首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA gyrase-catalyzed decatenation of multiply linked DNA dimers   总被引:7,自引:0,他引:7  
One possible intermediate during the terminal stages of the replication of a closed circular DNA is a catenated DNA dimer of the two completed daughter molecules. The two monomer DNA rings in these DNA dimers can be linked as many as 20-30 times. In Escherichia coli, DNA gyrase could act on these catenated dimers to eliminate the linkages between the daughter duplexes, yielding the final monomer product. In this report, this reaction has been studied biochemically. The in vitro pBR322 DNA replication system (Minden, J., and Marians, K. J. (1985) J. Biol. Chem. 260, 9316-9325) was used to manufacture large amounts of multiply linked catenated DNA dimers for use as a substrate for DNA gyrase-catalyzed decatenation. Studies presented here demonstrate that this decatenation reaction is more efficient with supercoiled as opposed to relaxed DNA dimers, proceeds in a distributive fashion, is inhibited by moderate amounts of salt (80 mM KCl), and is stimulated by the E. coli protein HU.  相似文献   

2.
Freshly replicated DNA molecules initially form multiply interlinked right-handed catenanes. In bacteria, these catenated molecules become supercoiled by DNA gyrase before they undergo a complete decatenation by topoisomerase IV (Topo IV). Topo IV is also involved in the unknotting of supercoiled DNA molecules. Using Metropolis Monte Carlo simulations, we investigate the shapes of supercoiled DNA molecules that are either knotted or catenated. We are especially interested in understanding how Topo IV can unknot right-handed knots and decatenate right-handed catenanes without acting on right-handed plectonemes in negatively supercoiled DNA molecules. To this end, we investigate how the topological consequences of intersegmental passages depend on the geometry of the DNA-DNA juxtapositions at which these passages occur. We observe that there are interesting differences between the geometries of DNA-DNA juxtapositions in the interwound portions and in the knotted or catenated portions of the studied molecules. In particular, in negatively supercoiled, multiply interlinked, right-handed catenanes, we detect specific regions where DNA segments belonging to two freshly replicated sister DNA molecules form left-handed crossings. We propose that, due to its geometrical preference to act on left-handed crossings, Topo IV can specifically unknot supercoiled DNA, as well as decatenate postreplicative catenanes, without causing their torsional relaxation.  相似文献   

3.
The replication of plasmid pBR322 DNA has been reconstituted with purified proteins from Escherichia coli. Initiation of the leading-strand requires RNA polymerase holoenzyme, DNA polymerase I, RNase H, and DNA gyrase. Initiation of the lagging-strand requires the primosomal proteins (the dnaB, dnaC, and dnaG proteins, replication factor Y (protein n') and proteins i, n, and n") and the single-stranded DNA binding protein. DNA polymerase III holoenzyme is required for extensive elongation of the nascent DNA chains. The products of this replication reaction are primarily nonsegregated daughter molecules. However, the addition of small amounts of soluble extract from E. coli results in the completion and segregation of these molecules to give mature form I DNA, suggesting that additional factors are required for this process. Topoisomerase I is necessary to make the replication system specific for pBR322 DNA as a template, indicating that the linking number of the DNA, determined by an equilibrium between the opposing activities of topoisomerase I and DNA gyrase, plays a crucial role in determining the reactivity of the DNA molecule toward initiating DNA replication. The function of the proteins involved in the replication of this closed-circular, double-stranded, superhelical DNA is discussed.  相似文献   

4.
Reverse gyrase is a hyperthermophilic enzyme that can introduce positive supercoiling in substrate DNA. It is showed in our studies that positive DNA supercoils were induced in both pBR322 vector and an artificially synthesized mini-plasmid DNA by reverse gyrase. The left-handed structures adopted by positively supercoiled DNA molecules could be identified from their right-handed topoisomers through atomic force microscopic examination. Additional structural comparisons revealed that positively supercoiled DNA molecule AFM images exhibited increased contour lengths. Moreover, enzymatic assays showed that the positively supercoiled DNA could not be cleaved by T7 endonuclease. Together, this suggests that the overwound structure of positive supercoils could prevent genomic duplex DNA from randomly forming single-stranded DNA regions and intra-stranded secondary structures.  相似文献   

