首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(A)+ RNA isolated from rat jejunum was injected into Xenopus laevis oocytes and expression of Cl/HCO3 antiport was investigated by means of 36Cl uptake. Two days after injection of 50 ng of poly(A)+ RNA, Cl uptake was significantly increased with respect to water-injected oocytes. The expressed transport was inhibited by 0·2 mM DIDS, whereas endogenous Cl uptake was unaffected by this disulphonic stilbene. After sucrose density gradient fractionation, the highest expression of DIDS-sensitive Cl uptake was detected with mRNA size fraction of about 2–4 kb in length. The expressed Cl uptake can occur against a Cl concentration gradient and is unaffected by the known Cl channel blocker anthracene-9-carboxylic acid. Cl transport mechanism has properties similar to jejunal basolateral Cl/HCO3 exchange with regard to Na+ dependence. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
The influence of NO3 uptake and reduction on ionic balance in barley seedlings (Hordeum vulgare, cv. Compana) was studied. KNO3 and KCl treatment solutions were used for comparison of cation and anion uptake. The rate of Cl uptake was more rapid than the rate of NO3 uptake during the first 2 to 4 hours of treatment. There was an acceleration in rate of NO3 uptake after 4 hours resulting in a sustained rate of NO3 uptake which exceeded the rate of Cl uptake. The initial (2 to 4 hours) rate of K+ uptake appeared to be independent of the rate of anion uptake. After 4 hours the rate of K+ uptake was greater with the KNO3 treatment than with the KCl treatment, and the solution pH, cell sap pH, and organic acid levels with KNO3 increased, relative to those with the KCl treatment. When absorption experiments were conducted in darkness, K+ uptake from KNO3 did not exceed K+ uptake from KCl. We suggest that the greater uptake and accumulation of K+ in NO3-treated plants resulted from (a) a more rapid, sustained uptake and transport of NO3 providing a mobile counteranion for K+ transport, and (b) the synthesis of organic acids in response to NO3 reduction increasing the capacity for K+ accumulation by providing a source of nondiffusible organic anions.  相似文献   

3.
The effect of a variety of ions and other solutes on the accumulation of the β-amino acid, taurine, was examined in rat renal brush-border membrane vesicles. Initial taurine uptake (15 and 30 s) is sodium-dependent with a typical overshoot. This Na+ effect was confirmed by exchange diffusion and gramicidin inhibition of taurine uptake. External K+ or Li+ do not increase taurine accumulation more than Na+-free mannitol, except that the combination of external K+ and Na1 in the presence of nigericin enhances uptake. Of all anions tested, including more permeant (SCN and NO3) or less permeant (SO42−), chloride supported taurine accumulation to a significantly greater degree. Preloading vesicles with choline chloride reduced taurine uptake, suggesting that external Cl stimulates uptake. Since this choline effect could be related to volume change, due to the slow diffusion of choline into vesicles, brush-border membrane vesicles were pre-incubated with LiCl, LiNO3 and LiSO4. Internal LiCl, regardless of the final Na+ anion mixture, reduced initial rate (15 and 60 s) and peak (360 s) taurine uptake. Internal LiNO3 or LiSO4 with external NaCl resulted in similar or higher values of uptake at 15, 60 and 360 s, indicating a role for external Cl in taurine uptake in addition to Na+ effect. Although uptake by vesicles is greatest at pH 8.0 and inhibited at acidic pH values (pH less than 7.0), an externally directed H+ gradient does not influence uptake. Similarly, amiloride, an inhibitor of the Na+/H+ antiporter, had no influence on taurine accumulation over a wide variety of concentrations or at low Na+ concentrations. Taurine uptake is blocked only by other β-amino acids and in a competitive fashion. d-glucose and p-aminohippurate at high concentrations (> 10−3 M) reduce taurine uptake, possibly by competing for sodium ions, although gramicidin added in the presence of d-glucose inhibits taurine uptake even further. These studies more clearly define the nature of the renal β-amino acid transport system in brush-border vesicles and indicate a role for external Cl in this uptake system.  相似文献   

