首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several recent studies have shown that it is possible to increase protein stability by improving electrostatic interactions among charged groups on the surface of the folded protein. However, the stability increases are considerably smaller than predicted by a simple Coulomb's law calculation, and in some cases, a charge reversal on the surface leads to a decrease in stability when an increase was predicted. These results suggest that favorable charge-charge interactions are important in determining the denatured state ensemble, and that the free energy of the denatured state may be decreased more than that of the native state by reversing the charge of a side chain. We suggest that when the hydrophobic and hydrogen bonding interactions that stabilize the folded state are disrupted, the unfolded polypeptide chain rearranges to compact conformations with favorable long-range electrostatic interactions. These charge-charge interactions in the denatured state will reduce the net contribution of electrostatic interactions to protein stability and will help determine the denatured state ensemble. To support this idea, we show that the denatured state ensemble of ribonuclease Sa is considerably more compact at pH 7 where favorable charge-charge interactions are possible than at pH 3, where unfavorable electrostatic repulsion among the positive charges causes an expansion of the denatured state ensemble. Further support is provided by studies of the ionic strength dependence of the stability of charge-reversal mutants of ribonuclease Sa. These results may have important implications for the mechanism of protein folding.  相似文献   

2.
The obligate homodimer human glutathione synthetase (hGS) provides an ideal system for exploring the role of protein–protein interactions in the structural stability, activity and allostery of enzymes. The two active sites of hGS, which are 40 Å apart, display allosteric modulation by the substrate γ-glutamylcysteine (γ-GC) during the synthesis of glutathione, a key cellular antioxidant. The two subunits interact at a relatively small dimer interface dominated by electrostatic interactions between S42, R221, and D24. Alanine scans of these sites result in enzymes with decreased activity, altered γ-GC affinity, and decreased thermal stability. Molecular dynamics simulations indicate these mutations disrupt interchain bonding and impact the tertiary structure of hGS. While the ionic hydrogen bonds and salt bridges between S42, R221, and D24 do not mediate allosteric communication in hGS, these interactions have a dramatic impact on the activity and structural stability of the enzyme.  相似文献   

3.
Optimization of surface exposed charge-charge interactions in the native state has emerged as an effective means to enhance protein stability; but the effect of electrostatic interactions on the kinetics of protein folding is not well understood. To investigate the kinetic consequences of surface charge optimization, we characterized the folding kinetics of a Fyn SH3 domain variant containing five amino acid substitutions that was computationally designed to optimize surface charge-charge interactions. Our results demonstrate that this optimized Fyn SH3 domain is stabilized primarily through an eight-fold acceleration in the folding rate. Analyses of the constituent single amino acid substitutions indicate that the effects of optimization of charge-charge interactions on folding rate are additive. This is in contrast to the trend seen in folded state stability, and suggests that electrostatic interactions are less specific in the transition state compared to the folded state. Simulations of the transition state using a coarse-grained chain model show that native electrostatic contacts are weakly formed, thereby making the transition state conducive to nonspecific, or even nonnative, electrostatic interactions. Because folding from the unfolded state to the folding transition state for small proteins is accompanied by an increase in charge density, nonspecific electrostatic interactions, that is, generic charge density effects can have a significant contribution to the kinetics of protein folding. Thus, the interpretation of the effects of amino acid substitutions at surface charged positions may be complicated and consideration of only native-state interactions may fail to provide an adequate picture.  相似文献   