5.
6.
Identification of a potent decatenating enzyme from Escherichia coli   总被引:20,自引:0,他引:20  
A topoisomerase has been purified from extracts of a topoisomerase I-deficient strain of Escherichia coli based solely on its ability to segregate pBR322 DNA replication intermediates in vitro. This enzyme rapidly decatenated multiply linked form II:form II DNA dimers to form II DNA, provided that the DNA substrate contained single-stranded regions. Efficient relaxation of negatively supercoiled DNA was observed when reaction mixtures were incubated at 52 degrees C, but not at 30 degrees C (the temperature at which decatenation was readily observed). This topoisomerase was insensitive to the DNA gyrase inhibitor norfloxacin and unaffected by antibody directed against topoisomerase I. Relaxation of a unique plasmid topoisomer revealed that this decatenase changed the linking number of the DNA in steps of one and was therefore a type 1 topoisomerase. The cleavage pattern of a fragment of single-stranded phi X174 DNA generated by this decatenase was virtually identical to that reported for topoisomerase III, the least characterized topoisomerase present in E. coli.  相似文献   

7.
The effect of ICRF-193, a noncleavable-complex-forming topoisomerase II inhibitor, on simian virus 40 (SV40) DNA and SV40 chromosome replication was examined by using an in vitro replication system composed of HeLa cell extracts and SV40 T antigen. Unlike the topoisomerase inhibitors VP-16 and camptothecin, ICRF-193 had little effect on DNA chain elongation during SV40 DNA replication, but high-molecular-weight DNAs instead of segregated monomer DNAs accumulated as major products. Analysis of the high-molecular-weight DNAs by two-dimensional gel electrophoresis revealed that they consisted of catenated dimers and late Cairns-type DNAs. Incubation of the replicated DNA with topoisomerase II resulted in conversion of the catenated dimers to monomer DNAs. These results indicate that ICRF-193 induces accumulation of catenated dimers and late Cairns-type DNAs by blocking the decatenating and relaxing activities of topoisomerase II in the late stage of SV40 DNA replication. In contrast, DNA replication of SV40 chromosomes was severely blocked by ICRF-193 at the late stage, and no catenated dimers were synthesized. These results are consistent with the finding that topoisomerase II is required for unwinding of the final duplex DNA in the late stage of SV40 chromosome replication in vitro.  相似文献   

8.
During enzymatic replication of plasmids containing the origin of the Escherichia coli chromosome, oriC, formation of an active initiation complex consisting of dnaA, dnaB, dnaC, and HU proteins, requires a supercoiled DNA template. Relaxed covalently closed plasmids are active only if supercoiled by gyrase prior to initiation; nicked and linear DNAs are inactive. Semi-conservative replication proceeds via delta structure as intermediates. Daughter molecules include nicked intermediates. Daughter molecules include nicked monomers and catenated pairs. Elongation is rapid, but late replicative intermediates accumulate because the final elongation and termination steps are slow. Production of covalently closed circular daughter DNA molecules requires removal of ribonucleotide residues (primers) by DNA polymerase I, assisted by ribonuclease H, gap filling, and ligation of nascent strands by ligase. Reconstitution of a complete cycle of oriC plasmid replication, beginning and ending with supercoiled molecules, has been achieved with purified proteins.  相似文献   

9.
An infrequent generation of catenated network of pBR322 in Escherichia coli   总被引:1,自引:0,他引:1  
N Komiyama  K Shishido 《FEBS letters》1986,204(2):269-272
It was demonstrated that Escherichia coli infrequently generates the catenated network of pBR322. This complex pBR322 form was detected when DNA molecules could hardly enter the agarose gel during electrophoresis and was found to comprise monomers and dimers of the plasmid.  相似文献   

10.
11.
Separation of the two newly replicated chromosomes in simian virus 40 late replicating intermediates (RI*) occurred by two pathways. The parental DNA strands were completely unwound, releasing circular DNA monomers with a gap in the nascent strand (Form II*), or duplex DNA in the termination region was not unwound, resulting in formation of catenated dimers. Under optimal conditions, both products were transient intermediates in replication, although Form II* was predominant. However, in hypertonic medium both RI* and catenated dimers accumulated, and Form II* was not observed. Hypertonic medium appeared to inhibit both DNA unwinding in the termination region and separation of catenated dimers. When the size of the genome or the position of the origin of replication was changed, termination occurred at sites other than that of wild-type SV40. Neither catenated dimers nor RI* DNA accumulated at these sites. Instead, RI* separated into Form II*. Unwinding parental DNA was more difficult at some termination regions than others. Therefore, although completion of DNA replication does not require a unique termination sequence, this sequence can determine the mode of separation for sibling molecules.  相似文献   

