首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decreased activities of both 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) synthase and HMG CoA reductase are observed in the presence of sterol in the Chinese hamster ovary (CHO) fibroblast. In three different genotypes of CHO cell mutants resistant to 25-hydroxycholesterol both enzyme activities exhibit a decreased response to 25-hydroxycholesterol compared to wild-type cells. Permanently repressed levels of both HMG CoA synthase and HMG CoA reductase activities are observed in another CHO mutant, phenotypically a mevalonate auxotroph. Mevinolin, a competitive inhibitor of HMG CoA reductase, has no effect on HMG CoA synthase activity measured in vitro. Incubation of CHO cells with sublethal concentrations of mevinolin produces an inhibition of the conversion of [14C]acetate to cholesterol and results in elevated levels of both HMG CoA synthase and HMG CoA reductase activities. Studies of CHO cells in sterol-free medium supplemented with cycloheximide indicate that continuous protein synthesis is not required for the maximal expression of HMG CoA synthase activity and provide an explanation for the lack of temporal similarity between HMG CoA synthase and reductase activities after derepression. These results support the hypothesis of a common mode of regulation for HMG CoA synthase and HMG CoA reductase activities in CHO fibroblasts.  相似文献   

2.
Rat fibroblasts degraded human low density lipoprotein (LDL) very slowly, one-tenth to one-fortieth the rates observed in human fibroblasts. In rat cells, human LDL caused only very small increases in cell cholesterol content and acylCoA:cholesterol acyltransferase (ACAT) activity and caused only small decreases in beta-hydroxy-beta-methylglutaryl CoA (HMG CoA) reductase activity; in human cells, however, human LDL induced very large changes in all three of these parameters, as expected. The binding of human LDL to rat fibroblasts was not reduced by previous incubation with human LDL or with 25-hydroxycholesterol. Thus, in rat fibroblasts there appear to be few, if any, regulated high-affinity receptors that recognize human LDL. Rat LDL fractions (d 1.02-1.05 g/ml), in contrast, were degraded more rapidly than human LDL by rat fibroblasts, caused a significant increase in cell cholesterol content, an increase in ACAT activity, and a significant decrease in HMG CoA reductase activity. Moreover, the degradation of this rat LDL fraction by rat fibroblasts as a function of concentration was biphasic, i.e., there appeared to be a high-affinity component of degradation. Thus, it appears that rat fibroblasts do have a receptor for homologous lipoproteins. However, because both apoprotein B and apoprotein E are present in these rat lipoprotein fractions, the observed effects may relate to recognition of either or both of these apoproteins. The metabolism and metabolic effects of the conventionally defined high density lipoprotein (HDL) fraction of the rat by rat or human fibroblasts resembled those of human LDL in human fibroblasts. It is suggested that rat HDL may, because of its apo E content and higher concentration in rat plasma relative to that of LDL, play an important role in cholesterol homeostasis in vivo.  相似文献   

3.
The lipoprotein-mediated regulation of 3-hydroxy-3-methylglutaryl-(HMG-) CoA reductase in cultured mouse peritoneal macrophages has been investigated. In contrast to what has been reported for other cells, HMG-CoA reductase activity is not suppressed by normal serum or by normal low density lipoproteins (LDL) from humans or dogs. Suppression of reductase activity occurred when cells were cultured in the presence of beta-migrating very low density lipoproteins (beta-VLDL) or LDL from hypercholesterolaemic dogs, or LDL modified by acetoacetylation. Human beta-VLDL from an atypical type III hyperlipoproteinaemic patient was also effective, as was apolipoprotein (apo) E-containing high density lipoproteins (HDL) from cholesterol-fed dogs (apo-E HDLc). The results indicate that cholesterol biosynthesis in mouse peritoneal macrophages is regulated by lipoprotein cholesterol entering via receptor-mediated endocytosis. Normal LDL were not effective because of the poor binding and uptake of these lipoproteins by the apo-B, E (LDL) receptor. Only beta-VLDL, apo-E HDLc, and hypercholesterolaemic LDL were avidly taken up by this receptor and were able to suppress HMG-CoA reductase. Acetoacetylated LDL were internalized via the acetyl-LDL (scavenger) receptor. Thus, mouse macrophages differ from human fibroblasts and smooth muscle cells in their physiological regulation of cholesterogenesis.  相似文献   