4.
A Cl-stimulated ATPase activity, which is sensitive to both thiocyanate and vanadate, has been localized to the plasma membrane of Aplysia enterocytes. Utilizing plasma membrane vesicles from Aplysia enterocytes, ATP stimulated Cl uptake to approximately 2.5-times that of control in a Na+, K+ and HCO3-free medium. This ATP-dependent Cl uptake was sensitive to both thiocyanate and vanadate. These results are consistent with the hypothesis that the active Cl absorptive process in Aplysia intestine could be a Cl-stimulated ATPase found in the enterocyte plasma membrane.  相似文献   

5.
In M. braunii, the uptake of NO3 and NO2 is blue-light-dependent and is associated with alkalinization of the medium. In unbuffered cell suspensions irradiated with red light under a CO2-free atmosphere, the pH started to rise 10s after the exposure to blue light. When the cellular NO3 and NO2 reductases were active, the pH increased to values of around 10, since the NH4+ generated was released to the medium. When the blue light was switched off, the pH stopped increasing within 60 to 90s and remained unchanged under background red illumination. Titration with H2SO4 of NO3 or NO2 uptake and reduction showed that two protons were consumed for every one NH4+ released. The uptake of Cl was also triggered by blue light with a similar 10 s time response. However, the Cl -dependent alkalinization ceased after about 3 min of blue light irradiation. When the blue light was turned off, the pH immediately (15 to 30 s) started to decline to the pre-adjusted value, indicating that the protons (and presumably the Cl) taken up by the cells were released to the medium. When the cells lacked NO3 and NO2 reductases, the shape of the alkalinization traces in the presence of NO3 and NO2 was similar to that in the presence of Cl, suggesting that NO3 or NO2 was also released to the medium. Both the NO3 and Cl-dependent rates of alkalinization were independent of mono- and divalent cations.  相似文献   

6.
The effect of Cl? on SO4?2 efflux was studied in both Cl?-containing and Cl?-free ascites tumor cells loaded with 35SO4?2 to test the hypothesis that Cl?-SO4?2 exchange is mediated by the same mechanism responsible for SO4?2-self exchange. The addition of Cl?-free, 35SO4?2 loaded cells to a SO4?2-free, Cl? medium results in: (1) SO4?2 efflux that is dependent on the extracellular Cl? concentration (Km = 4.85 mM; ke = 0.048 min?1 at 50 mM Cl?) and (2) net Cl?-uptake that exceeds SO4?2 loss. Both SITS (4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonate) and ANS (1-anilino-8-napthalene sulfonate) inhibit SO4?2 efflux but are without effect on Cl? uptake. The addition of Cl?-containing, 35SO4?2 loaded cells to a SO4?2-free, C1? medium results in: (1) a slight gain in cellular Cl? and (2) k efor SO4?2 efflux identical to that for Cl?-free cells. The results are compatible with the suggestion that: (1) Cl? interacts with a membrane component responsible for transmembrane SO4?2 movement; (2) Cl? interaction stimulates the rate of unidirectional SO4?2 efflux from cells initially free of Cl? as well as the rate of SO4?2 turnover in cells maintained in the steady state with respect to Cl? and SO4?2; and (3) in the case of cells initially free of Cl?, the Cl?-SO4?2 pathway represents only a small fraction of the total unidirectional Cl?-influx the remainder being compatible with the electroneutral accumulation of NaCl and KCl.  相似文献   