12.
13.
Pulse-labeling of an Escherichia coli strain harboring the resistance transfer factor R6K results in a transient increase in labeled catenated R6K DNA molecules. After a chase the level of labeled catenated DNA molecules is greatly reduced concomitant with a marked increase in labeling of the supercoiled DNA form of R6K. The data presented support a role for the catenated DNA molecule as an intermediate in the replication of the plasmid R6K.  相似文献   

14.
Intermediates of adeno-associated virus DNA replication in vitro.   总被引:7,自引:7,他引:0       下载免费PDF全文
G Hong  P Ward    K I Berns 《Journal of virology》1994,68(3):2011-2015
Intermediates of adeno-associated virus type 2 (AAV) DNA replication in an in vitro assay have been characterized. The assay involves rescue and replication of an AAV insert in pBR322. Intermediates were shown to be duplex molecules in which at least one terminus was in the extended configuration, in contrast to the hairpinned ends seen after rescue in the absence of AAV DNA replication. Also present were linear double-stranded dimers, which were characterized as either head-to-head or tail-to-tail tandems; no head-to-tail dimers were detected. The results are in accord with the current model of AAV DNA replication.  相似文献   

15.
The structure of replicating adenovirus 2 DNA molecules   总被引:40,自引:0,他引:40  
R L Lechner  T J Kelly 《Cell》1977,12(4):1007-1020
Adenovirus 2 (Ad2)-infected KB cells were exposed to a 2.5 min pulse of 3H-thymidine at 19 hr after infection. The labeled DNA molecules were separated from cell DNA and mature Ad2 DNA by sucrose gradient sedimentation and CsCI equilibrium centrifugation under conditions designed to minimize branch migration and hybridization of single strands. Electron microscopy-of fractions containing radioactivity revealed two basic types of putative replicating molecules: Ad2 length duplex DNA molecules with one or more single-stranded branches (type I) and Ad2 length linear DNA molecules with a single-stranded region extending a variable distance from one end (type II). Length measurements, partial denaturation studies and 3′ terminal labeling experiments were consistent with the following model for Ad2 DNA replication. Initiation of DNA synthesis occurs at or near an end of the Ad2 duplex. Following initiation, a daughter strand is synthesized in the 5′ to 3′ direction, displacing the parental strand with the same polarity. This results in the formation of a branched replicating molecule (type I). Initiations at the right and left molecular ends are approximately equal in frequency, and multiple initiations on the same replicating molecule are common. At any given displacement fork in a type I molecule, only one of the two parental strands is replicated. Two nonexclusive mechanisms are proposed to account for the replication of the other parental strand. In some cases, before completion of a round of displacement synthesis initiated at one end of the Ad2 duplex, a second initiation will occur at the opposite end. In these doubly initiated molecules, both parental strands serve as templates for displacement synthesis. Two type II molecules are generated when the oppositely moving displacement forks meet. Alternatively, displacement synthesis may proceed to the end of the Ad2 duplex, resulting in the formation of a daughter duplex and a parental single strand. Replication of the displaced parental strand is then initiated at or near its 3′ terminus, producing a type II molecule. Daughter strand synthesis proceeds in the 5′ to 3′ direction in type II molecules generated by either mechanism, and completion of synthesis results in the formation of a daughter duplex.  相似文献   

16.
Formation of supercoiling domains in plasmid pBR322.   总被引:25,自引:13,他引:12       下载免费PDF全文
J K Lodge  T Kazic    D E Berg 《Journal of bacteriology》1989,171(4):2181-2187
  相似文献   