4.
Charge-charge interactions on the surface of native proteins are important for protein stability and can be computationally redesigned in a rational way to modulate protein stability. Such computational effort led to an engineered protein, CspB-TB that has the same core as the mesophilic cold shock protein CspB-Bs from Bacillus subtilis, but optimized distribution of charge-charge interactions on the surface. The CspB-TB protein shows an increase in the transition temperature by 20 degrees C relative to the unfolding temperature of CspB-Bs. The CspB-TB and CspB-Bs protein pair offers a unique opportunity to further explore the energetics of charge-charge interactions as the substitutions at the same sequence positions are done in largely similar structural but different electrostatic environments. In particular we addressed two questions. What is the contribution of charge-charge interactions in the unfolded state to the protein stability and how amino acid substitutions modulate the effect of increase in ionic strength on protein stability (i.e. protein halophilicity). To this end, we experimentally measured the stabilities of over 100 variants of CspB-TB and CspB-Bs proteins with substitutions at charged residues. We also performed computational modeling of these protein variants. Analysis of the experimental and computational data allowed us to conclude that the charge-charge interactions in the unfolded state of two model proteins CspB-Bs and CspB-TB are not very significant and computational models that are based only on the native state structure can adequately, i.e. qualitatively (stabilizing versus destabilizing) and semi-quantitatively (relative rank order), predict the effects of surface charge neutralization or reversal on protein stability. We also show that the effect of ionic strength on protein stability (protein halophilicity) appears to be mainly due to the screening of the long-range charge-charge interactions.  相似文献   

5.
The 3-dimensional optimization of the electrostatic interactions between the charged amino acid residues was studied by Monte Carlo simulations on an extended representative set of 141 protein structures with known atomic coordinates. The proteins were classified by different functional and structural criteria, and the optimization of the electrostatic interactions was analyzed. The optimization parameters were obtained by comparison of the contribution of charge-charge interactions to the free energy of the native protein structures and for a large number of randomly distributed charge constellations obtained by the Monte Carlo technique. On the basis of the results obtained, one can conclude that the charge-charge interactions are better optimized in the enzymes than in the proteins without enzymatic functions. Proteins that belong to the mixed αβ folding type are electrostatically better optimized than pure α-helical or β-strand structures. Proteins that are stabilized by disulfide bonds show a lower degree of electrostatic optimization. The electrostatic interactions in a native protein are effectively optimized by rejection of the conformers that lead to repulsive charge-charge interactions. Particularly, the rejection of the repulsive contacts seems to be a major goal in the protein folding process. The dependence of the optimization parameters on the choice of the potential function was tested. The majority of the potential functions gave practically identical results.  相似文献   

6.
7.
《Biophysical journal》2022,121(4):552-564
Our knowledge of the folding behavior of proteins from extremophiles is limited at this time. These proteins may more closely resemble the primordial proteins selected in early evolution under extreme conditions. The small archaeal modifier protein 1 (SAMP1) studied in this report is an 87-residue protein with a β-grasp fold found in the halophile Haloferax volcanii from the Dead Sea. To gain insight into the effects of salt on the stability and folding mechanism of SAMP1, we conducted equilibrium and kinetic folding experiments as a function of sodium chloride concentration. The results revealed that increasing ionic strength accelerates refolding and slows down unfolding of SAMP1, giving rise to a pronounced salt-induced stabilization. With increasing NaCl concentration, the rate of folding observed via a combination of continuous-flow (0.1–2 ms time range) and stopped-flow measurements (>2 ms) exhibited a >100-fold increase between 0.1 and 1.5 M NaCl and leveled off at higher concentrations. Using the Linderström-Lang smeared charge formalism to model electrostatic interactions in ground and transition states encountered during folding, we showed that the observed salt dependence is dominated by Debye-Hückel screening of electrostatic repulsion among numerous negatively charged residues. Comparisons are also drawn with three well-studied mesophilic members of the β-grasp superfamily: protein G, protein L, and ubiquitin. Interestingly, the folding rate of SAMP1 in 3 M sodium chloride is comparable to that of protein G, ubiquitin, and protein L at lower ionic strength. The results indicate the important role of electrostatic interactions in protein folding and imply that proteins have evolved to minimize unfavorable charge-charge interactions under their specific native conditions.  相似文献   

