首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quinones are appealing targets as organic charge carriers for aqueous redox flow batteries (RFBs), but their utility continues to be constrained by limited stability under operating conditions. The present study evaluates the stability of a series of water‐soluble quinones, with redox potentials ranging from 605–885 mV versus NHE, under acidic aqueous conditions (1 m H2SO4). Four of the quinones are examined as cathodic electrolytes in an aqueous RFB, paired with anthraquinone‐2,7‐disulfonate as the anodic electrolyte. The RFB data complement other solution stability tests and show that the most stable electrolyte is a tetrasubstituted quinone containing four sulfonated thioether substituents. The results highlight the importance of substituting all C–H positions of the quinone in order to maximize the quinone stability and set the stage for design of improved organic electrolytes for aqueous RFBs.  相似文献   

2.
Although quinones have been the subject of great interest as possible antimalarial agents, the mechanism of their antimalarial activity is poorly understood. Flavoenzyme electrontransferase-catalyzed redox cycling of quinones, and their inhibition of the antioxidant flavoenzyme glutathione reductase (GR, EC 1.8.1.7) have been proposed as possible mechanisms. Here, we have examined the activity of a number of quinones, including the novel antitumor agent RH1, against the malaria parasite Plasmodium falciparum strain FcB1 in vitro, their single-electron reduction rates by P. falciparum ferredoxin:NADP+ reductase (PfFNR, EC 1.18.1.2), and their ability to inhibit P. falciparum GR. The multiparameter statistical analysis of our data implies, that the antiplasmodial activity of fully-substituted quinones (n = 15) is relatively independent from their one-electron reduction potential (). The presence of aziridinyl groups in quinone ring increased their antiplasmodial activity. Since aziridinyl-substituted quinones do not possess enhanced redox cycling activity towards PfFNR, we propose that they could act as as DNA-alkylating agents after their net two-electron reduction into aziridinyl-hydroquinones. We found that under the partial anaerobiosis, i.e., at the oxygen concentration below 40-50 μM, this reaction may be carried out by single-electron transferring flavoenzymes present in P. falciparum, like PfFNR. Another parameter increasing the antiplasmodial activity of fully-substituted quinones is an increase in their potency as P. falciparum GR inhibitors, which was revealed using multiparameter regression analysis. To our knowledge, this is the first quantitative demonstration of a link between the antiplasmodial activity of compounds and GR inhibition.  相似文献   

3.
Five novel metal complexes of the quinolone antibacterial agent ciprofloxacin with Mn2+, Fe3+, Co2+, Ni2+ and have been prepared and characterized with physicochemical, spectroscopic and electrochemical techniques. In all these complexes, ciprofloxacin acts as a bidentate deprotonated ligand bound to the metal through the pyridone oxygen and one carboxylate oxygen. The central metal in each complex is six-coordinate and a slightly distorted octahedral geometry is proposed. The lowest energy model structures of the Mn2+, Fe3+ and complexes have been determined with molecular modeling calculations. The cyclic voltammograms of the complexes have been recorded in dmso solution and in 1/2 dmso/buffer (containing 150 mM NaCl and 15 mM trisodium citrate at pH 7.0) solution and the corresponding redox potentials have been estimated. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV and fluorescence spectroscopies and cyclic voltammetry. UV studies of the interaction of the complexes with DNA have shown that these compounds can bind to CT DNA. The binding constants of the complexes with CT DNA have also been calculated. The cyclic voltammograms of the complexes in the presence of CT DNA have shown that the complexes can bind to CT DNA by both the intercalative and the electrostatic binding mode. Competitive studies with ethidium bromide (EB) have shown that the complexes exhibit the ability to displace the DNA-bound EB indicating that the complexes bind to DNA probably via intercalation in strong competition with EB for the intercalative binding site.  相似文献   

4.
Metalloreceptors containing ruthenium(II) bipyridine unit as fluorophore and pendant macrocyclic units as ionophore have been synthesized and their luminescence and electrochemical properties have been investigated. Ion-binding study of these fluoroionophore with the anions F, Cl, Br, I, , , , , CH3COO, and and cations Na+, K+, Mg2+, Ca2+, Zn2+, Ba2+, Sr2+ Cd2+, Hg2+, Pb2+ and Cu2+, monitored by luminescence and 1H NMR spectral changes, reveal strong interactions of and F for 2 and 3 and of Cu2+ only for 3. Luminescence titrations for 2 and 3 have been carried out to determine binding constants (Ks), and the calculated values are in the range 2.85 × 102 to 4.48 × 104 M−1. The 1H NMR spectral changes for 2 and 3 with the addition of increasing concentration of F and exhibit substantial low-field shift of the CONH proton indicating its involvement in complex formation with the anions. The adduct of 2 and 3 have been isolated and characterized by 1H and 31P NMR, mass and IR spectroscopy. The results are discussed in light of selectivity, structures of the anion bound complexes and their luminescence property.  相似文献   

