightly over this interval. Paper chromatography of soluble labeled metabolites produced from orotate showed that the capacity to metabolize this pyrimidine increased markedly as germination progressed. Radioactivity in uridine-5′-P, uridine diphosphate-hexoses, and uridine diphosphate increased most, while smaller or less consistent increases in uridine, uracil, uridine triphosphate, and an unidentified UDPX compound were also observed. The data suggest that orotate metabolism was initially limited by orotidine-5′-phosphate pyrophosphorylase or by 5-phosphoribosyl-1-pyrophosphate. Incorporation of uridine into RNA appeared to be limited at the earliest germination periods by conversion of uridine-5′-P to uridine diphosphate. Thus, during the 1st week of germination the orotic acid pathway and a salvage pathway converting uridine into RNA become activated.  相似文献   

10.
Showdomycin [2-(β-d-ribofuranosyl)maleimide] is a nucleoside antibiotic containing a maleimide ring and which is structurally related to uridine. Showdomycin inhibited rat brain (Na+ + K+)-ATPase irreversibly by an apparently bimolecular reaction with a rate constant of about 11.01·mol?1·min?1. Micromolar concentrations of ATP protected against this inhibition but uridine triphosphate or uridine were much less effective. In the presence of K+, 100 μM ATP was unable to protect against inhibition by showdomycin. These observations show that showdomycin inhibits (Na+ + K+)-ATPase by reacting with a specific chemical group or groups at the nucleotide-binding site on this enzyme. Inhibition by showdomycin appears to be more selective for this site than that due to tetrathionate or N-ethylmaleimide. Since tetrathionate is a specific reactant for sulfhydryl groups it appears likely that the reactive groups are sulfhydryl groups. The data thus show that showdomycin is a relatively selective nucleotide-site-directed inhibitor of (Na+ + K+)-ATPase and inhibition is likely due to the reaction of showdomycin with sulfhydryl group(s) at the nucleotide-binding site on this enzyme.  相似文献   

11.
The objective of this study was to investigate the mechanism of uridine 5′-triphosphate (UTP)-dependent inhibition of Na+ absorption in porcine endometrial epithelial cells. Acute stimulation with UTP (5 μM) produced inhibition of sodium absorption and stimulation of chloride secretion. Experiments using basolateral membrane–permeabilized cell monolayers demonstrated a reduction in benzamil-sensitive Na+ conductance in the apical membrane after UTP stimulation. The UTP-dependent inhibition of sodium transport could be mimicked by PMA (1 μM). Several PKC inhibitors, including GF109203X and Gö6983 (both nonselective PKC inhibitors) and rottlerin (a PKCδ selective inhibitor), were shown to prevent the UTP-dependent decrease in benzamil-sensitive current. The PKCα-selective inhibitors, Gö6976 and PKC inhibitor 20–28, produced a partial inhibition of the UTP effect on benzamil-sensitive Isc. Inhibition of the benzamil-sensitive Isc by UTP was observed in the presence of BAPTA-AM (50 μM), confirming that activation of PKCs, and not increases in [Ca2+]i, were directly responsible for the inhibition of apical Na+ channels and transepithelial Na+ absorption.  相似文献   

12.
The sugar moiety of nucleosides has been shown to play a major role in permeant‐transporter interaction with human equilibrative nucleoside transporters 1 and 2 (hENT1 and hENT2). To better understand the structural requirements for interactions with hENT1 and hENT2, a series of uridine analogs with sugar modifications were subjected to an assay that tested their abilities to inhibit [3H]uridine transport mediated by recombinant hENT1 and hENT2 produced in Saccharomyces cerevisiae. hENT1 displayed higher affinity for uridine than hENT2. Both transporters barely tolerated modifications or inversion of configuration at C(3′). The C(2′)‐OH at uridine was a structural determinant for uridine‐hENT1, but not for uridine‐hENT2, interactions. Both transporters were sensitive to modifications at C(5′) and hENT2 displayed more tolerance to removal of C(5′)‐OH than hENT1; addition of an O‐methyl group at C(5′) greatly reduced interaction with either hENT1 or hENT2. The changes in binding energies between transporter proteins and the different uridine analogs suggested that hENT1 formed strong interactions with C(3′)‐OH and moderate interactions with C(2′)‐OH and C(5′)‐OH of uridine, whereas hENT2 formed strong interactions with C(3′)‐OH, weak interactions with C(5′)‐OH, and no interaction with C(2′)‐OH.  相似文献   