8.
Salt bridges in proteins are bonds between oppositely charged residues that are sufficiently close to each other to experience electrostatic attraction. They contribute to protein structure and to the specificity of interaction of proteins with other biomolecules, but in doing so they need not necessarily increase a protein's free energy of unfolding. The net electrostatic free energy of a salt bridge can be partitioned into three components: charge-charge interactions, interactions of charges with permanent dipoles, and desolvation of charges. Energetically favorable Coulombic charge-charge interaction is opposed by often unfavorable desolvation of interacting charges. As a consequence, salt bridges may destabilize the structure of the folded protein. There are two ways to estimate the free energy contribution of salt bridges by experiment: the pK(a) approach and the mutation approach. In the pK(a) approach, the contribution of charges to the free energy of unfolding of a protein is obtained from the change of pK(a) of ionizable groups caused by altered electrostatic interactions upon folding of the protein. The pK(a) approach provides the relative free energy gained or lost when ionizable groups are being charged. In the mutation approach, the coupling free energy between interacting charges is obtained from a double mutant cycle. The coupling free energy is an indirect and approximate measure of the free energy of charge-charge interaction. Neither the pK(a) approach nor the mutation approach can provide the net free energy of a salt bridge. Currently, this is obtained only by computational methods which, however, are often prone to large uncertainties due to simplifying assumptions and insufficient structural information on which calculations are based. This state of affairs makes the precise thermodynamic quantification of salt bridge energies very difficult. This review is focused on concepts and on the assessment of experimental methods and does not cover the vast literature.  相似文献   

9.
10.
The complex formed by porcine pancreatic kallikrein A with the bovine pancreatic trypsin inhibitor (PTI) has been crystallized at pH 4 in tetragonal crystals of space group P41212 with one molecule per asymmetric unit. Its crystal structure has been solved applying Patterson search methods and using a model derived from the bovine trypsin-PTI complex (Huber et al., 1974) and the structure of porcine pancreatic kallikrein A (Bode et al., 1983). The kallikrein-PTI model has been crystallographically refined to an R-value of 0·23 including X-ray data to 2·5 Å.The root-mean-square deviation, including all main-chain atoms, is 0·45 Å and 0·65 Å for the PTI and for the kallikrein component, respectively, compared with the refined models of the free components. The largest differences are observed in external loops of the kallikrein molecule surrounding the binding site, particularly in the C-terminal part of the intermediate helix around His172. Overall, PTI binding to kallikrein is similar to that of the trypsin complex. In particular, the conformation of the groups at the active site is identical within experimental error (in spite of the different pH values of the two structures). Ser195 OG is about 2·5 Å away from the susceptible inhibitor bond Lys15 C and forms an optimal 2·5 Å hydrogen bond with His57 NE.The PTI residues Thr11 to Ile18 and Val34 to Arg39 are in direct contact with kallikrein residues and form nine intermolecular hydrogen bonds. The reactive site Lys15 protrudes into the specificity pocket of kallikrein as in the trypsin complex, but its distal ammonium group is positioned differently to accommodate the side-chain of Ser226. Ser226 OG mediates the ionic interaction between the ammonium group and the carboxylate group of Asp189. Model-building studies indicate that an arginine side-chain could be accommodated in this pocket. The PTI disulfide bridge 14–38 forces the kallikrein residue Tyr99 to swing out of its normal position. Model-building experiments show that large hydrophobic residues such as phenylalanine can be accommodated at this (S2) site in a wedge-shaped hydrophobic cavity, which is formed by the indole ring of Trp215 and by the phenolic side-chain of Tyr99, and which opens towards the bound inhibitor/substrate chain. Arg17 in PTI forms a favorable hydrogen bond and van der Waals' contacts with kallikrein residues, whereas the additional hydrogen bond formed in the trypsin-PTI complex between Tvr39 OEH and Ile19 N is not possible The kallikrein binding site offers a qualitative explanation of the unusual binding and cleavage at the N-terminal Met-Lys site of kininogen. Model-building experiments suggest that the generally restricted capacity of kallikrein to bind protein inhibitors with more extended binding segments might be explained by steric hindrance with some extruding external loops surrounding the kallikrein binding site (Bode et al., 1983).  相似文献   