4.
Cholesterol metabolism was examined in aortic smooth muscle cells from atherosclerosis-susceptible White Carneau pigeons that have been shown to lack a functional LDL receptor pathway. In cells incubated in the presence of whole serum or low density lipoprotein (LDL) the rate of cholesterol synthesis from [1-14C]acetate or of HMG-CoA reductase activity was 20-100 times greater than for mammalian cells incubated under the same conditions. Unexpectedly, cholesterol synthesis decreased by nearly 50% after preincubation for 24 hr with lipoprotein-deficient serum (LPDS). This occurred without a change in cellular cholesterol content. Neither the high rate of cholesterol synthesis nor the effect of LPDS could be accounted for by differences in cell turnover or state of growth. Cholesterol added in ethanol was ineffective in altering cellular cholesterol synthesis or esterification even though a near doubling in cellular free cholesterol content occurred. Cholesterol synthesis and esterification were, however, able to be regulated with 25-OH cholesterol and mevalonolactone, as indicated by their ability to suppress cholesterol synthesis and to stimulate cholesterol esterification. In spite of the high rate of endogenous cholesterol synthesis, cellular cholesterol content was maintained at a constant level by the efficient efflux of the newly synthesized cholesterol from the cell. Unlike mammalian cells that require a cholesterol acceptor in the medium for efflux to occur, cholesterol efflux from pigeon cells occurred in the absence of a cholesterol acceptor. This suggests either that pigeon cells utilize a different mechanism for cholesterol efflux or that they produce their own cholesterol acceptor. As a result of a lack of a functional LDL receptor pathway, pigeon smooth muscle cells do not maintain cholesterol homeostasis through the controlled uptake of exogenous LDL cholesterol, as do mammalian cells. Rather, pigeon smooth muscle cells would appear to regulate cholesterol concentrations at the level of either cholesterol synthesis or efflux.  相似文献   

5.
Growth of rat intestinal crypt derived cells IEC-6 ceased when the key enzyme of cholesterol synthesis, hydroxymethylglutaryl-CoA reductase, was blocked by the competitive inhibitor mevinolin. This effect was reversed by the addition of mevalonolactone. LDL suppressed reductase activity as well as cholesterol synthesis from [14C]octanoate and stimulated acyl-CoA cholesterol acyltransferase, but failed to support cell growth despite rapid receptor mediated degradation even in the presence of low mevalonolactone concentrations. Inhibition of cholesterol esterification by Sandoz-Compound 58-035 enhanced cell growth in the presence of mevinolin, but did not promote proliferation in the additional presence of low-density lipoproteins. HDL3 but not HDL2 or tetranitromethane-modified HDL3 totally reversed the mevinolin induced inhibition of cell growth. This rescue by HDL3 was overcome by an increased dose of mevinolin. HDL3 derepressed reductase, stimulated cholesterol synthesis and reduced cholesterol esterification, but did not reverse the cholesterol synthesis inhibition by mevinolin. It is concluded that IEC-6 cells preferentially use endogenously synthesized cholesterol for membrane formation rather than low-density lipoprotein cholesterol. High-density lipoproteins appear to normalize cell growth in the presence of mevinolin by inhibition of cholesterol esterification and probably by inducing the formation of non sterol products of mevalonate.  相似文献   

