首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 773 毫秒
1.
Gene imprinting is a widely observed epigenetic phenomenon in maize endosperm; however, whether it also occurs in the maize embryo remains controversial. Here, we used high‐throughput RNA sequencing on laser capture microdissected and manually dissected maize embryos from reciprocal crosses between inbred lines B73 and Mo17 at six time points (3–13 days after pollination, DAP) to analyze allelic gene expression patterns. Co‐expression analysis revealed sequential gene activation during maize embryo development. Gene imprinting was observed in maize embryos, and a greater number of imprinted genes were identified at early embryo stages. Sixty‐four strongly imprinted genes were identified (at the threshold of 9:1) on manually dissected embryos 5–13 DAP (more imprinted genes at 5 DAP). Forty‐one strongly imprinted genes were identified from laser capture microdissected embryos at 3 and 5 DAP (more imprinted genes at 3 DAP). Furthermore, of the 56 genes that were completely imprinted (at the threshold of 99:1), 36 were not previously identified as imprinted genes in endosperm or embryos. In situ hybridization demonstrated that most of the imprinted genes were expressed abundantly in maize embryonic tissue. Our results shed lights on early maize embryo development and provide evidence to support that gene imprinting occurs in maize embryos.  相似文献   

2.
Seed development in dicots includes early endosperm proliferation followed by growth of the embryo to replace the endosperm. Endosperm proliferation in dicots not only provides nutrient supplies for subsequent embryo development but also enforces a space limitation, influencing final seed size. Overexpression of Arabidopsis SHORT HYPOCOTYL UNDER BLUE1::uidA (SHB1:uidA) in canola produces large seeds. We performed global analysis of the canola genes that were expressed and influenced by SHB1 during early endosperm proliferation at 8 days after pollination (DAP) and late embryo development at 13 DAP. Overexpression of SHB1 altered the expression of 973 genes at 8 DAP and 1035 genes at 13 DAP. We also surveyed the global SHB1 association sites, and merging of these sites with the RNA sequencing data identified a set of canola genes targeted by SHB1. The 8‐DAP list includes positive and negative genes that influence endosperm proliferation and are homologous to Arabidopsis MINI3, IKU2, SHB1, AGL62, FIE and AP2. We revealed a major role for SHB1 in canola endosperm development based on the dynamics of SHB1‐altered gene expression, the magnitude of SHB1 chromatin immunoprecipitation enrichment and the over‐representation of eight regulatory genes for endosperm development. Our studies focus on an important agronomic trait in a major crop for global agriculture. The datasets on stage‐specific and SHB1‐induced gene expression and genes targeted by SHB1 also provide a useful resource in the field of endosperm development and seed size engineering. Our practices in an allotetraploid species will impact similar studies in other crop species.  相似文献   

3.
Endosperm mutants are critical to the studies on both starch synthesis and metabolism and genetic improvement of starch quality in maize. In the present study, a novel maize endosperm mutant A0178 of natural variation was used as the experimental material and identified and then characterized. Through phenotypic identification, genetic analysis, main ingredients measurement and embryo rescue, development of genetic mapping population from A0178, the endosperm mutant gene was located. The results showed that the mutant exhibited extremely low germination ability as attributed to the inhibited embryo development, and amounts of sugars were accumulated in the mutant seeds and more sugars content was detected at 23 days after pollination (DAP) in A0178 than B73. Employing genetic linkage analysis, the mutant trait was mapped in the bin 5.04 on chromosome 5. Sequence analysis showed that two sites of base transversion and insertion presented in the protein coding region and non-coding region of the mutant brittle-1 (bt1), the adenylate translocator encoding gene involved in the starch synthesis. The single base insertion in the coding region cause frameshift mutation, early termination and lose of function of Brittle-1 (BT1). All results suggested that bt1 is a novel allelic gene and the causal gene of this endosperm mutant, providing insights on the mechanism of endosperm formation in maize.  相似文献   