11.
In recent years, a growing number of protein folding studies have focused on the unfolded state, which is now recognized as playing a major role in the folding process. Some of these studies show that interactions occurring in the unfolded state can significantly affect the stability and kinetics of the protein folding reaction. In this study, we modeled the effect of electrostatic interactions, both native and nonnative, on the folding of three protein systems that underwent selective charge neutralization or reversal or complete charge suppression. In the case of the N-terminal L9 protein domain, our results directly attribute the increase in thermodynamic stability to destabilization of the unfolded ensemble, reaffirming the experimental observations. These results provide a deeper structural insight into the ensemble of the unfolded state and predict a new mutation site for increased protein stability. In the second case, charge reversal mutations of RNase Sa affected protein stability, with the destabilizing mutations being less destabilizing at higher salt concentrations, indicating the formation of charge-charge interactions in the unfolded state. In the N-terminal L9 and RNase Sa systems, changes in electrostatic interactions in the unfolded state that cause an increase in free energy had an overall compaction effect that suggests a decrease in entropy. In the third case, in which we compared the β-lactalbumin and hen egg-white lysozyme protein homologues, we successfully eliminated differences between the folding kinetics of the two systems by suppressing electrostatic interactions, supporting previously reported findings. Our coarse-grained molecular dynamics study not only reproduces experimentally reported findings but also provides a detailed molecular understanding of the elusive unfolded-state ensemble and how charge-charge interactions can modulate the biophysical characteristics of folding.  相似文献   

12.
The strong pH dependence of A beta oligomerization could arise from favorable intermolecular charge-charge interactions between His and carboxylate groups, or, alternatively, by mutual electrostatic repulsion of peptide molecules. To test between these two possibilities, the pH dependence of the oligomerization of A beta and three charge substitution variants with Asp, Glu and His substituted by Ala is measured. All four peptides oligomerize, as detected by thioflavin T fluorescence, turbidity, and amyloid fibril formation; therefore, specific charge-charge interactions are nonessential for oligomerization. The strong negative correlation between net charge and oligomerization indicates that electrostatic repulsion between A beta monomers impedes their association.  相似文献   

13.
The complex formed by bovine trypsinogen and the pancreatic trypsin inhibitor crystallizes in large crystals isomorphous with trypsin-PTI2 complex crystals Rühlmann et al. 1973. X-ray diffraction data to 1.9 Å resolution were collected in the absence and presence of Ile-Val dipeptide. Both trypsinogen complex structures have been crystallographically refined, using the refined trypsin-PTI complex Huber et al. 1974a as a starting model. The final R values are 0.25 and 0.26, respectively. The mean main-chain atom deviations between the three complex structures are about 0.15 Å. In contrast, the mean deviation between the complexed and the free trypsinogen Fehlhammer et al. 1977 is 0.28 Å, reflecting the influence of crystal packing and complexation. The trypsinogen component adopts a trypsin-like conformation upon PTI binding: The Asp194 side-chain turns around and the activation domain becomes rigid, forming the specificity pocket and the Ile16 binding cleft. The specific interactions between PTI and trypsin are also observed in the trypsinogen complex. As in free trypsinogen, the N-terminus including residues Val10 to Gly18 is mobile and sticks out into solution. Apart from the different arrangement of the N-termini in the two complexes, the only significant, but minor structural difference is the enhanced thermal mobility of the autolysis loop in the trypsinogen complex. Upon binding of the Ile-Val dipeptide, the autolysis loop becomes fixed as in the trypsin complex. The Ile-Val position is identical in the ternary and the trypsin complex.  相似文献   

14.
Do salt bridges stabilize proteins? A continuum electrostatic analysis   总被引:30,自引:21,他引:9       下载免费PDF全文
The electrostatic contribution to the free energy of folding was calculated for 21 salt bridges in 9 protein X-ray crystal structures using a continuum electrostatic approach with the DELPHI computer-program package. The majority (17) were found to be electrostatically destabilizing; the average free energy change, which is analogous to mutation of salt bridging side chains to hydrophobic isosteres, was calculated to be 3.5 kcal/mol. This is fundamentally different from stability measurements using pKa shifts, which effectively measure the strength of a salt bridge relative to 1 or more charged hydrogen bonds. The calculated effect was due to a large, unfavorable desolvation contribution that was not fully compensated by favorable interactions within the salt bridge and between salt-bridge partners and other polar and charged groups in the folded protein. Some of the salt bridges were studied in further detail to determine the effect of the choice of values for atomic radii, internal protein dielectric constant, and ionic strength used in the calculations. Increased ionic strength resulted in little or no change in calculated stability for 3 of 4 salt bridges over a range of 0.1-0.9 M. The results suggest that mutation of salt bridges, particularly those that are buried, to "hydrophobic bridges" (that pack at least as well as wild type) can result in proteins with increased stability. Due to the large penalty for burying uncompensated ionizable groups, salt bridges could help to limit the number of low free energy conformations of a molecule or complex and thus play a role in determining specificity (i.e., the uniqueness of a protein fold or protein-ligand binding geometry).  相似文献   