5.
The quinones 1,4-naphthoquinone (NQ), methyl-1,4-naphthoquinone (MNQ), trimethyl-1,4-benzoquinone (TMQ) and 2,3-dimethoxy-5-methyl-1,4-benzoquinone (UQ-0) enhance the rate of nitric oxide (NO) reduction by ascorbate in nitrogen-saturated phosphate buffer (pH 7.4). The observed rate constants for this reaction were determined to be 16±2,215±6,290±14 and 462±18?M-1?s-1, for MNQ, TMQ, NQ and UQ-0, respectively. These rate constants increase with an increase in quinone one-electron redox potential at neutral pH, E71. Since NO production is enhanced under hypoxia and under certain pathological conditions, the observations obtained in this work are very relevant to such conditions.  相似文献   

6.
Two organic-inorganic hybrid compounds, (Bu4N)2[Mo6O18(NAr)] (Ar =  2-CH3-4-BrC6H3 (1) or 2,6-CH3-4-BrC6H2 (2)) have been synthesized via the DCC dehydrating protocol of the reaction of [α-Mo8O26]4− with 2-methyl-4-bromoaniline hydrochloride or 2,6-dimethyl-4-bromoaniline hydrochloride in anhydrous acetonitrile, which have been characterized by UV-Vis spectra, 1H NMR, IR, cyclic voltammetry and X-ray single-crystal diffraction study. Both compounds crystallize in the monoclinic space group , which are featured in a terminal phenylimido group linked to a Mo atom of a hexamolybdate cluster by a Mo-N triple bond. Interestingly, there are two conformational isomers of the cluster anions of 1 and 2 in the crystals. By cyclic voltammetry study, their special redox properties were also found in the end.  相似文献   

7.
The reaction of AuCl3py with Na(pz∗) (pz∗ = pyrazolato, or substituted pyrazolato anion) yields stable dinuclear [cis-AuIIICl2(μ-pz∗)]2 complexes. In the presence of a base, the latter undergo reduction with concomitant transformation of the dinuclear -structure to trinuclear AuI, AuIII (containing trans AuIIICl2-centres) and species.  相似文献   

8.
The stoichiometries and stability constants of a series of Al3+-N-phosponomethyl glycine (PMG/H3L) complexes have been determined in acidic aqueous solution using a combination of precise potentiometric titration data, quantitative 27Al and 31P NMR spectra, ATR-FTIR spectrum and ESI-MS measurements (0.6 M NaCl, 25 °C). Besides the mononuclear AlH2L2+, Al(H2L)(HL), and Al(HL)L2−, dimeric Al2(HL)L+ and trinuclear complexes have been postulated.1H and 31P NMR data show that different isomers co-exist in solution and the isomerization reactions are slow on the 31P NMR time scale. The geometries of monomeric and dimeric complexes likely double hydroxo bridged and double phosphonate bridged isomers have been optimized using DFT ab initio calculations starting from rational structural proposals. Energy calculations using the PCM solvation method also support the co-existence of isomers in solutions.  相似文献   

9.
The complex formation between several trivalent lanthanides (Ln) and 5-sulfosalicylate, (SSA)3−, was investigated by potentiometry, 1H NMR, and time resolved laser-induced fluorescence spectroscopy (TRLIFS). The potentiometric data were used to deduce the stoichiometry and equilibrium constants for the reactions pLn3+ + rL ? LnpHqLr + qH+ at 298 K in an ionic medium with a constant concentration of Na+ equal to 1.00 M. Note that “L” denotes the SSA ligand where all protons are dissociated. Two mononuclear chelating complexes, LnL(aq) and , were identified. Their stability constants obtained by least-squares refinement of the potentiometric data agree well with previously published information. In addition, two additional dinuclear complexes, and , which have very different 1H NMR and fluorescence characteristics, were identified by least-squares refinement in the −log[H+] range of 6.0-10.0. 1H NMR spectra from the ligand in the complex showed separate peaks having two different rates of exchange with free ligand in the bulk solution besides a signal from the free and carboxylate-coordinated ligands. This indicates that the dinuclear complex, , consists of two different types of chelating ligands: μ-{OR}-type chelating ligands between metals to form the {Ln2L2}-type core structure and the bidentate ligands outside the {Ln2L2}-type core. This core structure is different from the An(IV)-SSA case (An(IV): tetravalent actinide), in which hydroxides play the role of forming the {An2(OH)2}-type core structure. TRLIFS measurement gave further information about the dynamics and molecular structures of the complexes.  相似文献   

