首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the purpose of developing a direct label-free electrochemical detection system, we have systematically investigated the electrochemical signatures of each step in the preparation procedure, from a bare gold electrode to the hybridization of label-free complementary DNA, for the streptavidin-modified electrode. For the purpose of this investigation, we obtained the following pertinent data; cyclic voltammogram measurements, electrochemical impedance spectra and square wave voltammogram measurements, in Fe(CN)6 3−/Fe(CN)6 4− solution (which was utilized as the electron transfer redox mediator). The oligonucleotide molecules on the streptavidin-modified electrodes exhibited intrinsic redox activity in the ferrocyanide-mediated electrochemical measurements. Furthermore, the investigation of electrochemical electron transfer, according to the sequence of oligonucleotide molecules, was also undertaken. This work demonstrates that direct label-free oligonucleotide electrical recognition, based on biofunctional streptavidin-modified gold electrodes, could lead to the development of a new biosensor protocol for the expansion of rapid, cost-effective detection systems.  相似文献   

2.
3.
The phase and electrochemical behavior of the aqueous mixtures of monoolein (MO) and synthetic ferrocene (Fc) derivatives containing long alkyl chains-(Z)-octadec-9-enoylferrocene (1), (Z)-octadecen-9-ylferrocene (2), and ferrocenylmethyl (Z)-octadec-9-enoate (3)-were studied. At low hydration, the reversed micelles (L(2) phase) and cubic Q(230) phase of MO can accommodate relatively high amounts (>6 wt.%) of the Fc-derivative 2, whereas at high hydration, the pseudoternary cubic phase Q(224) is destabilized even at about 2 wt.% of this Fc. Increasing the Fc-derivative content induces L(alpha)-->L(2) and L(alpha)-->reversed bicontinuous cubic phase (Q(II))-->H(II) transitions depending upon hydration. A rough study of the MO system containing compounds 1 and 3 indicates very similar phase behavior to that of the MO/2/H(2)O system. Compound 2 apparently has no effect on the lipid monolayer thickness in the pseudoternary L(alpha), H(II) and Q(II) liquid crystalline phases of MO. Within a 3D-structure of the Q(224) phase, derivatives 1-3 exhibit electrochemical activity on the gold electrode. The one-electron redox conversion processes are electrochemically quasi-reversible and controlled by diffusion. The values of apparent diffusion coefficient (D(app)) and heterogeneous electron-transfer rate constant (k(s)) of Fcs are significantly lower in the cubic phase matrix when compared to the acetonitrile solution. By contrast, the MO H(II) phase with entrapped Fc-derivatives does not exhibit electrochemical activity on the electrode surface. It is suggested that the diffusional anisotropy and/or localized aggregation of compounds 1-3 within a 2D-structure of the H(II) phase account(s) for the latter observation.  相似文献   

4.
An ultrasensitive electrochemical immunoassay (EIA) for the detection of carcinoembryonic antigen (CEA) is described in this report. The assay involves utilizing enzyme-catalyzed deposition of a redox polymer and electrocatalytic oxidation of ascorbic acid (AA) by the deposited redox polymer, a dual-amplification scheme to enhance analytical signals. Briefly, CEA capturing antibody and redox polymer anchoring agent were covalently immobilized on a gold electrode. After incubating with CEA, the electrode was treated in detection antibody-glucose oxidase conjugate solution. Thereafter, it was dipped into the redox polymer solution. Upon the addition of glucose, the redox polymer was enzymatically reduced and deposited on the electrode surface. The deposited redox polymer exhibits excellent electrocatalytic activity towards the oxidation of AA. Consequently, CEA could be quantified amperometrically. This electrochemical immunoassay combines the specificity of the immunological reaction with the sensitivity of the doubly amplified electrochemical detection.  相似文献   

