首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dithioformato [Re{η2-SC(H)S}(NO)P3]BPh4 (1), thioformamido [Re{η2-RNC(H)S}(NO)P3]BPh4 (2) (R = Et, p-tolyl), formamido [Re{η2-PhNC(H)O}(NO)P3]BPh4 (3) and formamidinato [Re{η2-p-tolylNC(H)Np-tolyl}(NO)P3]BPh4 (4) (P = PPh2OEt) complexes were prepared by allowing the hydride ReH2(NO)P3 to react first with triflic acid and then with the appropriate heteroallene CS2, RNCS, PhNCO and p-tolylNCNp-tolyl. Treatment of the ReH2(NO)L(PPh3)2 [L = P(OEt)3, PPh(OEt)2] and ReH2(NO)(PPh3)3 hydrides first with triflic acid and then with isothiocyanate RNCS (R = Et, p-tolyl) gave the [Re{η2-RNC(H)S}(NO){P(OEt)3}(PPh3)2]BPh4 (5, 6) and [Re(η2-RNC(H)S)(NO)(PPh3)3]BPh4 (7) derivatives. Depending on the nature of the phosphite, instead, the reaction of ReH2(NO)L(PPh3)2 and ReH2(NO)(PPh3)3 hydrides first with CF3SO3H and then with isocyanate R1NCO (R1 = Ph, p-tolyl) gave the chelate [Re{η2-R1NC(H)O}(NO){P(OEt)3}(PPh3)2]BPh4 (8) and [Re{η2-R1NC(H)O}(NO)(PPh3)3]BPh4(10) complexes with P(OEt)3 or PPh3, while the η1-coordinate [Re{η1-RNC(H)S}(NO){PPh(OEt)2}2(PPh3)2]BPh4 (9) derivative was obtained with the PPh(OEt)2 phosphite ligand. η1-Coordinate dithioformato [Re{η1-SC(H)S}(NO){PPh(OEt)2}2(PPh3)2]BPh4 (11) and formato [Re{η1-OC(H)O}(NO){PPh(OEt)2}2(PPh3)2]BPh4 (12) complexes, as well as the formamidinato [Re{η2-p-tolylNC(H)Np-tolyl}(NO){P(OEt)3}(PPh3)2]BPh4 (13) derivative were also prepared.  相似文献   

2.
The reactions of [Pt2(μ-S)2(PPh3)4] with α,ω-dibromoalkanes Br(CH2)nBr (n = 4, 5, 6, 8, 12) gave mono-alkylated [Pt2(μ-S){μ-S(CH2)nBr}(PPh3)4]+ and/or di-alkylated [Pt2(μ-S(CH2)nS}(PPh3)4]2+ products, depending on the alkyl chain length and the reaction conditions. With longer chains (n = 8, 12), intramolecular di-alkylation does not proceed in refluxing methanol, with the mono-alkylated products [Pt2(μ-S){μ-S(CH2)nBr}(PPh3)4]+ being the dominant products when excess alkylating agent is used. The bridged complex [{Pt2(μ-S)2(PPh3)4}2{μ-(CH2)12}]2+ was accessible from the reaction of [Pt2(μ-S)2(PPh3)4] with 0.5 mol equivalents of Br(CH2)12Br. [Pt2(μ-S){μ-S(CH2)4Br}(PPh3)4]+ can be cleanly isolated as its BPh4 salt, but undergoes facile intramolecular di-alkylation at −18 °C, giving the known species [Pt2(μ-S(CH2)4S}(PPh3)4]2+. The reaction of I(CH2)6I with [Pt2(μ-S)2(PPh3)4] similarly gives [Pt2(μ-S){μ-S(CH2)6I}(PPh3)4]+, which is fairly stable towards intramolecular di-alkylation once isolated. These reactions provide a facile route to ω-haloalkylthiolate complexes which are poorly defined in the literature. X-ray crystal structures of [Pt2(μ-S){μ-S(CH2)5Br}(PPh3)4]BPh4 and [Pt2(μ-S(CH2)5S}(PPh3)4](BPh4)2 are reported, together with a study of these complexes by electrospray ionisation mass spectrometry. All complexes fragment by dissociation of PPh3 ligands, and the bromoalkylthiolate complexes show additional fragment ions [Pt2(μ-S){μ-S(CH2)n−2CHCH2}(PPh3)m]+ (m = 2 or 3; m ≠ 4), most significant for n = 4, formed by elimination of HBr.  相似文献   

