首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics and concentration effect on the relationship of thyrotropin (TSH) action on cyclic 3′,5′-AMP concentration has been studied in dog thyroid slices in vitro. TSH markedly increased cyclic 3′,5′-AMP level after 5 min, the effect reached a plateau after 10–60 min and slowly declined afterwards. TSH enhanced in parallel the cyclic 3′,5′-AMP level and the binding of iodide to proteins. For this latter effect of TSH, the four criteria of the validity of the Sutherland model for a hormonal action are therefore fulfilled. The effect of TSH on cyclic 3′,5′-AMP concentration in thyroid did not require the presence of a methylxanthine inhibitor of cyclic 3′,5′-AMP phosphodiesterase in the medium. Prostaglandin E1 increased cyclic 3′,5′-AMP levels in control and stimulated slices. The omission of Ca2+ in the incubation medium decreased the action of TSH but partial replacement of Na+ by K+ had little effect. Iodide, 1 μM to 100 μM, inhibited the action of TSH. This inhibitory effect was relieved by NaClO4, methimazole and propylthiouracil (1 mM). The possible role of this inhibitory effect in an intracellular regulatory mechanism is discussed.  相似文献   

2.
3.
The water soluble A subunit of the human TSH receptor has been shown to have an isoelectric point of 5. As both TSH and TSH receptor antibodies have isoelectric points in the region of 8–10, charge-charge interactions must be of major importance in the binding of hormone or antibody to the TSH receptor A subunit.  相似文献   

4.
    
Porcine thyroid cells were cultured with or without thyrotropin for 9 days. It is known that the hormone enhances the synthesis of thyroglobulin, with an increase in the content and stability of its m-RNA. We show in the present work that thyrotropin also stimulates a number of glycosyltransferases diversely situated along the process of N-glycosylation. The most increased was oligosaccharyltransferase, responsible for attachment to nascent peptides of preformed core carbohydrate sequences. The relatively low activity level of oligosaccharyltransferase and its preferential responsiveness to thyrotropin supports the possibility of a regulation point at this enzyme.  相似文献   

5.
The two components of thyroid plasma membranes known to interact with thyrotropin, i.e., a glycoprotein with specific thyrotropin binding activity and the gangliosides of the thyroid membranes, are shown to segregate differently when membranes are solubilized with lithium diiodosalicylate. Individually examined, the interaction of each component with thyrotropin exhibits a different sensitivity to salts. The data suggest that the thyrotropin receptor on the thyroid membrane is a complex which is composed of both glycoprotein and ganglioside components and that its properties are derived from each component.  相似文献   

6.
In previous work we demonstrated that circulating thyroglobulin contains very little or no iodine. We have now characterized circulating thyroglobulin following administration of thyrotropin (TSH) to determine whether its iodine content remains low or increases after stimulation. The iodine content of circulating thyroglobulin was estimated from its density determined by equilibrium density gradient (isopycnic) centrifugation. TSH stimulated thyroglobulin from 182 ± 28 ng/ml to 571 ± 83 ng/ml at 8–14 h. Circulating thyroglobulin in the basal state had a density consistent with very little or no iodine. Its density increased following TSH to a maximum at 8–14 h which was nearly the same as the density of thyroglobulin extracted directly from the thyroid. To determine whether selective peripheral metabolism, based on the degree of iodination, could account for the density shift, purified rat thyroid thyroglobulin was injected into thyroidectomized rats. The density of thyroglobulin remained unchanged for 25 h during which time it was metabolized by more than 97%. Therefore, selective metabolism of thyroglobulin based on iodine content did not occur. We conclude that TSH causes a marked increase in the iodine content of circulating thyroglobulin. It is most likely that in the basal state circulating thyroglobulin comes from selective release of poorly iodinated molecules, while after TSH, it comes from release of previously synthesized, iodinated and stored molecules.  相似文献   

7.
The acute effects of thyrotropin on the membrane potential of thyroid cells maintained in the presence or absence of thyrotropin (0.2 U/ml) in the culture medium was determined. Monolayer cultures were prepared from porcine thyroid glands and cultured for 4–17 days after which the culture medium was exchanged for a buffered salt solution for intracellular measurements of the membrane potential. Cells were serially impaled with a microelectrode, first in the absence and then in the presence of 10 mU/ml thyrotropin. Cells cultured for 4–9 days depolarized from ?29.6 ± 1.7 (mean ± S.E.) to ?19.3 ± 1.3 mV within 10 min after acute addition of 10 mU/ml thyrotropin. From 11 to 17 days of culture, basal membrane potentials were lower and, in most instances, cell hyperpolarization occurred within 30 min in response to thyrotropin. There was no difference in electrical response of cells maintained in culture with or without thyrotropin. However, cells cultured with thyrotropin formed follicle-like structures in contrast to the monolayer formation of cells cultured without thyrotropin. The changes in the basal and stimulated electrical responses occur within a time frame similar to that reported for changes in the biosynthetic capacity of thyroid cells in culture. The data further emphasize the possible regulatory role of the cell membrane in stimulus-secretion coupling in the thyroid.  相似文献   

8.
9.
    