13.
Uridine, a pyrimidine nucleoside, has been proposed to be a potential signaling molecule in the central nervous system. The understanding of uridine release in the brain is therefore of fundamental importance. The present study was performed to determine the characteristics of basal and morphine-induced uridine release in the striatum of freely moving mice by using the microdialysis technique. To ascertain whether extracellular uridine was derived from neuronal release, the following criteria were applied: sensitivity to (a) K+ depolarization, (b) Na+ channel blockade and (c) removal of extracellular Ca2+. Uridine levels were not greatly affected by infusion of tetrodotoxin (TTX) and were unaffected by either Ca2+-free medium or in the presence of EGTA (a calcium chelator), suggesting that basal extracellular uridine levels were maintained mainly by non-vesicular release mechanisms. In addition, both systemic and local application of morphine increased striatal uridine release. The morphine-induced release was reversed by naloxone pretreatment, but was unaffected by TTX or EGTA infusion. Moreover, co-administration of morphine and nitrobenzylthioinosine (NBTI, an inhibitor of nucleotide transporter) produced increases of uridine levels similar to that produced by NBTI or morphine alone, suggesting a nucleotide transporter mechanism involved. Taken together, these findings suggest that morphine produces a μ-opioid receptor-mediated uridine release via nucleoside transporters in a TTX- and calcium-independent manner.  相似文献   

14.
Mutants of Escherichia coli K-12 which are sensitive to glucose starvation were isolated by an enrichment procedure using thymine starvation to select for nongrowing cells. Eleven independent isolates were obtained by this method. The mutants are also sensitive to glycerol starvation and to a lesser extent to nitrogen or amino acid starvation. The mutants are more sensitive than the parental strain to inhibitors of protein synthesis but not inhibitors of RNA or DNA synthesis. [3H]-leucine incorporation experiments indicate that protein synthesis is blocked in the mutants during recovery from glucose starvation or chloramphenicol inhibition. Incorporation of [3H]uridine in amino acid-starved cells demonstrates that the mutants are partially relaxed for control of RNA synthesis. Physiological and genetic experiments indicate that these mutants are different from previously isolated relaxed-control mutants.  相似文献   

15.
Tritium suicide was shown to be a highly effective method for isolating mutants defective in uridine-cytidine kinase in the Chinese hamster lung cell line V79. The tritium suicide procedure consisted of three kill cycles. Survivors of one kill cycle were used for the next kill cycle. The kill cycles involved incorporation of [3H]uridine for 10 min, followed by storage of 3H-labelled cells at −70 °C for 4–7 days. Nine clones that survived the third kill cycle were tested for incorporation of [3H]uridine and for uridine kinase activity in extracts. Eight of these clones were defective in whole-cell uridine incorporation and in uridine kinase activity. A kinetic study was made on the uridine-cytidine kinase activity of three of the mutants. The apparent Vmax of the mutants was reduced approx. 10-fold when either uridine or cytidine was used as substrate. In contrast, the apparent Km of uridine was reduced approx. 12-fold in the mutants with only a 2-fold (probably insignificant) reduction in Km's for cytidine or for ATP.  相似文献   