3.
From the interaction between azole-type ligands L and AgX (X = NO3 or ClO4) or [AgX(PPh3)n] (X = Cl, n = 3; X = MeSO3, n = 2), new ionic mononuclear [Ag(L)2]X and [Ag(PPh3)3L][X] or neutral mono-([Ag(PPh3)nL(X)]) or di-nuclear ([{Ag(PPh3)(L)(μ-X)}2]) complexes have been obtained which have been characterized through elemental analysis, conductivity measurements, IR, 1H NMR and, in some cases, also by 31P{1H} NMR spectroscopy, and single-crystal X-ray studies. Stoichiometries and molecular structures are dependent on the nature of the azole (steric hindrance and basicity), of the counter ion, and on the number of the P-donor ligands in the starting reactants. Solution data are consistent with partial dissociation of the complexes, occurring through breaking of both Ag-N and Ag-P bonds.  相似文献   

4.
The metalloligand [Pt2(μ-S)2(PPh3)4] reacts with Bi(S2CNEt2)3 or Bi(S2COEt)3 in methanol to produce the orange cationic adducts [Pt2(μ-S)2(PPh3)4Bi(S2CNEt2)2]+ and [Pt2(μ-S)2(PPh3)4Bi(S2COEt)2]+, respectively, isolated as their hexafluorophosphate salts. An X-ray structure determination on [Pt2(μ-S)2(PPh3)4Bi(S2CNEt2)2]PF6 reveals the presence of a six-coordinated bismuth centre with an approximately nido-pentagonal bipyramidal coordination geometry. Fragmentation pathways for both complexes have been probed using electrospray ionisation mass spectrometry; ions [Pt2(μ-S)2(PPh3)2Bi(S2CXEtn)2]+ (X = O, n = 1, X = N, n = 2) are formed by selective loss of two PPh3 ligands, and at higher cone voltages the species [(Ph3P)PtS2Bi]+ is observed. Ions formed by loss of CS2 are also observed for the xanthate but not the dithiocarbamate ions.  相似文献   

5.
Reactions of [PPh4][(η5-C5Me5)WS3] with equimolar M′Cl2 (M′ = Zn, Cd) in MeCN or 0.5 equiv. of HgCl2 in DMF afforded two binuclear clusters [PPh4][(η5-C5Me5)WS3(M′Cl2)] (1: M′ = Zn; 2: M′ = Cd) and one trinuclear cluster [{(η5-C5Me5)WS3}2Hg] (3). Compounds 1-3 were characterized by elemental analysis, IR, UV-Vis, 1H NMR and X-ray crystallography. Compound 1 may be viewed as a 1:1 composite of [PPh4][(η5-C5Me5)WS3] and ZnCl2, in which one [(η5-C5Me5)WS3] anion binds a ZnCl2 moiety via two μ-S atoms. In the structure of 3, two [(η5-C5Me5)WS3] anions coordinate the central Hg atom via two μ-S atoms, forming an unique bent linear structure. In addition, internal redox reactions of [PPh4][(η5-C5Me5)WS3] under the presence of M′Cl2 (M′ = Zn, Cd, Hg) in high concentrations were discussed.  相似文献   