15.
Lindman S  Linse S  Mulder FA  André I 《Biochemistry》2006,45(47):13993-14002
Charge-charge interactions in proteins are important in a host of biological processes. Here we use 13C NMR chemical shift data for individual aspartate and glutamate side chain carboxylate groups to accurately detect site-specific protonation equilibria in a variant of the B1 domain of protein G (PGB1-QDD). Carbon chemical shifts are dominated by changes in the electron distribution within the side chain and therefore excellent reporters of the charge state of individual groups, and the data are of high precision. We demonstrate that it is possible to detect local charge interactions within this small protein domain that stretch and skew the chemical shift titration curves away from "ideal" behavior and introduce a framework for the analysis of such convoluted data to study local charge-charge interactions and electrostatic coupling. It is found that, due to changes in electrostatic potential, the proton binding affinity, Ka, of each carboxyl group changes throughout the titration process and results in a linearly pH dependent pKa value. This result could be readily explained by calculations of direct charge-charge interactions based on Coulomb's law. In addition, the slope of pKa versus pH was dependent on screening by salt, and this dependence allowed the selective study of charge-charge interactions. For PGB1-QDD, it was established that mainly differences in self-energy, and not direct charge-charge interactions, are responsible for shifted pKa values within the protein environment.  相似文献   

16.
Zhou HX  Dong F 《Biophysical journal》2003,84(4):2216-2222
The thermophilic Bacillus caldolyticus cold shock protein (Bc-Csp) differs from the mesophilic Bacillus subtilis cold shock protein B (Bs-CspB) in 11 of the 66 residues. Stability measurements of Schmid and co-workers have implicated contributions of electrostatic interactions to the thermostability. To further elucidate the physical basis of the difference in stability, previously developed theoretical methods that treat electrostatic effects in both the folded and the unfolded states were used in this paper to study the effects of mutations, ionic strength, and temperature. For 27 mutations that narrow the difference in sequence between Bc-Csp and Bs-CspB, calculated changes in unfolding free energy (Delta G) and experimental results have a correlation coefficient of 0.98. Bc-Csp appears to use destabilization of the unfolded state by unfavorable charge-charge interactions as a mechanism for increasing stability. Accounting for the effects of ionic strength and temperature on the electrostatic free energies in both the folded and the unfolded states, explanations for two important experimental observations are presented. The disparate ionic strength dependences of Delta G for Bc-Csp and Bs-CspB were attributed to the difference in the total charges (-2e and -6e, respectively). A main contribution to the much higher unfolding entropy of Bs-CspB was found to come from the less favorable electrostatic interactions in the folded state. These results should provide insight for understanding the thermostability of other thermophilic proteins.  相似文献   

17.
Lee CF  Makhatadze GI  Wong KB 《Biochemistry》2005,44(51):16817-16825
The ability to rationally engineer a protein with altered stability depends upon the detailed understanding of the role of noncovalent interactions in defining thermodynamic properties of proteins. In this paper, we used T. celer L30e as a model to address the question of the role of charge-charge interactions in defining the stability of this protein. A total of 26 single-site charge-to-alanine variants of this protein were generated, and the stability of these proteins was determined using thermal- and denaturant-induced unfolding. It was found that, although L30e is isolated from a thermophilic organism and is highly thermostable, some of the substitutions lead to a further increase in the transition temperature. Analysis of the effects of high ionic strength on the stabilities of L30e variants shows that the long-range charge-charge interactions are as important as the short-range (salt bridge) interactions. The changes in stabilities of the T. celer L30e protein variants were compared with the changes in the energy of charge-charge interactions calculated using different computational models. It was found that there is a good qualitative agreement between experimental and calculated data: for 70-80% (19-21 of 26, confidence p < 0.003) of the variants, computational models predict correctly the sign of the stability changes. In particular, computational models identify correctly those charged amino acid residue substitutions of which led to enhancement in thermostability. Thus, optimization of the charge-charge interactions might be a useful approach for the rational increase in protein stability.  相似文献   