7.
Ehrlich ascites tumor cells lose KCl and shrink after swelling in hypotonic media and in response to the addition of 2-deoxyglucose, propranolol, or the Ca2+ ionophore, A23187, plus Ca2+ in isotonic media. All of these treatments activate cell shrinkage via a pathway with the following characteristics: (1) the KCl loss responsible for cell shrinkage does not alter the membrane potential; (2) NO3? does not substitute for Cl?; (3) the net KCl movements are not inhibited by quinine or DIDS; and (4) early in this study furosemide was effective in inhibiting cell shrinkage but this sensitivity was subsequently lost. This evidence suggests that the KCl loss in these cells occurs via a cotransport mechanism. In addition, hypotonic media and the other agents used here stimulate a Cl? -Cl? exchange, a net loss of K+ and a net gain of Na+ which are not responsible for cell shrinkage. The Ehrlich cell also appears to have a Ca2+-activated, quinine-sensitive K+ conductive pathway but this pathway is not part of the mechanism by which these cells regulate their volume following swelling or shrink in isotonic media in response to 2-deoxyglucose or propranolol. Shrinkage by the loss of K+ through the Ca2+ stimulated pathway appears to be limited by Cl? conductive movements; for when NO3?, an anion demonstrated here to have a higher conductive movement than Cl?, is substituted for Cl?, the cells will shrink when the Ca2+-stimulated K+ pathway is activated.  相似文献   

8.
Thiazides block Na+ reabsorption while enhancing Ca2+ reabsorption in the kidney. As previously demonstrated in immortalized mouse distal convoluted tubule (MDCT) cells, chlorothiazide application induced a robust plasma membrane hyperpolarization, which increased Ca2+ uptake. This essential thiazide-induced hyperpolarization was prevented by the Cl channel inhibitor 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), implicating NPPB-sensitive Cl channels, however the nature of these Cl channels has been rarely described in the literature. Here we show that MDCT cells express a dominant, outwardly rectifying Cl current at extracellular pH 7.4. This constitutive Cl current was more permeable to larger anions (Eisenman sequence I; I > Br  Cl) and was substantially inhibited by > 100 mM [Ca2+]o, which distinguished it from ClC-K2/barttin. Moreover, the constitutive Cl current was blocked by NPPB, along with other Cl channel inhibitors (4,4′-diisothiocyanatostilbene-2,2′-disulfonate, DIDS; flufenamic acid, FFA). Subjecting the MDCT cells to an acidic extracellular solution (pH < 5.5) induced a substantially larger outwardly rectifying NPPB-sensitive Cl current. This acid-induced Cl current was also anion permeable (I > Br > Cl), but was distinguished from the constitutive Cl current by its rectification characteristics, ion sensitivities, and response to FFA. In addition, we have identified similar outwardly rectifying and acid-sensitive currents in immortalized cells from the inner medullary collecting duct (mIMCD-3 cells). Expression of an acid-induced Cl current would be particularly relevant in the acidic IMCD (pH < 5.5). To our knowledge, the properties of these Cl currents are unique and provide the mechanisms to account for the Cl efflux previously speculated to be present in MDCT cells.  相似文献   

9.
《Biophysical journal》2020,118(11):2853-2865
We successfully reconstituted single Natronomonas pharaonis halorhodopsin (NpHR) trimers into a nanodisk (ND) using the native archaeal lipid (NL) and an artificial lipid having a zwitterionic headgroup, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Incorporation of single trimeric NpHR into NDs was confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis, size-exclusion chromatography, and visible circular dichroism spectroscopy. The Cl binding affinity of NpHR in NDs using NL (NL-ND NpHR) or POPC (POPC-ND NpHR) was examined by absorption spectroscopy, showing that the Cl-releasing affinities (Kd,N↔O) of these ND-reconstituted NpHRs are more than 10 times higher than that obtained from native NpHR membrane fragments (MFs) harvested from a NpHR-overexpressing archaeal strain (MF NpHR). The photoreaction kinetics of these ND-reconstituted NpHRs revealed that the Cl uptake was faster than that of MF NpHR. These differences in the Cl-releasing and uptake properties of ND-reconstituted NpHRs and MF NpHR may arise from suppression of protein conformational changes associated with Cl release from the trimeric NpHR caused by ND reconstitution, conformational perturbation in the trimeric state, and loss of the trimer-trimer interactions. On the other hand, POPC-ND NpHR demonstrated accelerated Cl uptake compared to NL-ND NpHR, suggesting that the negative charge on the archaeal membrane surface regulates the photocycle of NpHR. Although NL-ND NpHR and MF NpHR are embedded in the same lipid, the lower Cl-binding affinity at the initial state (Kd,initial) and faster recovering from the NpHR′ state to the original state of the photoreaction cycle were observed for NL-ND NpHR, probably because of insufficient interactions with a chromophore in the native membrane, bacterioruberin in reconstituted NDs. Our results indicate that specific interactions of NpHR with surrounding lipids and bacterioruberin, structural flexibility of the membrane, and interactions between trimeric NpHRs may be necessary for efficient Cl pumping.  相似文献   