6.
We previously showed that preincubation of a 10,000 g supernatant (S(10)) from rat liver for 20 min at 37 degrees C dramatically increased the subsequent incorporation of [(14)C]acetate into sterols. No activation was seen with [(14)C]mevalonate as substrate. In the present studies we have examined the effect of preincubation on HMG CoA reductase. When microsomes were isolated from S(10) by calcium precipitation, preincubation of S(10) increased the specific activity of HMG CoA reductase threefold. No activation of HMG CoA reductase was observed in microsomes isolated by ultracentrifugation. Activation was cyclic AMP-sensitive. When cyclic AMP (0.001-1.0 mM) and MgATP (1 mM) were present during the preincubation period, there was little or no activation of HMG CoA reductase activity or of sterol synthesis from acetate. MgATP alone did not prevent activation. Neither cyclic AMP nor MgATP was inhibitory when present only during the assay of sterol synthesis. We propose that the in vitro activation represents the reversal of a physiologic cyclic AMP-mediated mechanism for the control of hepatic HMG CoA reductase. That a phosphoprotein phosphatase may catalyze the activation was supported by the observation that sodium fluoride, an inhibitor of phosphoprotein phosphatases, inhibited the activation. These results suggest that hormone-induced changes in the cellular level of cyclic AMP may regulate the activity of HMG CoA reductase and the rate of hepatic cholesterol synthesis.  相似文献   

7.
Bovine luteal cells can utilize low density lipoprotein (LDL) or high density lipoprotein (HDL) as a source of cholesterol for steroidogenesis, and administration of PGF-2 alpha in vitro suppresses lipoprotein utilization. The objective of this study was to examine the mechanism by which PGF-2 alpha exerts this effect. Cultured bovine luteal cells received 0.25 microCi[14C]acetate/ml, to assess rates of de-novo sterol and steroid synthesis, with or without lipoproteins. Both LDL and HDL enhanced progesterone production (P less than 0.01), but caused a significant reduction in the amount of radioactivity in the cholesterol fraction. PGF-2 alpha treatment inhibited the increase in lipoprotein-induced progesterone synthesis (P less than 0.01), but did not prevent the reduction in de-novo cholesterol synthesis brought about by LDL or HDL. PGF-2 alpha alone reduced cholesterol synthesis (P less than 0.01), but it was not as effective as either LDL or HDL. Both lipoproteins and PGF-2 alpha also decreased the amount of radioactivity in the progesterone fraction (P less than 0.01), and the effect of PGF-2 alpha was similar to that of the lipoproteins. It is concluded that lipoproteins can enhance progesterone production and also suppress de-novo cholesterol synthesis in bovine luteal cells, but only the former effect of lipoproteins is inhibited by PGF-2 alpha. Therefore, it is suggested that PGF-2 alpha allows entry of lipoprotein cholesterol into the cell, but prevents utilization for steroidogenesis. In addition, PGF-2 alpha alone can suppress cholesterol synthesis, as well as decrease conversion of cholesterol to progesterone.  相似文献   

8.
The effects of a series of oxygenated sterols on DNA synthesis and HMG-CoA reductase activity were tested in human lymphocytes. The cells were stimulated by PHA and cultured in cholesterol containing medium. The inhibitory effects of sterols on DNA synthesis were strictly related to the position and the configuration of the hydroxyl on the side chain, to the side chain conformation and integrity and to the structure of the sterol nucleus. The inhibition of HMG-CoA reductase activity was less dependent on these structural features since all the sterols tested were strong inhibitors. In our experimental conditions the inhibition of DNA synthesis was not related to the suppression of the HMG CoA reductase activity. The specificity of the structures required for DNA synthesis inhibition could be explained by the involvement of a specific hydroxysterol binding protein.  相似文献   

9.
Human blood monocytes cultured in medium containing 20% whole serum showed the greatest activity of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase and [14C]acetate incorporation into non-saponifiable lipids around the 7th day after seeding, the period of greatest growth. Although there was enough low-density lipoprotein (LDL) in the medium to saturate the LDL receptors that were expressed by normal cells at that time, HMG-CoA reductase activity and acetate incorporation were as high in normal cells as in cells from familial-hypercholesterolaemic (FH) patients. Both the addition of extra LDL, which interacted with the cells by non-saturable processes, and receptor-mediated uptake of acetylated LDL significantly reduced reductase activity and increased incorporation of [14C]oleate into cholesteryl esters in normal cells and cells from FH patients ('FH cells'), and reduced the expression of LDL receptors in normal cells. Pre-incubation for 20h in lipoprotein-deficient medium apparently increased the number of LDL receptors expressed by normal cells but reduced the activity of HMG-CoA reductase in both normal and FH cells. During subsequent incubations the same rate of degradation of acetylated LDL and of non-saturable degradation of LDL by FH cells was associated with the same reduction in HMG-CoA reductase activity, although LDL produced a much smaller stimulation of oleate incorporation into cholesteryl esters. In normal cells pre-incubated without lipoproteins, receptor-mediated uptake of LDL could abolish reductase activity and the expression of LDL receptors. The results suggested that in these cells, receptor-mediated uptake of LDL might have a greater effect on reductase activity and LDL receptors than the equivalent uptake of acetylated LDL. It is proposed that endogenous synthesis is an important source of cholesterol for growth of normal cells, and that the site at which cholesterol is deposited in the cells may determine the nature and extent of the metabolic events that follow.  相似文献   