18.
Booth J  Brown T  Vadhia SJ  Lack O  Cummins WJ  Trent JO  Lane AN 《Biochemistry》2005,44(12):4710-4719
DNA duplexes are stabilized by aminopropynyl modification of pyrimidines at the 5 position. A combination of thermodynamic analyses as a function of ionic strength, NMR, and molecular modeling has been applied to determine the origin of the stabilization. UV melting studies of a dodecamer bearing one, two, or three nonadjacent modified dU and dC and of a single dU(8) in the Dickerson-Drew dodecamer revealed that the modifications are essentially additive in terms of T(m), DeltaG, and DeltaH, and there is little difference between dU and dC. The free energy change was parsed into electrostatic and nonelectrostatic components, which showed a significant contribution from charge interactions at physiological ionic strength but also a nonelectrostatic contribution that arises in part from hydration. NMR spectroscopy of the modified Dickerson-Drew dodecamer revealed that the conformation of the duplexes is not significantly altered by the modifications, though (31)P NMR shows that the positive charge may affect ionic interactions with the oxygen atoms of the neighboring phosphates. The modified duplex showed significant hydration in both major and minor grooves. The single strands were also analyzed by NMR, which showed evidence of significant stacking interactions in the modified oligonucleotide. Parsing the energy contribution has shown that electrostatics and hydration can produce substantial increases in thermodynamic stability without significant changes in the conformation of the duplex state. These considerations have significance for the design of oligonucleotides used for hybridization.  相似文献   

19.
The numerical continuum electrostatic method presented previously (Warwicker, J. & Watson, H. C. (1982) J. Mol. Biol., 157, 671-679), is developed with an improved analysis of the protein-solvent system. Inclusion in the model of saturable solvent dielectric, and counterions is discussed and presented. A number of long-range electrostatic field calculations are made on bovine pancreatic trypsin inhibitor to demonstrate the differences between various solvent and counterion models. The long-range potential field, due to polar side-chain and alpha-helix dipole charge, is calculated for the glycolytic enzyme phosphoglycerate mutase. The positive potential in and around the catalytic cleft region is sufficiently large to suggest that it may play a role in long-range attraction of the enzyme's negatively charged substrates. Analogous systems with charge-charge interactions in solvent water are considered. It is suggested that a long-range enzyme-substrate attractive force-field may, in part, offset the repulsive energy arising from overlap of hydration shells between enzyme and substrate.  相似文献   

20.
Versatile peroxidase (VP) from the white-rot fungus Pleurotus eryngii is a high redox potential peroxidase of biotechnological interest able to oxidize a wide range of recalcitrant substrates including lignin, phenolic and non-phenolic aromatic compounds and dyes. However, the relatively low stability towards pH of this and other fungal peroxidases is a drawback for their industrial application. A strategy based on the comparative analysis of the crystal structures of VP and the highly pH-stable manganese peroxidase (MnP4) from Pleurotus ostreatus was followed to improve the VP pH stability. Several interactions, including hydrogen bonds and salt bridges, and charged residues exposed to the solvent were identified as putatively contributing to the pH stability of MnP4. The eight amino acid residues responsible for these interactions and seven surface basic residues were introduced into VP by directed mutagenesis. Furthermore, two cysteines were also included to explore the effect of an extra disulfide bond stabilizing the distal Ca2+ region. Three of the four designed variants were crystallized and new interactions were confirmed, being correlated with the observed improvement in pH stability. The extra hydrogen bonds and salt bridges stabilized the heme pocket at acidic and neutral pH as revealed by UV-visible spectroscopy. They led to a VP variant that retained a significant percentage of the initial activity at both pH 3.5 (61% after 24 h) and pH 7 (55% after 120 h) compared with the native enzyme, which was almost completely inactivated. The introduction of extra solvent-exposed basic residues and an additional disulfide bond into the above variant further improved the stability at acidic pH (85% residual activity at pH 3.5 after 24 h when introduced separately, and 64% at pH 3 when introduced together). The analysis of the results provides a rational explanation to the pH stability improvement achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号