5.
A novel label-free immunosensing strategy for sensitive detection of tumor necrosis factor-alpha antigen (TNF-α) via surface-initiated atom transfer radical polymerization (SI-ATRP) was proposed. In this strategy, the Au electrode was first modified by consecutive SI-ATRP of ferrocenylmethyl methacrylate (FMMA) and glycidyl methacrylate (GMA), and TNF-α antibody was coupled to the copolymer segment of GMA (PGMA) by aqueous carbodiimide coupling reaction. Subsequently, the target TNF-α antigen was captured onto the Au electrode surface through immunoreaction. The whole process was confirmed by scanning electron microscopy (SEM) and surface plasmon resonance (SPR) measurements. With introduction of redox polymer segment of FMMA (PFMMA) as electron-transfer mediator, the antigen-coupled Au electrode exhibited well electrochemical behavior, as revealed by cyclic voltammetry measurement. This provided a sensing platform for sensitive detection of TNF-α with a low detection limit of 3.9pgmL(-1). Furthermore, the "living" characteristics of the ATRP process can not only be readily controlled but also allow further surface functionalization of the electrodes, thus the proposed method presented a way for label-free and flexible detection of biomolecules.  相似文献   

6.
Multilayer immobilization of antibody and redox polymer molecules on a gold electrode was achieved, as a strategy for the potential development of an amperometric immunosensor. The step-by-step assembly of antibiotin IgG on Os(bpy)(2)ClPyCH(2)NH poly(allylamine) redox polymer (PAH-Os) adsorbed on thiolated gold electrodes was proved by quartz crystal microbalance (QCM) and atomic force microscopy (AFM) experiments, confirming the electrochemical evidence. The increase of redox charge during the layer-by-layer deposition demonstrated that charge propagation within the layers is feasible. The multilayer structure proved to be effective for the molecular recognition of horseradish peroxidase-biotin conjugate (HRP-biotin), as confirmed by the QCM measurements and the electrocatalytic reduction current obtained upon H(2)O(2) addition. The catalytic current resulting from PAH-Os mediation was shown to increase with the number of assembled layers. Furthermore, the inventory of IgG molecules on the supramolecular self-assembled structure and the specific and non-specific binding of HRP-biotin conjugate were confirmed by the QCM transient studies, giving information on the kinetics of IgG deposition and HRP-biotin conjugate binding to the IgG.  相似文献   

7.
Graphene/3,4,9,10-perylenetetracarboxylic acid (GPD) with three-dimensional porous structure has been successfully synthesized and served as redox probe to construct ultrasensitive electrochemical aptasensor. The GPD nanocomposite shows promoted electrochemical redox-activity of 3,4,9,10-perylenetetracarboxylic acid (PTCA) with an obvious well-defined cathodic peak from -0.7 to 0 V that never been seen from graphene or PTCA, which avoids miscellaneous redox peaks of PTCA in electrochemical characterization, offering a novel redox probe for electrochemical sensors with highly electrochemical active area and conductivity. To the best of our knowledge, this is the first study that utilizes PTCA self-derived redox-activity as redox probe in electrochemical sensors. Moreover, the interesting GPD possesses the advantages of membrane-forming property, providing a direct immobilization of redox probes on electrode surface. This simple process not only diminishes the conventional fussy immobilization of redox probes on the electrode surface, but also reduces the participation of the membrane materials that acted as a barrier of the electron propagation in redox probe immobilization. With thrombin as a model target, the redox probe-GPD based label-free electrochemical aptasensor shows a much higher sensitivity (a detection range from 0.001 nM to 40 nM with a detection limit of 200 fM) to that of analogous aptasensors produced from other redox probes.  相似文献   