10.
Like all other peripheral cells types thus far studied in culture, endothelial cells derived from the rabbit aorta bind, internalize and degrade low density lipoprotein (LDL) at a significant rate. At any given LDL concentration, the metabolism by rabbit endothelial cells was slower than that by fibroblasts or smooth muscle cells. Thus, longer incubations were required to achieve a net increment in cell cholesterol content or to suppress endogenous sterol synthesis; after 18-24 h incubation in the presence of LDL at 100 microgram LDL protein/ml inhibition was greater than 80% relative to the rate in cells incubated in the absence of lipoproteins. High density lipoproteins (HDL) were also taken up and degraded but did not inhibit sterol synthesis. Studies of LDL binding to the cell surface suggested the presence of at least two classes of binding sites; the high-affinity binding sites were fully saturated at very low LDL concentrations (about 5 microgram LDL protein/ml). However, the degree of inhibition of endogenous sterol synthesis increased progressively with increasing LDL concentrations from 5 to 100 microgram LDL/ml, suggesting that uptake from the low affinity sites in this cell line contributes to the suppression of endogenous sterol synthesis. The internalization and degradation of LDL also increased with concentrations as high as 700 microgram/ml. Thus, in vivo, where the cells are exposed to LDL concentrations far above that needed to saturate the high affinity sites, most of the LDL degradation would be attributable to LDL taken up from low affinity sites. As noted previously in swine arterial smooth muscle cells and in human skin fibroblasts, unlabeled HDL reduced the binding, internalization and degradation of labeled LDL. Cells incubated for 24 h in the presence of high concentrations of LDL alone showed a net increment in cell cholesterol content; the simultaneous presence of HDL in the medium significantly reduced this LDL-induced increment in cell cholesterol content. The possible relationship between LDL uptake and degradation by these cells in vitro is discussed in relationship to their transport function in vivo.  相似文献   

11.
The true rate of cholesterogenesis in cultured monocyte-macrophages was determined from the incorporation of [2-14C]acetate into cholesterol, using the desmosterol (cholesta-5,24-dien-3 beta-ol) that accumulated in the presence of the drug triparanol to estimate the specific radioactivity of the newly formed sterols. It was shown that this procedure could be successfully adapted for use with cultured monocytes despite the accumulation of other unidentified biosynthetic intermediates. In cells maintained in 20% (v/v) whole serum approx. 25% of the sterol carbon was derived from exogenous acetate. Cholesterol synthesis was as high in normal cells as in cells from homozygous familial hypercholesterolaemic (FH) subjects and accounted for 50% of the increase in cellular cholesterol. The addition of extra low-density lipoprotein (LDL) reduced cholesterol synthesis, apparently through a decrease in the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase). When incubated in lipoprotein-deficient serum some cells did not survive, but those that remained showed a normal increase in protein content; the amount of cellular protein and cholesterol in each well did not increase and cholesterol synthesis was reduced by over 80%. HMG-CoA reductase activity fell less dramatically and the proportion of sterol carbon derived from exogenous acetate increased, suggesting that the low rate of cholesterogenesis with lipoprotein-deficient serum was due to a shortage of substrate. The results indicate that under normal conditions monocyte-macrophages obtain cholesterol from endogenous synthesis rather than through receptor-mediated uptake of LDL, and that synthesis together with non-saturable uptake of LDL provides the majority of the cholesterol required to support growth.  相似文献   