4.
Two novel maize genes expressed specifically in the central cell of the female gametophyte and in two compartments of the endosperm (the basal endosperm transfer layer and the embryo surrounding region) were characterized. The ZmEBE (embryo sac/basal endosperm transfer layer/embryo surrounding region) genes were isolated by a differential display between the upper and the lower half of the kernel at 7 days after pollination (DAP). Sequence analysis revealed ORFs coding for two closely related proteins of 304 amino acids (ZmEBE-1) and 286 amino acids (ZmEBE-2). This size difference was due to differences in the splicing of the two genes. Both protein sequences showed significant similarity to the DUF239 family of Arabidopsis, a group of 22 proteins of unknown function, a small number of which are putative peptidases. ZmEBE genes had a novel cell type-specific expression pattern in the central cell before and the resulting endosperm after fertilization. RT-PCR analysis showed that the expression of both genes started before pollination in the central cell and continued in the kernel up to 20 DAP with a peak at 7 DAP. In situ hybridization revealed that the expression in the kernel was restricted to the basal transfer cell layer and the embryo surrounding region of the endosperm. The expression of ZmEBE-1 was at least 10 times lower than that of ZmEBE-2. Similarly to other genes expressed in the endosperm, ZmEBE-1 expression was subject to a parent-of-origin effect, while no such effect was detected in ZmEBE-2. Sequence analysis of upstream regions revealed a potential cis element of 33 bp repeated 7 times in ZmEBE-1 and ZmEBE-2 between positions -900 and -100. The 1.6 kb ZmEBE-2 upstream sequence containing the seven R7 elements was able to confer expression in the basal endosperm to a Gus reporter gene. These data indicate that ZmEBE is potentially involved in the early development of specialized domains of the endosperm and that this process is possibly already initiated in the central cell, which is at the origin of the endosperm.  相似文献   

5.

Background and Aims

Cytokinins are a major group of plant hormones and are associated with various developmental processes. Developing caryopses of maize have high levels of cytokinins, but little is known about their spatial and temporal distribution. The localization and quantification of cytokinins was investigated in maize (Zea mays) caryopsis from 0 to 28 d after pollination together with the expression and localization of isopentenyltransferase ZmIPT1 involved in cytokinin biosynthesis and ZmCNGT, the gene putatively involved in N9-glucosylation.

Methods

Biochemical, cellular and molecular approaches resolved the overall cytokinin profiles, and several gene expression assays were used for two critical genes to assess cytokinin cell-specific biosynthesis and conversion to the biologically inactive form. Cytokinins were immunolocalized for the first time in maize caryopses.

Key Results

During the period 0–28 d after pollination (DAP): (1) large quantities of cytokinins were detected in the maternal pedicel region relative to the filial tissues during the early stages after fertilization; (2) unpollinated ovules did not accumulate cytokinins; (3) the maternal nucellar region showed little or no cytokinin signal; (4) the highest cytokinin concentrations in filial endosperm and embryo were detected at 12 DAP, predominantly zeatin riboside and zeatin-9-glucoside, respectively; and (5) a strong cytokinin immuno-signal was detected in specific cell types in the pedicel, endosperm and embryo.

Conclusions

The cytokinins of developing maize caryopsis may originate from both local syntheses as well as by transport. High levels of fertilization-dependent cytokinins in the pedicel suggest filial control on metabolism in the maternal tissue; they may also trigger developmental programmed cell death in the pedicel.  相似文献   

6.
  • The process of alternative splicing is critical for the regulation of growth and development of plants. Thus far, little is known about the role of alternative splicing in the regulation of maize (Zea mays L.) endosperm development.
  • RNA sequencing (RNA‐seq) data of endosperms from two maize inbred lines, Mo17 and Ji419, at 15 and 25 days after pollination (DAP), respectively, were used to identify genes that were alternatively spliced during endosperm development. Intron retention (IR) in GRMZM2G005887 was further validated using PCR and re‐sequencing technologies.
  • In total, 49,000 alternatively spliced events and ca. 20,000 alternatively spliced genes were identified in the two maize inbred lines. Of these, 30 genes involved in amino acid biosynthesis and starch biosynthesis were identified, with IR occurring only in a specific sample, and were significantly co‐expressed with ten well‐known genes related to maize endosperm development. Moreover, IR in GRMZM2G005887, which encodes a cysteine synthase, was confirmed to occur only in the endosperm of Mo17 at 15 DAP, resulting in the retention of a 121‐bp fragment in its 5′ untranslated region. Two cis‐acting regulatory elements, CAAT‐box and TATA‐box were observed in the retained fragment in Mo17 at 15 DAP; this could regulate the expression of this gene and influence endosperm development.
  • The results suggest that the 30 genes with IR identified herein might be associated with maize endosperm development, and are likely to play important roles in the developing maize endosperm.
  相似文献   