16.
Total mammalian tRNAs contain on the average less than one mole of ribothymidine per mole of tRNA. Mammalian tRNAs can be grouped into at least four classes, depending upon their ribothymidine content at position 23 from the 3′ terminus. Class A contains tRNA in which a nucleoside other than uridine replaces ribothymidine (tRNAiMet); Class B contains tRNA in which one mole of a modified uridine (rT, ψ, or 2′-O-methylribothymidine) is found per mole of tRNA (tRNASer, tRNATrp, and tRNALys, respectively). Class C contains tRNA in which there is a partial conversion of uridine to ribothymidine (tRNAPhe, tRNA1Gly, tRNA2Gly); Class D contains tRNA which totally lacks ribothymidine (tRNAVal). Only those tRNAs in Class C are acceptable substrates for E.coli uridine methylase, under the conditions used in these studies. These observations cannot be adequately explained solely on the basis of the presence or absence of a specific “universal” nucleoside other than U or rT at position 23 from the 3′ terminus. However, correlations can be made between the ribothymidine and 5-methylcytosine content of eucaryotic tRNA. We postulate that the presence of one or more 5-methylcytosines in and adjacent to loop III (minor loop) in individual tRNAs act to regulate the amount of ribothymidine formed by uridine methylase. Several experiments are proposed as tests for this hypothesis.  相似文献   

17.
Tissue cultures of Nicotiana tabacum, Nicotiana suaveolens and Nicotiana suaveolens × Nicotiana langsdorffii were cultured in the presence of the growth inhibitors maleic hydrazide and 6-azauracil as well as 6-azauridine. Inhibition of growth was complete at 10−4 molar concentrations in all 3 genotypes of cells. The inhibition due to 6-azauracil could be completely relieved with uridine and partially relieved with uracil. The effect with maleic hydrazide was irreversible, a fact which indicates a different mechanism or level of inhibition. This study supports the concept that derivatives of 6-azauracil inhibit the synthesis of uridine derivatives required for ribose nucleic acid synthesis and growth.  相似文献   

18.
We report in this study an intrinsic link between pyrimidine metabolism and liver lipid accumulation utilizing a uridine phosphorylase 1 transgenic mouse model UPase1-TG. Hepatic microvesicular steatosis is induced by disruption of uridine homeostasis through transgenic overexpression of UPase1, an enzyme of the pyrimidine catabolism and salvage pathway. Microvesicular steatosis is also induced by the inhibition of dihydroorotate dehydrogenase (DHODH), an enzyme of the de novo pyrimidine biosynthesis pathway. Interestingly, uridine supplementation completely suppresses microvesicular steatosis in both scenarios. The effective concentration (EC50) for uridine to suppress microvesicular steatosis is approximately 20 µM in primary hepatocytes of UPase1-TG mice. We find that uridine does not have any effect on in vitro DHODH enzymatic activity. On the other hand, uridine supplementation alters the liver NAD+/NADH and NADP+/NADPH ratios and the acetylation profile of metabolic, oxidation-reduction, and antioxidation enzymes. Protein acetylation is emerging as a key regulatory mechanism for cellular metabolism. Therefore, we propose that uridine suppresses fatty liver by modulating the liver protein acetylation profile. Our findings reveal a novel link between uridine homeostasis, pyrimidine metabolism, and liver lipid metabolism.  相似文献   

19.
20.
Ribosome inactivating protein (RIP) catalyzes the cleavage of glycosidic bond formed between adenine and ribose sugar of ribosomal RNA to inactivate ribosomes. Previous structural studies have shown that RNA bases, adenine, guanine, and cytosine tend to bind to RIP in the substrate binding site. However, the mode of binding of uracil with RIP was not yet known. Here, we report crystal structures of two complexes of type 1 RIP from Momordica balsamina (MbRIP1) with base, uracil and nucleoside, uridine. The binding studies of MbRIP1 with uracil and uridine as estimated using fluorescence spectroscopy showed that the equilibrium dissociation constants (KD) were 1.2 × 10−6 M and 1.4 × 10−7 M respectively. The corresponding values obtained using surface plasmon resonance (SPR) were found to be 1.4 × 10−6 M and 1.1 × 10−7 M, respectively. Structures of the complexes of MbRIP1 with uracil (Structure-1) and uridine (Structure-2) were determined at 1.70 and 1.98 Å resolutions respectively. Structure-1 showed that uracil bound to MbRIP1 at the substrate binding site but its mode of binding was significantly different from those of adenine, guanine and cytosine. However, the mode of binding of uridine was found to be similar to those of cytidine. As a result of binding of uracil to MbRIP1 at the substrate binding site, three water molecules were expelled while eight water molecules were expelled when uridine bound to MbRIP1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号