10.
Aquaporin (AQP) and chloride channels are ubiquitous in virtually all living cells, playing pivotal roles in cell proliferation, migration and apoptosis. We previously reported that AQP-3 aquaglyceroporin and ClC-3 chloride channels could form complexes to regulate cell volume in nasopharyngeal carcinoma cells. In this study, the roles of AQP-3 in their hetero-complexes were further investigated. Glycerol entered the cells via AQP-3 and induced two different Cl currents through cell swelling-dependent or -independent pathways. The swelling-dependent Cl current was significantly inhibited by pretreatment with CuCl2 and AQP-3-siRNA. After siRNA-induced AQP-3 knock-down, the 140 mM glycerol isoosmotic solution swelled cells by 22% (45% in AQP-3-intact cells) and induced a smaller Cl current; this current was smaller than that activated by 8% cell volume swelling, which induced by the 140 mM glycerol hyperosmotic solution in AQP-3-intact cells. This suggests that the interaction between AQP-3 and ClC-3 plays an important role in cell volume regulation and that AQP-3 may be a modulator that opens volume-regulated chloride channels. The swelling-independent Cl current, which was activated by extracellular glycerol, was reduced by CuCl2 and AQP-3-siRNA pretreatment. Dialyzing glycerol into cells via the pipette directly induced the swelling-independent Cl current; however this current was blocked by AQP-3 down-regulation, suggesting AQP-3 is essential for the opening of chloride channels. In conclusion, AQP-3 is the pathway for water, glycerol and other small solutes to enter cells, and it may be an essential modulator for the gating of chloride channels.  相似文献   

11.
The effects of starvation and subsequent addition of phosphate-containing medium on the phosphate metabolic intermediates were studied by 31P-NMR spectroscopy of perchloric acid extracts and intact cells of Heterosigma akashiwo (Hada) hada. When orthophosphate in the medium was completely depleted the medium was enriched with orthophosphate (4.5 μM). In the phosphate starved condition, the P cell quota was 76 fmol-cell−1 and the major components of phosphate intermediates were phosphodiester, sugar phosphate and orthophosphate (Pi) After addition of Pi' rapid uptake of Pi was observed and the P cell quota increased to 108 fmol. cell−1 in 2 h, 134 fmol. cell−1 in 5 h and 222 fmol. cell−1 in 1 day after addition of phosphate. The 31P-NMR spectrum indicated that a major portion of P was stored as polyphosphate, in which the average chain length of polyphosphate increased from 10 to 20 phosphate residues in one day after addition of Pi-  相似文献   

12.
Cisplatin is a widely used platinum-based anticancer drug in the chemotherapy of numerous human cancers. However, cancer cells acquire resistance to cisplatin. So far, functional loss of volume-sensitive outwardly rectifying (VSOR) Cl channels has been reported to contribute to cisplatin resistance of cancer cells. Here, we analyzed protein expression patterns of human epidermoid carcinoma KB cells and its cisplatin-resistant KCP-4 cells. Intriguingly, KB cells exhibited higher β-actin expression and clearer actin filaments than KCP-4 cells. The β-actin knockdown in KB cells decreased VSOR Cl currents and inhibited the regulatory volume decrease (RVD) process after cell swelling. Consistently, KB cells treated with cytochalasin D, which depolymerizes actin filaments, showed smaller VSOR Cl currents and slower RVD. Cytochalasin D also inhibited cisplatin-triggered apoptosis in KB cells. These results suggest that the disruption of actin filaments cause the dysfunction of VSOR Cl channels, which elicits resistance to cisplatin in human epidermoid carcinoma cells.  相似文献   