7.
8.
9.
Seed storage proteins are thought to be accumulated exclusively in the cell-expansion phase of embryogenesis and metabolized during germination and seedling growth. Here we show by a sensitive immunohistological technique that the two Vicia faba L. storage proteins vicilin and legumin are accumulated in substantial amounts in the suspensor and coenocytic endosperm and to a lesser extent in the mid-globular embryo. Both proteins appear and disappear at precise stages specific for each tissue. In the endosperm the accumulation starts around 12 d after pollination (DAP). After a maximum attained at 14–15 DAP, storage proteins are degraded within about 4 d. Accumulation is restricted to that part of the endosperm which covers the embryo and displays the highest levels of endoploidy (maximum 96n). In all other parts of the endosperm, storage proteins do not appear to accumulate, although storage-protein-specific mRNA synthesis takes place. In the suspensor, storage proteins are already observed at 6 DAP and disappear very quickly at approximately 10 DAP. Low amounts of legumin and vicilin are also detectable in the mid-globular embryo, but disappear completely as the embryo enters the heart stage. We conclude that storage proteins of Vicia faba accumulated transiently during early seed development are used as nutritive reserves for the growing embryo.Abbreviation DAP days after pollination Dedicated to Prof. Rigomar Rieger in the occasion of his 65th birthdayThis research was supported by the Ministry of Science and Research, Land Sachsen-Anhalt, Germany. U.W. acknowledges additional support by the Fonds der Chemischen Industrie.  相似文献   

10.
11.
Embryo‐specific mutants in maize define a unique class of genetic loci that affect embryogenesis without a significant deleterious impact on endosperm development. Here we report the characterization of an embryo specific12 (emb12) mutant in maize. Embryogenesis in the emb12 mutants is arrested at or before transition stage. The mutant embryo at an early stage exhibits abnormal cell structure with increased vacuoles and dramatically reduced internal membrane organelles. In contrast, the mutant endosperm appears normal in morphology, cell structure, starch, lipid and protein accumulation. The Emb12 locus was cloned by transposon tagging and predicts a protein with a high similarity to prokaryotic translation initiation factor 3 (IF3). EMB12–GFP fusion analysis indicates that EMB12 is localized in plastids. The RNA in situ hybridization and protein immunohistochemical analyses indicate that a high level of Emb12 expression localizes in the embryo proper at early developmental stages and in the embryo axis at later stages. Western analysis indicates that plastid protein synthesis is impaired. These results indicate that Emb12 encodes the plastid IF3 which is essential for embryogenesis but not for endosperm development in maize.  相似文献   

12.
13.
Mitochondria are required for seed development, but little information is available about their function and role during this process. We isolated the mitochondria from developing maize (Zea mays L. cv. Nongda 108) embryos and investigated the mitochondrial membrane integrity and respiration as well as the mitochondrial proteome using two proteomic methods, the two‐dimensional gel electrophoresis (2‐DE) and sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH). Mitochondrial membrane integrity and respiration were maintained at a high level up to 21 days after pollination (DAP) and decreased thereafter, while total mitochondrial number, cytochrome c oxidase activity and respiration per embryo exhibited a bell‐shaped change with peaks at 35–45 DAP. A total of 286 mitochondrial proteins changed in abundance during embryo development. During early stages of seed development (up to 21 DAP), proteins involved in energy production, basic metabolism, protein import and folding as well as removal of reactive oxygen species dominated, while during mid or late stages (35–70 DAP), some stress‐ and detoxification‐related proteins increased in abundance. Our study, for the first time, depicted a relatively comprehensive map of energy production by mitochondria during embryo development. The results revealed that mitochondria were very active during the early stages of maize embryo development, while at the late stages of development, the mitochondria became more quiescent, but well‐protected, presumably to ensure that the embryo passes through maturation, drying and long‐term storage. These results advance our understanding of seed development at the organelle level.  相似文献   

14.
Plants produce female gametes through mitotic division in the multicellular, meioticolly reduced (haploid) megagametophyte phase. In flowering plants, the megagametophyte is the embryo sac; female gametogenesis or megagametogenesis comprises the ontogeny of the embryo sac. As a step toward understanding the role of embryo sac-expressed genes in megagametogenesis, development of normal, haploid embryo sacs in maize was compared with development of embryo sacs deficient for various small, cytologically defined chromosomal regions. This analysis allowed us to screen 18% of the maize genome, including most of chromosome arms 1L and 3L, for phenotypes due specifically to deletion of essential, embryo sac-expressed genes. Confocal laser scanning microscopy of whole developing embryo sacs confirmed that normal megagameto-genesis in maize is of the highly stereotyped, bipolar Polygonum type common to most flowering plants examined to date. Deficiency embryo sac phenotypes were grouped into three classes, suggesting each deficient region contained one or more of at least three basic types of haploid-expressed gene functions. In the first group, three chromosome regions contained genes required for progression beyond early, free-nuclear stages of embryo sac development. Maintaining synchrony between events at the two poles of the embryo sac required genes located within two deficiencies. Finally, three chromosome regions harbored loci required for generation of normal cellular patterns typical of megagametogenesis. This analysis demonstrates that the embryo sac first requires postmeiotic gene expression at least as early as the first postmeiotic mitosis. Furthermore, our data show that a variety of distinct, genetically separable programs require embryo sac-expressed gene products during megagametogenesis, and suggest the nature of some of those developmental mechanisms. © 1995 Wiley-Liss, Inc.  相似文献   