10.
The electrochemical characterization of a series of redox sites absorbed at Hg surface by different interactions is reported. The redox centers, based on Fe(II) and Ru(II), are incorporated, respectively, in the molecules Fe(C5H5)(C5H4)(CH2)4SH and [Ru(NH3)5NC5H4CH2NHCO(CH2)10SH](PF6), and are anchored on the Hg surface in one component self-assembled monolayers. The electrochemical behaviour of these systems indicates that redox centers are located onto a uniform, homogeneous environment at the external surface of the monolayer. We also report the electrochemical behaviour of the positively charged redox species [Ru(NH3)6]3+ when the Hg electrode surface is functionalized with a negatively charged SAM. The SAM is formed by 11-mercaptoundecanoic acid that exposes carboxylic acid groups to solutions of different pH values. At a pH lower than 4, the cyclic voltammograms show negligible current, and pH from 5 to 9, the voltammograms are essentially identical and show a well-defined redox wave. From a study of the voltammetric responses of the couple as a function of the electrolyte composition and concentration at pH 9, we suggest that the redox reaction takes place at the defects of the SAMs created by the repulsion of the -COO head groups and that the current is determined by a diffusion-controlled mechanism.  相似文献   

11.
The redox potentials Em(QA/) of the primary quinone electron acceptor QA in oxygen-evolving photosystem II complexes of three species were determined by spectroelectrochemistry. The Em(QA/) values were experimentally found to be −162 ± 3 mV for a higher plant spinach, −171 ± 3 mV for a green alga Chlamydomonas reinhardtii and −104 ± 4 mV vs. SHE for a red alga Cyanidioschyzonmerolae. On the basis of possible deviations for the experimental values, as estimated to differ by 9-29 mV from each true value, plausible causes for such remarkable species-dependence of Em(QA/) are discussed, mainly by invoking the effects of extrinsic subunits on the delicate structural environment around QA.  相似文献   

12.
The novel PCP-pincer Pt(II) complex, has been prepared and characterized by 1H, 31P, and 13C NMR spectroscopy. The molecular structure of 1 has been determined through a single-crystal X-ray diffraction study. The pincer-ligated platinum complexes 1 and PtCl{C6H3-2,6-(CH2NEt2)2} (2) have been explored as catalysts for the hydroxylation of 1-propanol to 1,3-propanediol under mild conditions. Product ratios and turnover numbers achieved with both complexes compare favorably to those obtained with [PtCl4]2−. Moreover, the pincer complexes catalyze this transformation even upon replacement of PtCl4 by the more economical CuCl2 as the requisite stoichiometric oxidant. Analysis of the reaction mixture by 31P NMR spectroscopy following the hydroxylation of 1-propanol by 1 in the presence of CuCl2 revealed that 1 is partially converted to the ring substituted complex, . The molecular structure of 3 has been determined through a single-crystal X-ray diffraction study.  相似文献   

13.
The reaction of (Cp′ = t-BuC5H4) with CH3Li in THF was examined by variable temperature 1H NMR, ESR and mass spectroscopic means. From these methods it is evident that the diamagnetic compounds and as well as the paramagnetic compound form simultaneously. In the subsequent reaction of the intermediate solution with [Co2(CO)8] compound 4 was consumed and the compound (5) formed in good yield. Complex 5 was characterized by IR and variable temperature 1H NMR spectroscopies. Electrochemical two-electron reduction of 1 leads, in a quasi-reversible process, to products that are not stable in solution.  相似文献   

14.
The electrochemistry of [Cu(OEP)] and [Ni(OEP)] are compared with the mixed-valence π-cations and . These electrochemical studies, carried out with cyclic voltammetry and hydrodynamic voltammetry, show that the mixed valence π-cations have distinct electrochemical properties, although the differences between the [M(OEP)]+/0 and processes are subtle.  相似文献   