6.
Reactions of [Pt2(μ-S)2(PPh3)4] with the diarylthallium(III) bromides Ar2TlBr [Ar = Ph and p-ClC6H4] in methanol gave good yields of the thallium(III) adducts [Pt2(μ-S)2(PPh3)4TlAr2]+, isolated as their salts. The corresponding selenide complex [Pt2(μ-Se)2(PPh3)4TlPh2]BPh4 was similarly synthesised from [Pt2(μ-Se)2(PPh3)4], Ph2TlBr and NaBPh4. The reaction of [Pt2(μ-S)2(PPh3)4] with PhTlBr2 gave [Pt2(μ-S)2(PPh3)4TlBrPh]+, while reaction with TlBr3 gave the dibromothallium(III) adduct [Pt2(μ-S)2(PPh3)4TlBr2]+[TlBr4]. The latter complex is a rare example of a thallium(III) dihalide complex stabilised solely by sulfur donor ligands. X-ray crystal structure determinations on the complexes [Pt2(μ-S)2(PPh3)4TlPh2]BPh4, [Pt2(μ-S)2(PPh3)4TlBrPh]BPh4 and [Pt2(μ-S)2(PPh3)4TlBr2][TlBr4] reveal a greater interaction between the thallium(III) centre and the two sulfide ligands on stepwise replacement of Ph by Br, as indicated by shorter Tl-S and Pt?Tl distances, and an increasing S-Tl-S bond angle. Investigations of the ESI MS fragmentation behaviour of the thallium(III) complexes are reported.  相似文献   

7.
The reactions of the Fe(II) and Ru(II) halogenide complexes [Fe(PPh3)2Br2], [Fe(NCCH3)2Br2], [Ru(PPh3)3Cl2], and [Ru(dmso)4Cl2] with GaCp and AlCp, respectively, are investigated. The reactions of [FeBr2L2] with ECp exclusively proceed via Cp transfer, leading to [FeCp(GaCp)(GaBr2)(PPh3)] (1) (L = PPh3, E = Ga), [FeCp(GaCp)2 (GaBr2)] (2) (L = NCCH3, E = Ga) and [FeCp(μ3-H)(κ2-(C6H4)PPh2)(AlCp)(AlBr2)] (3) (L = PPh3, E = Al), the latter of which is formed via orthometallation of one PPh3 ligand. The reaction of [Ru(dmso)4Cl2] leads to the homoleptic complex [Ru(GaCp)6Cl2] (4) in high yields, while [Ru(PPh3)3Cl2] gives 4 in rather low yields. The reason for this difference in reactivity is investigated and it is shown that Cp transfer and orthometallation are the limiting side reactions of the reaction of [Ru(PPh3)3Cl2] with GaCp. All compounds were characterized by NMR spectroscopy, and single crystal X-ray diffraction studies were performed for 1, 3, and 4.  相似文献   

8.
The reactivity of the metalloligand [Pt2(μ-S)2(PPh3)4] towards a variety of indium(III) substrates has been explored. Reaction with excess In(NO3)3 and halide (KBr or NaI) gave the four-coordinate adducts [Pt2(μ-S)2(PPh3)4InX2]+[InX4] (X = Br, I). An X-ray structure determination on the iodo complex revealed a slightly distorted tetrahedral coordination geometry at indium. In contrast, reaction of [Pt2(μ-S)2(PPh3)4] with indium(III) chloride was more complex; the ion [Pt2(μ-S)2(PPh3)4InCl2]+ was initially observed in solution (using ESI mass spectrometry), and isolated as its BPh4 salt. Analysis of [Pt2(μ-S)2(PPh3)4InCl2]+[BPh4] by ESI MS showed the parent cation when analysed in MeCN solution. However in solutions containing methanol, partial solvolysis occurred to give the di-indium species [{Pt2(μ-S)2(PPh3)4InCl(OMe)}2]2+ (proposed to contain an In2(μ-OMe)2 unit with five-coordinate indium) and its fragment ion [Pt2(μ-S)2(PPh3)4InCl(OMe)]+. Reaction of [Pt2(μ-S)2(PPh3)4] with InCl3·3H2O, 8-hydroxyquinoline (HQ) and trimethylamine in methanol gave the adduct [Pt2(μ-S)2(PPh3)4InQ2]+, isolated as its PF6 salt. The same cationic complex is formed when [Pt2(μ-S)2(PPh3)4] is reacted with InQ3 in methanol, but in this case the product is contaminated with the mononuclear complex [(Ph3P)2PtQ]+ formed by disintegration of the trinuclear complex [Pt2(μ-S)2(PPh3)4InQ2]+ with byproduct Q. [(Ph3P)2PtQ]+BPh4 was independently prepared from cis-[PtCl2(PPh3)2] and HQ/Me3N, and is the first example of a platinum 8-hydroxyquinolinate complex containing phosphine ligands.  相似文献   