8.
Electrochemical biosensors: recommended definitions and classification   总被引:9,自引:0,他引:9  
Two Divisions of the International Union of Pure and Applied Chemistry (IUPAC), namely Physical Chemistry (Commission 1.7 on Biophysical Chemistry formerly Steering Committee on Biophysical Chemistry) and Analytical Chemistry (Commission V.5 on Electroanalytical Chemistry) have prepared recommendations on the definition, classification and nomenclature related to electrochemical biosensors: these recommendations could, in the future, be extended to other types of biosensors. An electrochemical biosensor is a self-contained integrated device, which is capable of providing specific quantitative or semi-quantitative analytical information using a biological recognition element (biochemical receptor) which is retained in direct spatial contact with an electrochemical transduction element. Because of their ability to be repeatedly calibrated, we recommend that a biosensor should be clearly distinguished from a bioanalytical system, which requires additional processing steps, such as reagent addition. A device that is both disposable after one measurement, i.e. single use, and unable to monitor the analyte concentration continuously or after rapid and reproducible regeneration, should be designated a single use biosensor. Biosensors may be classified according to the biological specificity-conferring mechanism or, alternatively, to the mode of physico-chemical signal transduction. The biological recognition element may be based on a chemical reaction catalysed by, or on an equilibrium reaction with macromolecules that have been isolated, engineered or present in their original biological environment. In the latter cases. equilibrium is generally reached and there is no further, if any, net consumption of analyte(s) by the immobilized biocomplexing agent incorporated into the sensor. Biosensors may be further classified according to the analytes or reactions that they monitor: direct monitoring of analyte concentration or of reactions producing or consuming such analytes; alternatively, an indirect monitoring of inhibitor or activator of the biological recognition element (biochemical receptor) may be achieved. A rapid proliferation of biosensors and their diversity has led to a lack of rigour in defining their performance criteria. Although each biosensor can only truly be evaluated for a particular application, it is still useful to examine how standard protocols for performance criteria may be defined in accordance with standard IUPAC protocols or definitions. These criteria are recommended for authors. referees and educators and include calibration characteristics (sensitivity, operational and linear concentration range, detection and quantitative determination limits), selectivity, steady-state and transient response times, sample throughput, reproducibility, stability and lifetime.  相似文献   

9.
In this study we demonstrate the possibility to prepare highly sensitive nanostructured electrochemical immunosensors by immobilizing biorecognition elements on nanoelectrode ensembles (NEEs) prepared in track-etch polycarbonate membranes. The gold nanodisk electrodes act as electrochemical transducers while the surrounding polycarbonate binds the antibody-based biorecognition layer. The interaction between target protein and antibody is detected by suitable secondary antibodies labelled with a redox enzyme. A redox mediator, added to the sample solution, shuttles electrons from the nanoelectrodes to the biorecognition layer, so generating an electrocatalytic signal. This allows one to fully exploit the highly improved signal-to-background current ratio, typical of NEEs. In particular, the receptor protein HER2 was studied as the target analyte. HER2 detection allows the identification of breast cancer that can be treated with the monoclonal antibody trastuzumab. NEEs were functionalized with trastuzumab which interacts specifically with HER2. The biorecognition process was completed by adding a primary antibody and a secondary antibody labelled with horseradish peroxidase. Hydrogen peroxide was added to modulate the label electroactivity; methylene blue was the redox mediator generating voltammetric signals. NEEs functionalized with trastuzumab were tested to detect small amounts of HER2 in diluted cell lysates and tumour lysates.  相似文献   

10.
The supposed repelling mode of scanning electrochemical microscopy (SECM) allows truly label-free electrochemical recognition of the presence and hybridisation of nucleic acids that are immobilised on conducting DNA chips. Basically, the SECM-based detection of single- and double-stranded DNA profits from the electrostatic repulsion between deprotonated phosphate groups at the backbone of the oligonucleotides and a free-diffusing negatively charged redox mediator (e.g. [Fe(CN)(6)](3-/4-)). In electrolytes of proper pH and ionic strength, this coulomb interaction is heavily influencing the diffusion properties of the mediator in the vicinity of the surface-anchored DNA strands. This charge interaction modulates the diffusional mass transport for the charged redox species in the DNA modified regions, and thus locally decreases the positive feedback currents measured with a SECM tip placed within the electrochemical nearfield of the chip surface. This approach was used to study arrays of synthetic 20-base oligonucleotide probes that were immobilised on monolayer-modified gold surfaces. Evidence is provided that the density of probes, the ionic strength of solution and the tip-to-sample distance have a strong impact on the capability of the repelling mode of SECM to visualise probe spots and hybridisation while the concentration of the chosen mediator did not significantly affect detection.  相似文献   

11.
Microfluidic electrochemical biosensor for performing Loop-mediated isothermal amplification (LAMP) was developed for the detection and quantification of Escherichia coli. The electrochemical detection for detecting the DNA amplification was achieved using Hoechst 33258 redox molecule and linear sweep voltametry (LSV). The DNA aggregation and minor groove binding with redox molecule cause a significant drop in the anodic oxidation of LSV. Unlike other electrochemical techniques, this method does not require the probe immobilization and the detection of the bacteria can be accomplished in a single chamber without DNA extraction and purification steps. The isothermal amplification time has a major role in the quantification of the bacteria. We have shown that we could detect and quantify 24 CFU/ml of bacteria and 8.6 fg/μl DNA in 60 min and 48 CFU/ml of bacteria in 35 min in LB media and urine samples. We believe that this microfluidic chip has great potential to be used as a point of care diagnostic (POC) device in the clinical/hospital application.  相似文献   