13.
There is tight interplay between Ca2+ and Cl flux that can influence brain tumour proliferation, migration and invasion. Glioma is the predominant malignant primary brain tumour, accounting for ˜80% of all cases. Voltage-gated Cl channel family (ClC) proteins and Cl intracellular channel (CLIC) proteins are drastically overexpressed in glioma, and are associated with enhanced cell proliferation, migration and invasion. Ca2+ also plays fundamental roles in the phenomenon. Ca2+-activated Cl channels (CaCC) such as TMEM16A and bestrophin-1 are involved in glioma formation and assist Ca2+ movement from intracellular stores to the plasma membrane. Additionally, the transient receptor protein (TRP) channel TRPC1 can induce activation of ClC-3 by increasing intracellular Ca2+concentrations and activating Ca2+/calmodulin-dependent protein kinase II (CaMKII). Therefore, Ca2+ and Clcurrents can concurrently mediate brain tumour cellular functions. Glioma also expresses volume regulated anion channels (VRACs), which are responsible for the swelling-induced Cl current, ICl,swell. This current enables glioma cells to perform regulatory volume decrease (RVD) as a survivability mechanism in response to hypoxic conditions within the tumour microenvironment. RVD can also be exploited by glioma for invasion and migration. Effective treatment for glioma is challenging, which can be in part due to prolonged chemotherapy leading to mutations in genes associated with multi-drug resistances (MRP1, Bcl-2, and ABC family). Thus, a potential therapeutic strategy for treatment of glioma can be through the inhibition of selected Cl channels.  相似文献   

14.
The effects of starvation and subsequent addition of phosphate-containing medium on the phosphate metabolic intermediates were studied by 31P-NMR spectroscope of perchloric acid extracts and intact cells of Heterosigma akashiwo (Hada) Hada. When orthophosphate in the medium was completely depleted the medium was enriched with orthophosphate (4.5 μM). In the phosphate starved condition, the P cell quota was 76 fmol·cell−1 and the major components of phosphate intermediates were phosphodiester, sugar phosphate and orthophosphate (Pi). After addition of Pi, rapid uptake of Pi was observed and the P cell quota increased to 108 fmol·cell−1 in 2 h, 134 fmol·cell−1 in 5 h and 222 fmol·cell−1 in 1 day after addition of phosphate. The 31P-NMR spectrum indicated that a major portion of P was stored as polyphosphate, in which the average chain length of polyphosphate increased from 10 to 20 phosphate residues in one day after addition of Pi.  相似文献   

15.
Cl absorption across isolated, perfused gills of freshwater adapted Chinese crabs (Eriocheir sinensis) was analysed by measuring transepithelial potential differences (PDte) and radioactive tracer fluxes across isolated, perfused posterior gills. Applying hemolymph-like NaCl salines on both sides of the epithelium PDte amounted to −30±1 mV (n=14). Undirectional Cl influxes of 470±38 and effluxes of 245±27 μmol·hr−1·g−1 wet weight (ww) (n=14) resulted in a Cl net influx of 226±31 μmol·hr−1·g−1 ww. Symmetrical substitution of Na+ by choline resulted in a substantial hyperpolarisation of the gill. Cl influx was unchanged under these conditions. However, net influx of Cl decreased by 40%, due to an increase of the Cl efflux.Nevertheless, a significant Cl net influx remained which was independent of the presence of Na+. When 2 mmol/l ouabain were added to the internal perfusion medium, PDte increased, although the fluxes remained unchanged. Following external application of 1μmol/l of the V-type H+-ATPase inhibitor bafilomycin, Al PDte and Cl effluxes were not significantly affected. However, Cl influxes decreased. These findings suggest that Cl can be taken up independently of Na+ and that active Na+ independent Cl uptake across the posterior gill of Eriocheir sinensis is probably driven by a V-type H+-ATPase localized in the apical membrane.  相似文献   