9.
《Inorganica chimica acta》2006,359(7):2309-2313
Deprotonated 3-(2-fluorophenyl)-1-(4-acetylphenyl)triazene reacts with Hg(CH3COO)2 in tetrahydrofuran to give light yellow crystals of [HgII(RPhNNNPhR′)2]n (R = acetyl, R′ = F). The new polymeric triazenide complex of Hg(II) belongs to the monoclinic space group C2/c. The lattice of [HgII(RPhNNNPhR′)2]n can be viewed as a bidimensional assembly of planar tectons [HgII(RPhNNNPhR′)2], occurring through metallocene alike Hg(II)-η22-arene π-interactions along the crystallographic axis b and non classical C-H?O bonding along the axis a.  相似文献   

10.
Mixed-ligand complexes [ReBr(CO)2(CNR)nL3−n] (1-4) [R = 4-CH3OC6H4, 4-CH3C6H4, C(CH3)3; L = P(OEt)3, PPh(OEt)2; n = 1, 2] were prepared by allowing carbonyl compounds [ReBr(CO)4L] and [ReBr(CO)3L2] to react with an excess of isocyanide. Treatment of these bromocomplexes [ReBr(CO)2(CNR)nL3−n] with SnCl2 · 2H2O yielded the trichlorostannyl derivatives [Re(SnCl3)(CO)2(CNR)nL3−n] (5-8). Trihydridestannyl complexes [Re(SnH3)(CO)2(CNR)nL3−n] (9-12) were prepared by allowing trichlorostannyl compounds 5-8 to react with NaBH4 in ethanol. The trimethylstannyl derivative [Re(SnMe3)(CO)2(CNC6H4-4-CH3){PPh(OEt)2}2] (13b) was also prepared by treating [Re(SnCl3)(CO)2(CNC6H4-4-CH3){PPh(OEt)2}2] with an excess of MgBrMe in diethylether. Reaction of the tin trihydride complexes [Re(SnH3)(CO)2(CNR)nL3−n] (9-12) with CO2 (1 atm) led to dinuclear OH-bridging bis(formate) derivatives [Re{Sn(OC(H)O)2(μ-OH)}(CO)2(CNR)nL3−n]2 (14, 15). The complexes were characterised spectroscopically (IR, 1H, 31P, 13C, 119Sn NMR) and by X-ray crystal structure determination of [Re(SnH3)(CO)2{CNC(CH3)3}{PPh(OEt)2}2] (10b).  相似文献   

11.
The reaction of [C5H4(CH2)nX]Tl (1: n = 2, X = NMe2, OMe, CN; n = 3, X = NMe2) with [(η6-C6H6)RuCl(μ-Cl)]2, 2, afforded the sandwich compounds [{η5-C5H4(CH2)nX}Ru(η6-C6H6)]PF6, 3, and [η5-C5H4(CH2)nX]2Ru, 4. Photolytic cleavage of 3 in acetonitrile afforded the tethered products [{η5N-C5H4(CH2)nX}Ru(CH3CN)2]PF6, 5.  相似文献   