15.
Cytokinins (CKs) are plant hormones that regulate a large number of processes associated with plant growth and development such as induction of stomata opening, delayed senescence, suppression of auxin-induced apical dominance, signaling of nitrogen availability, differentiation of plastids and control of sink strength. In maize, CKs are thought to play an important role in establishing seed size and increasing seed set under normal and unfavorable environmental conditions therefore influencing yield. In recent years, the discovery of isopentenyl transferase (IPT) genes in plants has shed light on the CK biosynthesis pathway in plants. In an effort to increase our understanding of the role played by CKs in maize development and sink-strength, we identified several putative IPT genes using a bioinformatics approach. We focused our attention on one gene in particular, ZmIPT2, because of its strong expression in developing kernels. The expression of the gene and its product overlays the change in CK levels in developing kernels suggesting a major role in CK biosynthesis for kernel development. We demonstrate that at 8–10 days after pollination (DAP) the endosperm and especially the basal transfer cell layer (BETL) is a major site of ZmIPT2 expression, and that this expression persists in the BETL and the developing embryo into later kernel development stages. We show that ectopic expression of ZmIPT2 in calli and in planta created phenotypes consistent with CK overproduction. We also show that ZmIPT2 preferentially uses ADP and ATP over AMP as the substrates for dimethylallyl diphosphate (DMAPP) IPT activity. The expression pattern of ZmIPT2 in the BETL, endosperm and embryo during kernel development will be discussed with an emphasis on the suggested role of CKs in determining sink-strength and grain production in crop plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Maturing maize kernels are a rich source of cytokinins and cytokinin oxidase/dehydrogenase activity, but the relationship between kernel development, cytokinin levels, the induction of cytokinin oxidase/dehydrogenase and the control of cell division is not known. Using polyclonal antibodies raised against recombinant maize cytokinin oxidase/dehydrogenase, we investigated the appearance of cytokinin oxidase/dehydrogenase (ZmCKX1) in both hybrid and inbred maize kernels as a function of time after pollination. Cytokinin oxidase/dehydrogenase was detected by five days after pollination (5 DAP) in a hybrid line, but significantly later in inbred lines. The bulk of the cytokinin oxidase/dehydrogenase detected was associated with the embryo and placental/chalazal region of the kernels rather than with the endosperm. We identified additional maize sequences in the database that appear to encode cytokinin oxidase/dehydrogenase gene family members and correspond closely with a subset of the ten cytokinin oxidase/dehydrogenase genes identified in the rice genome. Gene expression of Zmckx1 was examined by RT-PCR in immature kernels and compared with that of three putative maize cytokinin oxidase/dehydrogenase homologs. We conclude that the manipulation of kernel cytokinin levels to increase endosperm cell division will require a more detailed understanding of specific expression patterns and localization of multiple cytokinin oxidase/dehydrogenases within kernels.  相似文献   