12.
Lipoprotein-deficient milieu, freshly isolated human peripheral blood lymphocytes lose about 50% of their membrane cholesterol into the medium within 8 h. The cholesterol loss is counter-regulated by de novo synthesis commencing after a lag phase of 8-12 h, and reaching a steady state within 24 h at a diminished membrane cholesterol level. About 50 micrograms free cholesterol/ml, offered in the form of low-density lipoproteins (LDL) and cholesterol/phosphatidylcholine liposomes, suppressed cholesterol synthesis to about 20% of that controls (lipoprotein-deficient culture). By contrast, pure phosphatidylcholine liposomes enhanced cholesterol synthesis to about 150% of control values. High-density lipoproteins (HDL) exerted a slightly suppressive effect on cholesterol synthesis only at high concentrations (greater than 100 micrograms HDL cholesterol/ml). HDL added to cultures containing fixed concentrations of LDL led to a dose-dependent neutralization of LDL suppression of cholesterol synthesis. Culture medium containing complete serum caused a suppression of cholesterol synthesis to about 50% of the control. The lesser reduction in cholesterol synthesis caused by complete serum compared with LDL or cholesterol/phosphatidylcholine liposomes can be explained by the presence of HDL in the former. Our results support the view that the cholesterol requirement of blood lymphocytes in their lipid-rich milieu is met by cholesterol neosynthesis as well as an exchange mechanism with surrounding lipoproteins. In our system, the cholesterol neosynthesis appears to be controlled by the ratio of LDL to HDL in the surrounding medium.  相似文献   

13.
The mass efflux of free and esterified cholesterol was studied in skin fibroblasts loaded with cholesterol by incubation with low density lipoproteins (LDL) isolated from normal or hypercholesterolemic cynomolgus monkeys. Cells incubated with hypercholesterolemic LDL accumulated 2-3 times more cholesteryl ester than did cells incubated with the same amount of normal LDL. Cholesteryl oleate was the principal cholesteryl ester species to accumulate in cells incubated with both normal and hypercholesterolemic LDL. Efflux of this accumulated cholesterol was absolutely dependent on the presence of a cholesterol acceptor in the culture medium. Lipoprotein-deficient serum (LPDS) was the most potent promoter of cholesterol efflux tested, with maximum efflux occurring at LPDS concentrations greater than 1.5 mg protein/ml. Upon addition of efflux medium containing LPDS, there was a reduction in both the free and esterified cholesterol concentration of the cells. Greater than 90% of the cholesteryl esters that were lost from the cells appeared in the culture medium as free cholesterol, indicating that hydrolysis of cholesteryl esters preceded efflux. Efflux was not inhibited by chloroquine, however, suggesting a mechanism independent of lysosomes. Loss of cellular free cholesterol was maximum by 6 hr and changed very little thereafter up to 72 hr. Cholesteryl ester loss from cells decreased in a log linear fashion for efflux periods of 6-72 hr, with an average half-life for cholesteryl ester efflux of 30 hr, but with a range of 20-50 hr, depending upon the specific cell line. The rate of efflux of cellular cholesteryl esters was similar for cells loaded with normal or hypercholesterolemic LDL. In cells loaded with cholesteryl esters, cholesterol synthesis was suppressed and cholesterol esterification and fatty acid synthesis were enhanced. During efflux, cholesterol synthesis remained maximally suppressed while cholesterol esterification decreased for the first 24 hr of efflux, then plateaued at a level approximately 5-fold higher than control levels, while fatty acid synthesis was slightly stimulated. There was little difference in the rate of efflux of individual cholesteryl ester species. There was, however, the suggestion that reesterification of cholesterol principally to palmitic acid occurred during efflux. Since the rate of cellular cholesteryl ester efflux was similar regardless of whether the cells had been loaded with cholesterol by incubation with normal LDL or hypercholesterolemic LDL, the greater accumulation of cholesterol in cells incubated with hypercholesterolemic LDL cannot be explained by differences in rates of efflux.-St. Clair, R. W., and M. A. Leight. Cholesterol efflux from cells enriched with cholesteryl esters by incubation with hypercholesterolemic monkey low density lipoprotein.  相似文献   