12.
The syntheses and structures of homo- and heteronuclear biscarbene complexes with bithiophene spacers were investigated. The complexes were synthesized by lithiation of bithiophene followed by metallation using combinations of the metal precursors MnMeCp(CO)3, W(CO)6, Mo(CO)6 and Cr(CO)6, after which the reaction was quenched with triethyloxonium tetrafluoroborate. This classical Fischer method yielded monocarbene complexes, [MLnC(OEt)C4H2S-C4H3S], ([MLn] = Cr(CO)51a, W(CO)52a or MnMeCp(CO)23a), homonuclear biscarbene complexes, [MLnC(OEt)C4H2S-C4H2SC(OEt)MLn], ([MLn] = Cr(CO)51b, W(CO)52b or MnMeCp(CO)23b) and heteronuclear biscarbene complexes, [MLnC(OEt)C4H2S-C4H2SC(OEt)M′Ln] (1d: [MLn] = Cr(CO)5 and [M′Ln] = W(CO)5; 1e: [MLn] = MnMeCp(CO)2 and [M′Ln] = Cr(CO)5; 1f: [MLn] = Cr(CO)5 and [M′] = Mo(CO)5); 2d: [MLn] = MnMeCp(CO)2 and [M′Ln] = W(CO)5; 3c: [MLn] = MnMeCp(CO)2 and [M′Ln] = Mo(CO)5). Electron density calculations with the gaussian03 software package of 1e revealed a polar rod with the negative pole towards the chromium carbene side, whereas the biscarbenes 1d and 1b showed very little polarity. By-products resulting from activation of the carbene moieties in homonuclear biscarbene complexes included (i) ester-type complexes of the form [MLnC(OEt)C4H2S-C4H2SC(O)OEt], ([MLn] = Cr(CO)51c or W(CO)52c), formed in situ in the reaction of 1b and 2b, (ii) the organic bis-ester compound [EtOC(O)C4H2S-C4H2SC(O)OEt] 4, where both metal moieties had been substituted by oxygen and (iii) the carbon-carbon coupled dimeric bithienyl compound [C4H3S-C4H2SC(O)C(O)C4H2S-C4H3S] 5. By-products obtained from heteronuclear biscarbene reactions contain the former diketo compound (or a derivative) as spacer between two metal carbonyl fragments and have the general formula [MLnC(OEt)C4H2S-C4H2SCR-CR′C4H2S-C4H2SC(OEt)MLn] (5a: [M] = Cr(CO)5, R = OH, R′ = OEt; 5b: [M] = W(CO)5, R = R′ = O; 5c: [M] = Mo(CO)5, R = R′ = O). Reaction of 1d, 1e and 1f with hex-3-yne resulted in the formation of benzannulated products 6a, 6b and 6c. All novel complexes were fully characterized using various spectroscopic techniques. The crystal structures of 1b, 2a and 5 are reported.  相似文献   