15.
16.
A series of novel copper(II) complexes, L2Cu with newly synthesized 3,5--salicylaldimine (or 5--salicylaldimine) ligands derived from 2,4-di-tert-butyl phenol (or 4-tert-butyl phenol) and alkyl (aryl) amines have been prepared and their spectroscopic (IR, UV-Vis, ESI-MS), X-ray, magnetic and redox properties have been investigated. The X-ray crystallography analysis shows that all complexes are monomeric and their copper(II) centers are surrounded by phenolate oxygens and imine nitrogen atoms. Therefore, the coordination sphere around the copper atoms is N2O2 as seen in galactose oxidase active site. In addition, the geometric configurations of all complexes are square planar or slightly distorted square planar. The crystal system for all complexes is monoclinic, except for which is orthorhombic. The temperature dependence of magnetic susceptibility of complexes confirms the mononuclear structure of complexes. Oxidation of the Cu(II) complexes yielded the corresponding Cu(II)-phenoxyl radical species during the cyclic voltammetry experiments.  相似文献   

17.
A series of crystalline PdII-based heterodimetallic acetate-bridged complexes containing the transition (MnII, CoII, NiII, CuII), post-transition (ZnII) and rare-earth (CeIV, NdIII, EuIII) metals were synthesized starting from Pd3(OOCMe)6 and the complementary metal(II, III) acetates. The crystal and molecular structures of the binuclear PdIIMII(μ-OOCMe)4L (M = Mn, Co, Ni, Zn; L = H2O, MeCN), trinuclear and tetranuclear (M = Nd, Eu) and complexes were established by X-ray diffraction.  相似文献   

18.
An organic cathode material based on a copolymer of poly(3,4‐ethylenedioxythiophene) containing pyridine and hydroquinone functionalities is described as a proton trap technology. Utilizing the quinone to hydroquinone redox conversion, this technology leads to electrode materials compatible with lithium and sodium cycling chemistries. These materials have high inherent potentials that in combination with lithium give a reversible output voltage of above 3.5 V (vs Li0/+) without relying on lithiation of the material, something that is not showed for quinones previously. Key to success stems from coupling an intrapolymeric proton transfer, realized by an incorporated pyridine proton donor/acceptor functionality, with the hydroquinone redox reactions. Trapping of protons in the cathode material effectively decouples the quinone redox chemistry from the cycling chemistry of the anode, which makes the material insensitive to the nature of the electrolyte cation and hence compatible with several anode materials. Furthermore, the conducting polymer backbone allows assembly without any additives for electronic conductivity. The concept is demonstrated by electrochemical characterization in several electrolytes and finally by employing the proton trap material as the cathode in lithium and sodium batteries. These findings represent a new concept for enabling high potential organic materials for the next generation of energy storage systems.  相似文献   

19.
Electron spin resonance using spin-trapping is a useful technique for detecting direct reactive oxygen species, such as superoxide (). However, the widely used spin trap 2,2-dimethyl-3,4-dihydro-2H-pyrrole N-oxide (DMPO) has several fundamental limitations in terms of half-life and stability. Recently, the new spin trap 2-diphenylphosphinoyl-2-methyl-3,4-dihydro-2H-pyrrole N-oxide (DPhPMPO) was developed by us. We evaluated the biological applicability of DPhPMPO to analyze in both cell-free and cellular systems. DPhPMPO had a larger rate constant for and formed more stable spin adducts for than DMPO in the xanthine/xanthine oxidase (X/XO) system. In the phorbol myristate acetate-activated neutrophil system, the detection potential of DPhPMPO for was significantly higher than that of DMPO (kDMPO = 13.95 M−1 s−1, kDPhPMPO = 42.4 M−1 s−1). These results indicated that DPhPMPO is a potentially good candidate for trapping in a biological system.  相似文献   

20.
The synthesis of a variety of tetrahedral β-diketonato titanium(IV) complexes of the type with R = CF3, OCH3, C6H5, CH3 and Fc is described. The TiIII/TiIV couples and the Fc/Fc+ couple exhibited chemically and electrochemically reversible cyclic voltammetric behaviour. The formal reduction potential of the TiIII/IV couple increased as the group electronegativity of the R group of the β-diketonato ligand increased. Bulk electrolysis showed that one electron was transferred in the TiIII/IV couple and one electron in the ferrocenyl/ferrocenium redox couple in the ligand. The crystal structure for the R = OCH3 complex showed that this β-keto-ester binds through the carbonyl oxygen of the ester group and not the ether oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号