17.
Seed water content is high during early development of tomato seeds (10–30 d after pollination (DAP)), declines at 35 DAP, then increases slightly during fruit ripening (following 50 DAP). The seed does not undergo maturation drying. Protein content during seed development peaks at 35 DAP in the embryo, while in the endosperm it exhibits a triphasic accumulation pattern. Peaks in endosperm protein deposition correspond to changes in endosperm morphology (i.e. formation of the hard endosperm) and are largely the consequence of increases in storage proteins. Storage-protein deposition commences at 20 DAP in the embryo and endosperm; both tissues accumulate identical proteins. Embryo maturation is complete by 40 DAP, when maximum embryo protein content, size and seed dry weight are attained. Seeds are tolerant of premature drying (fast and slow drying) from 40 DAP.Thirty-and 35-DAP seeds when removed from the fruit tissue and imbibed on water, complete germination by 120 h after isolation. Only seeds which have developed to 35 DAP produce viable seedlings. The inability of isolated 30-DAP seed to form viable seedlings appears to be related to a lack of stored nutrients, since the germinability of excised embryos (20 DAP and onwards) placed on Murashige and Skoog (1962, Physiol. Plant. 15, 473–497) medium is high. The switch from a developmental to germinative mode in the excised 30- and 35-DAP imbibed seeds is reflected in the pattern of in-vivo protein synthesis. Developmental and germinative proteins are present in the embryo and endosperm of the 30- and 35-DAP seeds 12 h after their isolation from the fruit. The mature seed (60 DAP) exhibits germinative protein synthesis from the earliest time of imbibition. The fruit environment prevents precocious germination of developing seeds, since the switch from development to germination requires only their removal from the fruit tissue.Abbreviations DAP days after pollination - kDa kilodaltons - SP1-4 storage proteins 1–4 - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - HASI hours after seed isolation - MS medium Murashige and Skoog (1962) medium This work is supported by National Science and Engineering Research Council of Canada grant A2210 to J.D.B.  相似文献   

18.
19.
An HD‐Zip IV gene from wheat, TaGL9, was isolated using a Y1H screen of a cDNA library prepared from developing wheat grain. TaGL9 has an amino acid sequence distinct from other reported members of the HD‐Zip IV family. The 3′ untranslated region of TaGL9 was used as a probe to isolate a genomic clone of the TaGL9 homologue from a BAC library prepared from Triticum durum L. cv. Langdon. The full‐length gene containing a 3‐kb‐long promoter region was designated TdGL9H1. Spatial and temporal activity of TdGL9H1 was examined using promoter‐GUS fusion constructs in transgenic wheat, barley and rice plants. Whole‐mount and histochemical GUS staining patterns revealed grain‐specific expression of TdGL9H1. GUS expression was initially observed between 3 and 8 days after pollination (DAP) in embryos at the globular stage and adjacent to the embryo fraction of the endosperm. Expression was strongest in the outer cell layer of the embryo. In developed wheat and barley embryos, strong activity of the promoter was only detected in the main vascular bundle of the scutellum, which is known to be responsible for the uptake of nutrients from the endosperm during germination and the endosperm‐dependent phase of seedling development. Furthermore, this pattern of GUS staining was observed in dry seeds several weeks after harvesting but quickly disappeared during imbibition. The promoter of this gene could be a useful tool for engineering of early seedling vigour and protecting the endosperm to embryo axis pathway from pathogens during grain desiccation and storage.  相似文献   

20.
 The development of the embryo and endosperm has been investigated in an intraspecific Tulipa gesneriana cross and in the incongruent cross T. gesneriana ×T. agenensis at intervals of 10 days, from 12 to 82 days after pollination (DAP). In both tulip crosses, the zygote gives rise to an apparently undifferentiated cell mass, the proembryonal cell mass, on which a suspensor then develops. Subsequently, a globular embryo is formed on top of the suspensor. This embryo finally elongates, giving rise to a spindle-shaped embryo. The cellular endosperm fills the whole embryo sac in mature seeds, except for a region immediately around the embryo. In both crosses, aberrant developments were found. In the intraspecific T. gesneriana cross, the pollen tubes did not open in a number of ovules. In other ovules, the pollen tubes seemed to have opened, but an embryo or endosperm was not found or only endosperm was observed. In the cross T. gesneriana ×T. agenensis, fewer pollen tubes entered the ovules than in the intraspecific T. gesneriana cross. The ovules with embryo and endosperm formation of the incongruent interspecific cross showed, in general, retarded development in comparison with the intraspecific T. gesneriana cross. The first globular embryos and spindle-shaped embryos were found at the later fixation dates and the relatively lower number of spindle-shaped embryos at 82 DAP had a shorter average length. The number of ovules with deformations in embryo and/or endosperm development was also higher in the cross T. gesneriana × T. agenensis in comparison with the intraspecific T. gesneriana cross. Between 87% and 100% of the ovules with embryo and endosperm development showed normal development in the intraspecific T. gesneriana cross, while in the incongruent interspecific cross, from 22 DAP, between 17% and 56% of the ovules showed normal development. Of those ovules with aberrations in embryo and/or endosperm formation, about 80% had a deformed endosperm, of which more than 50% also contained a deformed embryo. Embryos of the incongruent cross might be saved by the application of embryo rescue techniques. Received: 10 December 1996 / Revision accepted: 23 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号