13.
Further studies have been carried out into the reactivity of [Pt2(μ-S)2(PPh3)4] towards a range of activated alkylating agents of the type RC(O)CH2X (R = organic moiety, e.g. phenyl, pyrenyl; X = Cl, Br). Alkylation of both sulfide centers is observed for PhC(O)CH2Br, 3-(bromoacetyl)coumarin [CouC(O)CH2Br], and 1-(bromoacetyl)pyrene [PyrC(O)CH2Br], giving dications [Pt2{μ-SCH2C(O)R}2(PPh3)4]2+, isolated as their PF6 salts. The X-ray structure of [Pt2{μ-SCH2C(O)Ph}2(PPh3)4](PF6)2 shows the presence of short Pt?O contacts. In contrast, the corresponding chloro compounds [typified by PhC(O)CH2Cl] and imino analogues [e.g. PhC(NOH)CH2Br] do not dialkylate [Pt2(μ-S)2(PPh3)4]. The ability of PhC(O)CH2Br to dialkylate [Pt2(μ-S)2(PPh3)4] allows the synthesis of new mixed-alkyl dithiolate derivatives of the type [Pt2{μ-SCH2C(O)Ph}(μ-SR)(PPh3)4]2+ (R = Et or n-Bu), through alkylation of in situ-generated monoalkylated compounds [Pt2(μ-S)(μ-SR)(PPh3)4]+ (from [Pt2(μ-S)2(PPh3)4] and excess RBr). In these heterodialkylated systems ligand replacement of PPh3 occurs by the bromide ions in the reaction mixture forming monocations [Pt2{μ-SCH2C(O)Ph}(μ-SR)(PPh3)3Br]+. This ligand substitution can be easily suppressed by addition of PPh3 to the reaction mixture. The complex [Pt2{μ-SCH2C(O)Ph}(μ-SBu)(PPh3)4]2+ was crystallographically characterized. X-ray crystal structures of the bromide-containing complexes [Pt2{μ-SCH2C(O)Ph}(μ-SR)(PPh3)3Br]+ (R = Et, Bu) are also reported. In both structures the coordinated bromide is trans to the SCH2C(O)Ph ligand, which adopts an axial position, while the ethyl and butyl substituents adopt equatorial positions, in contrast to the structures of the dialkylated complexes [Pt2{μ-SCH2C(O)Ph}2(PPh3)4]2+ and [Pt2{μ-SCH2C(O)Ph}(μ-SBu)(PPh3)4]2+ (and many other known analogues) where both alkyl groups adopt axial positions.  相似文献   

14.
Imidazole-2-thiol derivatives H2L1-3 (H2L1 = 1H-benzoimidazole-2-thiol, H2L2 = 5-methyl-1H-benzoimidazole-2-thiol, and H2L3 = 1H-imidazole-2-thiol) act as neutral monodentate ligands in a number of technetium and rhenium complexes. Disubstituted M(V) (M = Tc, Re) complexes of the type [AsPh4]{[MOCl2(H2Ln)2(H2O)]Cl2} are formed when [MOCl4] react with H2L1-3 in 1:2 stoichiometric ratio. Single crystal X-ray structure determinations were carried out on [AsPh4]{[TcOCl2(H2L1)2(H2O)]Cl2}. The coordination sphere is pseudo-octahedral in which the sulfur atoms of two ligands sit in the equatorial plane and a water molecule is in trans to the TcO multiple bond. All the complexes react with an excess of the corresponding ligand to form tetrasubstituted cationic species {[MO(H2Ln)4]Cl3}. These complexes can be also isolated by reaction of [MOCl4] with an excess of ligand. No complex is obtained with benzothiazole-2-thiol (HL4) and benzoxazole-2-thiol (HL5). Ligand exchange reactions of [ReOCl3(PPh3)2] with HL4,5 have also been investigated. Treating the oxo-precursor with HL4 no product is isolated, while with HL5 the chelate oxo-compound [ReOCl2(L5)(PPh3)] is formed as two isomers. An interesting organometallic complex of Re(IV) [ReCl3(L5∗)(PPh3)2] is obtained when a slight excess of HL5 reacts with [ReOCl3(PPh3)2] in refluxing benzene solution and in air. Geometry about the Re atom is approximately octahedral in which the equatorial plane contains three Cl atoms and the carbon atom of the benzoxazole ligand anion, the apical positions are occupied by two PPh3. The reaction with O-ethyl S-hydrogen p-tolyl carbonothioimidate HL6 which contains the same heteroatoms of HL5 does not form an organometallic species, but forms the chelate oxo-Re(V) complex [ReOCl2(L6)(PPh3)]. The solid-state structure has been authenticated by X-ray crystallography.  相似文献   