14.
The loss in feedback control of cholesterol biosynthesis in tumor cells was examined in tissue culture. Human fibroblasts from normal subjects, SV40 tumor virus-transformed cell lines, and homozygous familial hypercholesterolemic cells as reference, were grown in tissue culture. Experiments were conducted to relate the regulatory enzyme for cholesterol biosynthesis, HMG CoA reductase, and the membrane-located binding receptors for low density lipoproteins (LDL) that mediate feedback control in normal cells. Monolayers of virus-transformed tumor cells exhibited specific (125)I-labeled LDL binding of 152 +/- 21 ng/mg cell protein, which was essentially the same as that of normal fibroblasts (135 +/- 20 ng/mg). Binding of LDL by familial hypercholesterolemic cells used as controls was only 8 +/- 3 ng/mg under the same test conditions. Basal levels of HMG CoA reductase in tumor cells of 45.2 +/- 6.5 units/mg cell protein were about twice those of normal cells. However, in contrast to the lack of feedback control of this enzyme observed with tumors in vivo, in both the normal and the transformed cells in vitro, activity of the enzyme decreased about fourfold when serum lipids were added. These findings demonstrate that tumor cells growing in vitro contain a normal complement of the membrane-located binding receptors for low density lipoproteins and, although the basal levels are higher than normal, an effective feedback regulation of the enzyme HMG CoA reductase is retained.  相似文献   

15.
The present study examined the effects of serum and lipoproteins on the function of cultured adrenal cells from 115-127-day-old ovine fetuses and from newborn lambs. On day 1 of culture, corticosteroid output was similar in medium containing 2% horse serum or in serum-free medium, both for fetal and neonatal cells. However, on day 5, cells cultured in the absence of serum produced smaller amounts of these steroids than cells maintained in medium containing serum; the difference was more marked under ACTH1-24 stimulation. Conversely, cAMP production was never lower in the absence than in the presence of serum. When stimulated by ACTH1-24 on day 2 of culture, fetal or neonatal adrenal cells incubated in the presence of a saturating concentration of ovine LDL produced more corticosteroids than cells incubated in serum-free medium; HDL also enhanced ACTH1-24-induced steroidogenesis, but to a lesser extent. VLDL was effective only with neonatal cells. In fetal and neonatal cells cultured for 6 days in ACTH-free medium, VLDL and LDL increased ACTH-induced steroidogenesis, but HDL did not. On the other hand, when cells were cultured in the presence of ACTH1-24, LDL and HDL were equipotent in supporting ACTH1-24-induced steroid output. Three major lipoprotein fractions were observed in serum of fetal and newborn lambs. The concentration of cholesterol was very low in the VLDL fraction of fetuses, but it was similar to that of newborns in LDL. Conversely, 4 times more cholesterol was present in HDL of newborns than in HDL of fetuses. These results suggest that: (i) after several days of cell culture, cholesterol availability is an important limiting factor for the steroidogenesis of cells maintained under serum-free conditions; (ii) both an "LDL pathway" and an "HDL pathway" are operating in adrenal cells from fetal as well as newborn sheep; (iii) LDL and HDL are important physiological sources of cholesterol to support steroidogenesis by fetal and neonatal adrenal cells.  相似文献   