12.
In this article, gold nanostructure modified electrodes were achieved by a simple one-step electrodeposition method. The morphologies of modified electrodes could be easily controlled by changing the pH of HAuCl4 solution. The novel nanoflower-like particles with the nanoplates as the building blocks could be interestingly obtained at pH 5.0. The gold nanoflower modified electrodes were then used for the fabrication of electrochemical DNA biosensor. The DNA biosensor fabrication process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy with the use of ferricyanide as an electrochemical redox indicator. The DNA immobilization and hybridization on gold nanoflower modified electrode was studied with the use of [Ru(NH3)6]3+ as a hybridization indicator. The electrochemical DNA biosensor shows a good selectivity and sensitivity toward the detection of target DNA. A detection limit of 1 pM toward target DNA could be obtained.  相似文献   

13.
The microscopic surface molecular structures and macroscopic electrochemical impedance properties of the epoxysilane monolayer and anti-Escherichia coli antibody layer on an indium-tin oxide (ITO) electrode surface were studied in this paper. Characterization of stepwise changes in microscopic features of the surfaces and electrochemical properties upon the formation of each layer were carried out using both atomic force microscopy (AFM) and electrochemical impedance spectroscopy in the presence of [Fe(CN)6](3-/4-) as a redox couple. AFM images of the self-assembled monolayer (SAM) evidenced the dense, complete, and homogeneous morphology of the epoxysilane monolayer on the ITO surface. The uniformity of the epoxysilane SAM allowed antibodies to attach to the epoxy surface groups of the silanes in a similarly uniform fashion. The effects of epoxysilane monolayer and the antibody layer on the electrochemical properties of the electrode were quantitatively analyzed in terms of double layer capacitance, electron transfer resistance, Warburg impedance and solution resistance using Randles model as the equivalent circuit. It was demonstrated that the epoxysilane monolayer and the antibody layer act as barriers for the electron transfer between the electrode surface and the redox species in the solution, resulting in most significant increases in the electron transfer resistance compared to all the electric elements. Immunoreaction with E. coli O157:H7 cells demonstrated specific recognition of the immobilized anti-E. coli antibodies as evidenced by AFM imaging and impedance spectroscopy. It was found that the binding of E. coli cells mainly affected the electron transfer resistance and Warburg impedance.  相似文献   

14.
The electrochemical studies of laccase–mediator systems are aimed at understanding the mechanism of their redox transformation and their efficiency in both homogeneous and heterogeneous reactions; this topic has paramount application spanning from bleaching of paper pulp and the enzymatic degradation of lignin to the biosensors and biofuel cell development. In this paper four different laccases from Trametes hirsuta (ThL), Trametes versicolor (TvL), Melanocarpus albomyces (r-MaL) and Rhus vernicifera (RvL) were characterized from both biochemical and electrochemical points of view. Two of them (TvL and ThL) are high redox potential and two (RvL and r-MaL) are low redox potential laccases. The outline of this work is focused on the determination of catalytic and bioelectrochemical properties of these four enzymes in homogenous solution as well as immobilized onto electrode surface in the presence of a set of different redox mediators. The results measured in the homogenous reaction system correlated well with those measured with the immobilized enzymes. In addition, they are in good agreement with those reported with reference techniques, suggesting that the electrochemical methods employed in this work can be applied well in place of the traditional techniques commonly used for the kinetic characterization of laccases. These results are also discussed in terms of the known amino acid sequences and three-dimensional (3D) structures of the laccases.  相似文献   