15.
New C-ansa-zirconocene complexes containing methoxythiophenolate and mercaptophenolate ligands have been synthesized and characterized. The reaction of (HSC6H4-n-OMe) (n = 2, 3 or 4) with [Zr{(t-Bu)HC(η5-C5Me4)(η5-C5H4)}Me2] (1) led to the formation of monosubstituted complexes [Zr{(t-Bu)HC(η5-C5Me4)(η5-C5H4)}Me(κ,S-SC6H4-n-OMe)] (= 2 (2); = 3 (3)) and the disubstituted complex [Zr{(t-Bu)HC(η5-C5Me4)(η5-C5H4)}(κ,S-SC6H4-4-OMe)2] (4). The complexes [Zr{(R)HC(η5-C5Me4)(η5-C5H4)}(κ,O-OC6H4-4-SH)2] (R = t-Bu (6); R = CH2CHCH2 (7)) and [Zr(η5-C5H4)2(OC6H4-n-SH)2] (= 3 (9); = 4 (10)) have been synthesized using the corresponding dimethyl zirconocene and mercaptophenol. However, the reaction of [Zr{(t-Bu)HC(η5-C5Me4)(η5-C5H4)}Cl2] (11) with 4-mercaptophenol in the presence of NEt3 led to the formation of the first example of a homoleptic six-coordinate mercaptophenolate complex of zirconium, namely [HNEt3]2[Zr(κ,O-OC6H4-4-SH)6] (12). Complex 12 can be obtained in higher yield by the reaction of ZrCl4 with six equivalents of 4-mercaptophenol and NEt3. The reaction of 12 with [Zr(η5-C5H4)2Cl2] gave the unexpected disubstituted complex [Zr(η5-C5H4)2(OC6H4-4-SH)2] (10). The molecular structures of 4 and 12 have been determined by single-crystal X-ray diffraction studies.  相似文献   

16.
New silver(I) acylpyrazolonate derivatives [Ag(Q)], [Ag(Q)(PR3)]2 and [Ag(Q)(PR3)2] (HQ = 1-R1-3-methyl-4-R2(CO)pyrazol-5-one, HQBn = R1 = C6H5, R2 = CH2C6H5; HQCHPh2 = R1 = C6H5, R2 = CH(C6H5)2; HQnPe = R1 = C6H5, R2 = CH2C(CH3)3; HQtBu = R1 = C6H5, R2 = C(CH3)3; HQfMe = R1 = C6H4-p-CF3, R2 = CF3; HQfEt = R1 = C6H5, R2 = CF2CF3; R = Ph or iBu) have been synthesized and characterized in the solid state and solution. The crystal structure of 1-(4-trifluoromethylphenyl)-3-methyl-5-pyrazolone, the precursor of proligand HQfMe and of derivatives [Ag(QnPe)(PPh3)2] and [Ag(QnPe)(PiBu3)]2 have been investigated. [Ag(QnPe)(PPh3)2] is a mononuclear compound with a silver atom in a tetrahedrally distorted AgO2P2 environment, whereas [Ag(QnPe)(PiBu3)]2 is a dinuclear compound with two O2N-exotridentate bridging acylpyrazolonate ligands connecting both silver atoms, their coordination environment being completed by a phosphine ligand.  相似文献   

17.
Treatment of MCl2(PP) or MCl2(PnPr3)2 with two equivalents of ArCOSeK readily yields cis-[M(SeCOAr)2(PP)] and trans-[M(SeCOAr)2(PnPr3)2], respectively (M = Pd or Pt; Ar = Ph or 4-MeC6H4; PP = dppm, dppe, dppp). The reaction of Pd(SeCOAr)2(dppe) with PdCl2(dppe) in the presence of NaBPh4 in methanol gave a tri-nuclear ionic complex, [Pd33-Se)2(dppe)3][BPh4]2. These complexes were characterized by UV-Vis, IR and NMR spectroscopy. The complex [Pt(SeCOPh)2(dppp)] has been structurally characterized by X-ray crystallography. The coordination environment around square planar platinum atom is defined by chelating dppp ligand and two unidentate selenocarboxylates bonded through selenium atoms. Pyrolysis of [Pd(SeCOAr)2(PnPr3)2] either in tri-n-butylphosphate (TBP) (at 200 °C) or in the solid state (furnace heating at 350 °C) gave Pd17Se15.  相似文献   