17.
O Sundin  A Varshavsky 《Cell》1981,25(3):659-669
When SV40-infected cells are placed into hypertonic medium, newly synthesized DNA accumulates as form C catenated dimers. These molecules consist of two supercoiled monomer circles of SV40 DNA interlocked by one or more topological inter-twinings and are seen as transiently labeled inter-mediates during normal replication. Form C catenated dimers represent pure segregation intermediates, replicative DNA structures in which DNA synthesis is complete but which still require topological separation of the two daughter circles. Hypertonic shock seems to block selectively a type II topoisomerase activity involved in disentangling the two circles. This is reflected in the fact that form C catenated dimers that accumulate during the block are highly intertwined with catenation linkage numbers up to C(L) = 20. While initiation of replication is also inhibited by hypertonic treatment, ongoing SV40 DNA synthesis is not affected, and replication is free to proceed from the earliest cairns structure through to form C catenated dimers. The block to segregation is rapidly and completely released by shifting the cells back to normal medium. A much slower recovery of DNA segregation takes place on prolonged incubation in hypertonic medium, perhaps because of some cellular homeostatic mechanism. The results of this work lead to a detailed view of the final stages of SV40 DNA replication.  相似文献   

18.
Replicative intermediates in UV-irradiated simian virus 40   总被引:5,自引:0,他引:5  
We have used Simian virus 40 (SV40) as a probe to study the replication of UV-damaged DNA in mammalian cells. Viral DNA replication in infected monkey kidney cells was synchronized by incubating a mutant of SV40 (tsA58) temperature-sensitive for the initiation of DNA synthesis at the restrictive temperature and then adding aphidicolin to temporarily inhibit DNA synthesis at the permissive temperature while permitting pre-replicative events to occur. After removal of the drug, the infected cells were irradiated at 100 J/m2 (254 nm) to produce 6-7 pyrimidine dimers per SV40 genome, and returned to the restrictive temperature to prevent reinitiation of replication from the SV40 origin. Replicative intermediates (RI) were labeled with [3H]thymidine, and isolated by centrifugation in CsCl/ethidium bromide gradients followed by BND-cellulose chromatography. The size distribution of daughter DNA strands in RI isolated shortly after irradiation was skewed towards lengths less than the interdimer spacing in parental DNA; this bias persisted for at least 1 h after irradiation, but disappeared within 3 h, by which time the size of the newly-synthesized DNA exceeded the interdimer distance. No significant excision of dimers from parental strands in either replicative intermediates or Form I (closed circular) DNA molecules was detected. These data are consistent with the hypothesis that replication forks are temporarily blocked by dimers encountered on the leading strand side of the fork, but that daughter strand continuity opposite dimers is eventually established. Evidence was obtained for the generation at late times after irradiation, of Form I molecules in which the daughter DNA strands contain dimers. Thus DNA strand exchange as well as trans-dimer synthesis may be involved in the generation of supercoiled Form I DNA from UV-damaged SV40 replicative intermediates.  相似文献   

19.
The process of replication of Escherichia coli minichromosomes was examined by following the intermediates formed in vitro and in vivo. Replication initiated on a supercoiled closed circular (CC) monomer, proceeded rapidly to a late but incomplete stage in polymerization (the LC form) in both systems, passed more slowly through a series of open and closed circular catenated dimers with varying extents of intertwining between the monomer units, and then yielded, after decatenation, the supercoiled CC monomer. The replication patterns of two different minichromosomes were similar, although the LC form and the multiply intertwined dimers were much more evident in the smaller pAL4 than in pAL2. The same basic replication scheme was seen in vitro and in vivo but completion of polymerization and processing of the dimers were slower in vitro. Some radioactivity was detected in OC monomer early during replication, consistent with occasional decatenation of LC structures to produce OC molecules which then completed replication to form CC molecules. However, progression to CC catenated dimers prior to formation of CC monomers represented the major replication pathway.  相似文献   

20.
Are single-stranded circles intermediates in plasmid DNA replication?   总被引:38,自引:7,他引:31       下载免费PDF全文
Plasmid pC194 exists as circular double-stranded and single-stranded DNA in Bacillus subtilis and Staphylococcus aureus. We report here that the plasmid pHV33, composed of pBR322 and pC194, exists as double- and single-stranded DNA in Escherichia coli, provided that the replication functions of pC194 are intact. Single-stranded pHV33 DNA is converted to double-stranded DNA by complementary strand synthesis probably initiated at rriB, a primosome assembly site present on pBR322. The efficiency of complementary strand synthesis affects the double-stranded copy number, which suggests that single-stranded DNA is a plasmid replication intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号