15.
A sensitive label-free electrochemical immunosensing platform was designed by a redox matrix of gold nanoparticles (GNPs), Azure І and multi-wall carbon nanotubes (MWCNT) self-assemblying nanocomposite. To construct the immunosensor, MWCNT was first dispersed in Nafion (Nf) to obtain a homogeneous solution and then it was dropped on the surface of the gold electrode (Au). Then the positively-charged redox molecule, Azure І, was entrapped into MWCNT–Nf film to form a redox nanostructural membrane. Next, the negatively charged gold nanoparticles (GNPs) were assembled to the interface through the electrostatic force. Finally, carcinoembryonic antibody molecules could be absorbed into the GNPs/Azure І/MWCNT–Nf immobilization matrix. Using carcinoembryonic antigen (CEA) as a model protein, the electrochemical immunosensor exhibited good stability and reproducibility, as well as good selectivity and storage stability. This strategy presented a promising platform for sensitive and facile monitoring of CEA.  相似文献   

16.
Industrial enzymatic reactions requiring 1,4-NAD(P)H2 to perform redox transformations often require convoluted coupled enzyme regeneration systems to regenerate 1,4-NAD(P)H2 from NAD(P) and recycle the cofactor for as many turnovers as possible. Renewed interest in recycling the cofactor via electrochemical means is motivated by the low cost of performing electrochemical reactions, easy monitoring of the reaction progress, and straightforward product recovery. However, electrochemical cofactor regeneration methods invariably produce adventitious reduced cofactor side products which result in unproductive loss of input NAD(P). We review various literature strategies for mitigating adventitious product formation by electrochemical cofactor regeneration systems, and offer insight as to how a successful electrochemical bioreactor system could be constructed to engineer efficient 1,4-NAD(P)H2-dependent enzyme reactions of interest to the industrial biocatalysis community.  相似文献   

17.
In this paper, dendritic gold nanostructure (DenAu) modified electrode was obtained by direct electrodeposition of planar electrode into 2.8 mM HAuCl(4) and 0.1 M H(2)SO(4) solution under a very negative potential of -1.5 V. Scanning electron microscopy was used to characterize the growth evolution of DenAu with time. The whole DNA biosensor fabrication process based on the DenAu modified electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy methods with the use of ferricyanide as an electrochemical redox indicator. The probe DNA immobilization and hybridization with target DNA on the modified electrode could be well distinguished by using methylene blue as an electrochemical hybridization indicator. The DenAu modified electrode could realize an ultra sensitivity of 1 fM toward complementary target DNA and a very wide dynamic detection range (from 1 fM to 1 nM).  相似文献   

18.
Time-resolved surface-enhanced IR-absorption spectroscopy triggered by electrochemical modulation has been performed on cytochrome c oxidase from Rhodobacter sphaeroides. Single bands isolated from a broad band in the amide I region using phase-sensitive detection were attributed to different redox centers. Their absorbances changing on the millisecond timescale could be fitted to a model based on protonation-dependent chemical reaction kinetics established previously. Substantial conformational changes of secondary structures coupled to redox transitions were revealed.  相似文献   

19.
Hb entrapped in the Konjak glucomannan (KGM) film could transfer electrons directly to an edge-plane pyrolytic graphite (EPG) electrode, corresponding to the redox couple of Fe(III)/Fe(II). The redox properties of Hb, such as formal potential, electron transfer rate constant, the stability of the redox state of protein and redox Bohr effect, were characterized by cyclic voltammetry and square wave voltammetry. The stable Hb-KGM/EPG gave analytically useful electrochemical catalytic responses to oxygen, hydrogen peroxide and nitrite.  相似文献   

20.
Antibody was covalently immobilized by amine coupling method to gold surfaces modified with a self-assembled monolayer of thioctic acid. The electrochemical measurements of cyclic voltammetry and impedance spectroscopy showed that the hexacyanoferrate redox reactions on the gold surface were blocked due to the procedures of self-assembly of thioctic acid and antibody immobilization. The binding of a specific antigen to antibody recognition layer could be detected by measurements of the impedance change. A new amplification strategy was introduced for improving the sensitivity of impedance measurements using biotin labeled protein-streptavidin network complex. This amplification strategy is based on the construction of a molecular complex between streptavidin and biotin labeled protein. This complex can be formed in a cross-linking network of molecules so that the amplification of response signal will be realized due to the big molecular size of complex. The results show that this amplification strategy causes dramatic improvement of the detection sensitivity of hIgG and has good correlation for detection of hIgG in the range of 2-10 microg/ml.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号