18.
Heteroleptic triphenylphosphine carbonyl palladium clusters of different nuclearities were prepared under mild conditions by only varying the amount of ligand (PPh3) used in the synthesis: three different clusters were successfully isolated after CO bubbling in a solution of [Pd2(dba)3] (dba = dibenzylideneacetone) with 3, 1 or 0.5 equiv of PPh3, which led, respectively, to [Pd4(CO)5(PPh3)4] (1), [Pd10(CO)12(PPh3)6] (2) and [Pdn(CO)x(PPh3)y] (3) (n ≈ 24). The molecular structures of compounds 1 and 2 were determined by X-ray crystallography. The metal cores in these compounds were shown to consist in a butterfly for 1 and a bridged octahedron for 2. Compound 3 was shown to be at the boundary between molecular clusters and colloidal particles with tentative formulation arising from characterization data. These three clusters and the known [Pd10(CO)12(PBu3)6] and [Pd12(CO)15(PBu3)7] were submitted to NaBH4 reduction. The Pd4 cluster 1 did not react. The colloidal Pdn species led to no isolable product. By contrast, the two Pd10 and the Pd12 clusters led to reduction products, isolated as salts. In the case of the reduced Pd12 cluster, its structure was resolved by X-ray crystallography: the metal core consists of a face-capped octahedron. The reduced species reacted readily with Au(PPh3)+, confirming their anionic nature.  相似文献   

19.
Addition of phenyldi(2-thienyl)phosphine (PPhTh2) to [Re2(CO)10−n(NCMe)n] (n = 1, 2) affords the substitution products [Re2(CO)10−n(PhPTh2)n] (1, 2) together with small amounts of fac-[ClRe(CO)3(PPhTh2)2] (3) (n = 2). Reaction of [Re2(CO)10] with PPhTh2 in refluxing xylene affords a mixture which includes 2, [Re2(CO)7(PPhTh2)(μ-PPhTh)(μ-H)] (4), [Re2(CO)7(PPhTh2)(μ-PPhTh)(μ-η11(S)-C4H3S)] (5) and mer-[HRe(CO)3(PPhTh2)2] (6). Phosphido-bridged 4 and 5 are formed by the carbon-phosphorus bond cleavage of the coordinated PPhTh2 ligand, the cleaved thienyl group being retained in the latter. Reaction of [Mn2(CO)10] with PPhTh2 in refluxing toluene affords [Mn2(CO)9(PPhTh2)] (7) and the carbon-phosphorus bond cleavage products [Mn2(CO)6(μ-PPhTh)(μ-η15-C4H3S)] (8) and [Mn2(CO)5(PPhTh2)(μ-PPhTh)(μ-η15-C4H3S)] (9). Both 8 and 9 contain a bridging thienyl ligand which is bonded to one manganese atom in a η5-fashion.  相似文献   

20.
Treatment of the ruthenium(II) diene complexes [(η22-nbd)RuCl2]n or [(η22-cod)RuCl2]n with 4 equiv. of methyllithium in the presence of N,N,N′,N′-tetramethylethylenediamine (tmed) yields the methyl complexes [Li(tmed)]2[(η22-nbd)RuMe4] (1) and [Li(tmed)]2[(η32-C8H11)RuMe3] (2), respectively, where nbd = norbornadiene and cod = 1,5-cyclooctadiene. In the latter compound, the cyclooctadiene ligand has been deprotonated to afford a η32-1,2,3:5,6-cyclooctadienyl group. Both complexes were studied by 1H and 13C{1H} NMR spectroscopy, and the crystal structure of 2 was determined. One lithium atom in 2 is four-coordinate and bridges between one ruthenium-bound methyl group and one of the wingtip allylic carbon atoms in the η32-C8H11 ligand. The other lithium atom is five-coordinate, and forms contacts with the other two Ru-Me groups and with the other wingtip carbon atom of the allyl unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号