16.
MDCK Cells seeded on extracellular matrix- (ECM) coated dishes and exposed to medium supplemented with high-density lipoproteins (HDLs, 750 micrograms protein/ml) and transferrin (10 micrograms/ml) have a proliferative rate, final cell density, and morphological appearance similar to those of cells grown in serum-supplemented medium. The mitogenic stimulus provided by HDLs is not limited by the initial cell density at which cultures are seeded, nor is it limited in time, since cells grown in medium supplemented with transferrin and HDLs grew to at least 50 generations. The presence of HDLs in the medium is required in order for cells to survive, since cells actively proliferating in the presence of medium supplemented with HDLs and transferrin begin to die within 2 days after being transferred to medium supplemented only with transferrin. Low-density lipoprotein (LDL) is mitogenic for MDCK cells when present at low concentrations (from 2.5 to 100 micrograms protein/ml). Above 100 micrograms protein/ml, LDL is cytotoxic and therefore cannot support cell proliferation at an optimal rate. The mitogenic effect of HDLs is also observed when cells are maintained on fibronectin-coated dishes. However, the proliferative rate of the cells is suboptimal and cultures cannot be passaged on this substrate indefinitely, as they can be on ECM-coated dishes. A close association between the ability of HDLs to support cell proliferation and their ability to induce the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase is observed. HMG CoA reductase activity is 18 times higher (70 pmoles/min/10(6) cells) in proliferating cells than in confluent, nondividing cells (4 pmoles/min/10(6) cells). The HMG Coa reductase activity of sparse cells is more sensitive to induction by HDLs (eight-fold higher than control cells) than is the enzyme activity of confluent cells (two-fold higher than control levels). The dose-response relationship between the abilities of HDLs to support proliferation and to induce HMG CoA reductase activity are similar. The time course of the stimulation of proliferation and the increase in enzyme activity of sparse, quiescent cells after exposure to HDLs are parallel. The HMG CoA reductase activity of sparse MDCK cells is induced six-fold by exposure to compactin, a competitive inhibitor of HMG CoA reductase. This induction of HMG CoA reductase is prevented by mevalonic acid, not affected by LDL, and synergistically enhanced by simultaneous exposure to HDLs. HDLs effect a rescue from the cytotoxic effect of compactin, whereas LDL does not.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
H4-II-E-C3 hepatoma cells in culture respond to lipid-depleted media and to mevinolin with increased sterol synthesis from [14C]acetate and rise of 3-hydroxy-3-methylglutaryl coenzyme A reductase levels. Mevalonate at 4 mM concentration represses sterol synthesis and the reductase, and completely abolishes the effects of mevinolin. Mevalonate has little or no effect on sterol synthesis or reductase in enucleated hepatoma cells (cytoplasts) or on reductase in cytoplasts of cultured Chinese hamster ovary (CHO) cells. The sterol-synthesizing system of hepatoma cell cytoplasts and the reductase in the cytoplasts of CHO cells were completely stable for at least 4 hr. While reductase levels and sterol synthesis from acetate followed parallel courses, the effects on sterol synthesis--both increases and decreases--exceeded those on reductase. In vitro translation of hepatoma cell poly(A)+RNAs under various culture conditions gave an immunoprecipitable polypeptide with a mass of 97,000 daltons. The poly(A)+RNA from cells exposed for 24 hr to lipid-depleted media plus mevinolin (1 microgram/ml) contained 2.8 to 3.6 times more reductase-specific mRNA than that of cells kept in full-growth medium, or cells exposed to lipid-depleted media plus mevinolin plus mevalonate. Northern blot hybridization of H4 cell poly(A)+RNAs with [32P]cDNA to the reductase of CHO cells gave two 32P-labeled bands of 4.6 and 4.2 K-bases of relative intensities 1.0, 0.61-1.1, 2.56, and 1.79 from cells kept, respectively, in full-growth medium, lipid-depleted medium plus mevinolin plus mevalonate, lipid-depleted medium plus mevinolin, and lipid-depleted medium. These values approximate the reductase levels of these cells. We conclude that mevalonate suppresses cholesterol biosynthesis in part by being a source of a product that decreases the level of reductase-specific mRNA.  相似文献   