16.
Sensitive rapid detection method for viable bacterial cells   总被引:1,自引:1,他引:0       下载免费PDF全文
A rapid sensitive method for the detection of viable bacterial cells is described in which P32 as inorganic orthophosphate is used to label the cells. Factors affecting the uptake of P32 by cells as well as the sensitivity of the method have been explored with suspensions of Aerobacter aerogenes. The uptake of P32O4 is dependent on several factors. Of various incubation media tested, one composed of 0.005 m KCl, 0.002 m MgSO4 and 10 mg/ml of glucose was found to best stimulate the uptake of the tracer. Incubation time and temperature and level of isotope and of unlabeled P also affected uptake. Labeled cells were collected on a membrane filter for measurement of radioactivity. Under optimal conditions, as few as 23 viable cells per milliliter were detected in 1 hr with 95% confidence.  相似文献   

17.
Purine riboside (nebularine, 9-beta-ribofuranosylpurine) is a naturally occurring base analog which closely resembles adenosine. It inhibits carcinogenic growth. Purine riboside strongly inhibits RNA and DNA synthesis in different cancer ascites cells. Gel electrophoretic analysis of RNA synthesis in vivo in the presence of purine riboside shows the ribosomal components to be inhibited the most. A method for assaying purine riboside or its phosphates intracellularly has been devised, and by using this it has been shown that purine riboside is extensively phosphorylated in the cells. The triphosphate derivative of purine riboside has been isolated and tested in the Escherichia coli RNA polymerase assay. It appears not to be incorporated into this type of RNA and to competitively inhibit this reaction with regard to ATP.  相似文献   

18.
Abstract

2′- and 3′-O-azidomethyl derivatives of ribonucleosides were obtained by splitting the corresponding methylthiomethyl derivatives of ribonucleosides with bromine or SO2Cl2 followed by lithium azide treatment.  相似文献   

19.
The cell sap of the internode ofNitella flexilis was replaced with the isotonic artificial pond water of high Ca2+-concentration (0.1 mM KCl, 0.1 mM NaCl, 10 mM CaCl2 and 275 mM mannitol) and changes in osmotic value and concentrations of K+, Na+ and Cl of the cells were followed. When the operated cells were incubated in the artificial pond water containing 0.1 mM each of KCl, NaCl, CaCl2, they survived for only a short period of time (<10 hr). The cells did not absorb ions from the artificial pond water and showed a conspicuous decrease in the rate of cytoplasmic streaming. In such cell the concentration of K+ in the protoplasm decreased significantly. In order to reverse normal concentration gradients of K+ and Na+ across the protoplasmic layer, the cells of low vacuolar ionic concentrations were incubated in the artificial cell sap (90 mM KCl, 40 mM NaCl, 15 mM CaCl2, 10 mM MgCl2). It was found that the cells rapidly absorbed much K+, Na+ and Cl and survived for a longer period (1–2 days). During this period the rate of cytoplasmic streaming was nearly normal. Furthermore, the cell lost much mannitol, indicating an enormous increase in permeability to it. Since both absorption of ions and leakage of mannitol at 1 C occurred at nearly the same rates as at 22 C, the processes are assumed to be passive.  相似文献   

20.
The role of cation and anion uptake in salt-stimulated growth of light-grown, GA3-treated lettuce (Lactuca sativa L.) hypocotyl sections was investigated. Potassium chloride (10 mm) causes a 2-fold increase in the growth rate of GA3-treated hypocotyl sections without affecting the growth rate of sections incubated in the absence of GA3. Salt uptake is the same in both treatments, and furthermore the uptake of cation and anion is stoichiometric during the first 24 hours under all incubation conditions. The importance of the anion for cation uptake is demonstrated in experiments with benzenesulfonate and iminodiacetate2−. When K+ and Na+ are supplied only as the benzenesulfonate and iminodiacetate salts, growth and cation uptake are markedly reduced compared to KCl and NaCl. Calculation of the osmotic potential of salt-treated sections based on measurement of K+ and Cl uptake suggests that the observed increase in tissue osmolality is a result of salt uptake. Similarly, uptake of ions can account for the shift in water potential when sections are incubated in 10 mm KCl. We conclude that the change in growth rate of light-grown, GA3-treated sections caused by the addition of KCl or NaCl to the incubation medium results solely from decreased water potential of the tissue due to ion uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号