18.
Mouse mammary carcinoma FM3A cells, which are able to grow in a serum-free medium, have novel characteristics that could be valuable in biochemical and somatic cell genetic studies. In FM3A cells grown in the presence of serum, both sterol synthesis and the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the major rate-limiting enzyme in the cholesterol biosynthetic pathway, were strongly suppressed by human low density lipoprotein (LDL). The addition of LDL (50 micrograms protein/ml) resulted in a 50% decrease in the reductase activity within 3 h and a 95% reduction after 24 h. Similarly, over 90% suppression of the reductase activity was obtained by the addition of LDL or mevalonolactone when the cells were grown on a serum-free medium. ML-236B (compactin), a specific inhibitor of HMG-CoA reductase, inhibited sterol synthesis from [14C]acetate by 80% at 1 microM. Reductase activity in FM3A cells was increased by 2.5- to 5-fold when the cells were treated with ML-236B (at 0.26-2.6 microM for 24 h). Thus, in FM3A cells, HMG-CoA reductase activity responded well to LDL, as is observed in human skin fibroblasts. Along with other novel features of this cell line, the present observations indicate that FM3A cells should be useful in biochemical and somatic cell genetic analysis of cholesterol metabolism, especially as regards the regulation of HMG-CoA reductase activity.  相似文献   

19.
The exchange of free cholesterol in vitro between human red blood cells and low density lipoproteins (LDL) was quantified. The flux of sterol between LDL and red cells was relatively constant over a wide range of concentrations of free cholesterol in lipoproteins. In a system containing a suspension of red blood cells in a mixed solution of high density lipoproteins (HDL) and LDL, the fractional rate of exchange of HDL cholesterol was most rapid followed by LDL and lastly, by red cells. Increasing the ionic strength of the incubation media had no effect on the exchange of cholesterol between LDL and red cells. However, when both HDL and LDL were incubated with red cells in a buffer of increased ionic strength, total red cell cholesterol exchange was unaltered, but proportionately more exchange occurred with HDL and less with LDL. Addition of acetone to the buffer increased the exchange of cholesterol between LDL and red cells but produced no increment in red cell-HDL exchange.  相似文献   

20.
Lipoprotein cholesterol (C) supports the high rate of progesterone production by the human placenta as endogenous cholesterol synthesis is low. To study underlying mechanisms whereby lipoproteins, including high density lipoprotein-2 (HDL2), stimulate progesterone secretion, trophoblast cells were isolated from human term placentas and maintained in primary tissue culture. Lipoproteins were added at several concentrations and medium progesterone secretion was determined. HDL2 (d 1.063-1.125 g/ml) as well as low density lipoproteins (LDL) (d 1.019-1.063 g/ml) but not HDL3 (d 1.125-1.21 g/ml) stimulated progesterone secretion in a dose-dependent manner, with HDL2 cholesterol entering the cell and serving as substrate for progesterone synthesis. Conversely, LDL and HDL2 produced a significant decrease in [2-14C]acetate incorporation into cell cholesterol. Cholesterol-depleted lipoproteins did not stimulate progesterone secretion. The stimulating effect of LDL was abolished by apolipoprotein modification by cyclohexanedione or reductive methylation and by the addition of anti-LDL receptor antibody or 10 microM chloroquine to the medium. [14C]acetate conversion into cholesterol was accelerated by these procedures. However, HDL2 stimulation of progesterone secretion and reduction of [14C]acetate incorporation into cholesterol was not blocked by chemical modification of apolipoproteins, anti-LDL receptor antibody, or chloroquine. Treatment of HDL2 with tetranitromethane or dimethylsuberimidate also did not block the stimulation of progesterone. To determine whether the capacity of HDL2 to deliver cholesterol to the trophoblast cells was restricted to subfractions differing in apoE content, HDL2 was chromatographed on heparin-Sepharose and three fractions (A, B, and C) were obtained. Fraction A was poorest in apoE and free cholesterol, fraction B contained the majority of cholesterol, and fraction C was the richest in apoE and free cholesterol. When added to trophoblast cells, fraction A stimulated little progesterone secretion, fraction B stimulated moderately, and fraction C did so greatly. Modification of these subfractions with cyclohexanedione or reductive methylation did not inhibit these effects. In conclusion, HDL2 stimulated progesterone secretion in human trophoblast cell culture. Contrary to LDL, the HDL effect was not mediated by apolipoproteins or the LDL receptor pathway. The ability of HDL2 to stimulate progesterone secretion is consistent with the passive transfer of free cholesterol to the cell membrane from a physicochemically specific subfraction of HDL. This mechanism may be an auxiliary source of cholesterol for human steroidogenic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号