Thyroid stimulating hormone (TSH) binds to a specific TSH receptor (TSHR) which activates adenylate cyclase and increases cAMP levels in thyroidal cells. Recent studies have reported the presence of TSH receptor in several extra‐thyroidal cell types, including erythrocytes. We have previously suggested that TSH is able to influence the erythrocyte Na/K‐ATPase ouabain binding properties through a receptor mediated mechanism. The direct interaction of TSH receptor with the Na/K‐pump and a functional role of TSHR in erythrocytes was not demonstrated. The interaction of TSH receptor with Na/K‐pump and a TSHR functional role are not yet demonstrated in erythrocytes. In this study, we examined the interaction between the two receptors after TSH treatment using immunofluorescence coupled to confocal microscopy and a co‐immunoprecipitation technique. The cAMP dependent signalling after TSH treatment was measured to verify TSHR functionality. We found that TSH receptor and Na/K‐ATPase are localized on the membranes of both erythrocytes and erythrocyte ghosts; TSH receptor responds to TSH treatment by increasing intracellular cAMP levels from two to tenfold. In ghost membranes TSH treatment enhances up to three fold co‐localization of TSHR with Na/K‐ATPase and co‐immunoprecipitation confirms their direct physical interaction. In conclusion our results are compatible with the existence, in erythrocytes, of a functional TSHR that interacts with Na/K‐ATPase after TSH treatment, thus suggesting a novel cell signalling pathway, potentially active in local circulatory control. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Levels of guanylate cyclase activity in extracts of the unicellular eukaryote Blastocladiellaemersonii differed by at least 100-fold at different stages of the cell cycle, paralleling changes in the cyclic GMP content of this organism (Proc. Natl. Acad. Sci. U.S.A. 72, 442 (1975)). Extracts of vegetative cells lacked appreciable guanylate cyclase activity, whereas the specific activity of the enzyme in zoospore extracts was 2 nmol cyclic GMP synthesized/min/mg protein at 35°. Guanylate cyclase activity increased at least 50-fold during the period of zoospore formation when cyclic GMP begins to accumulate invivo. Since actinomycin D or cycloheximide added at the beginning of this period blocked any increase in enzyme activity, it appears that denovo synthesis of guanylate cyclase during sporulation is responsible for the accumulation of cyclic GMP that occurs at that time.  相似文献   

11.
12.
A minor glycopeptide was newly isolated from the exhaustive pronase digest of crystalline ovalbumin by Dowex-50w column chromatography, and its structure was determined as Manα1→3Manα1→6 (Manα1→3) Manβ1→4GlcNAcβ1→4GlcNAc→Asn. This glycopeptide (GP-VI) has the smallest carbohydrate unit among the ovalbumin glycopeptides so far reported, and is also the smallest glycopeptide of all which are susceptible to endo-β-N-acetylglucosaminidases CII and H. This finding, together with the already reported data of the action of both enzymes to glycopeptides of known structures, elucidates that the structural requirement of CII enzyme for its substrate is R→2Manα1→3 (R→6) Manα1→6 (R→2Manα1→3) (R→4) Manβ1→4GlcNAcβ1→4GlcNAc→Asn, in which R represents either hydrogen or sugars, and that of H enzyme is R→2Manα1→3 (R→6) Manα1→6 (R→4) Manβ1→4GlcNAcβ1→4GlcNAc→Asn.  相似文献   

13.
14.
TSH is a heterodimeric glycoprotein hormone, whose dissociated subunits are without biological activity. This has precluded the assessment of the relative contribution of each subunit to hormone action. We have raised anti-idiotypes to monoclonal antibodies specific, respectively, for the alpha and beta hTSH subunits. The anti-beta anti-idiotype inhibited 125I-hTSH binding to the beta subunit-specific monoclonal quantitatively, whereas 125I-hTSH binding to the alpha subunit-specific monoclonal was not inhibited by anti-alpha anti-idiotypes, suggesting that only the former is an "internal image" anti-idiotype. Neither of the two anti-idiotypes nor equimolar mixtures thereof inhibited 125I-bTSH binding to thyroid membranes, even though radiolabelled anti-idiotypes showed saturable binding to thyroid plasma membrane which was inhibited 41-65% by bTSH. Each anti-idiotype alone caused 9% inhibition (compared to 50% by NRIgG) of thyroid plasma membrane adenylate cyclase. Equimolar mixtures (125 micrograms/ml IgG of each anti-idiotype) induced enzyme activity equivalent to 85% of that of 250 mU/ml of TSH. The TSH-like action of the two anti-idiotypes was also reflected in their capacity to increase (450% by 250 micrograms/ml IgG compared to normal rabbit IgG) the uptake of 131I into isolated thyrocytes and to promote the organization of such cells into follicular structures. At 250 micrograms/ml, anti-beta anti-idiotype promoted the organization of small follicles and only at a concentration of 500 micrograms/ml did it enhance 131I uptake.  相似文献   

15.
The regulation of acid cholesterol ester hydrolase activity by thyroid hormones was studied in subcellular fractions from rat liver, heart, and epididymal fat pads; hydrolase activity was determined at pH 5 with a glycerol-dispersed cholesterol oleate substrate preparation. Acid cholesterol ester hydrolase activity was decreased in liver preparations from thyroidectomized rats relative to activity in livers from euthyroid control rats. Administration of triidothyronine to either euthyroid or hypothyroid (thyroidectomized) rats resulted in an increase in acid cholesterol ester hydrolase activity in liver preparations. Similar effects of thyroidectomy and the administration of triiodothyronine on acid cholesterol ester hydrolase activity were observed with fat pad preparations. In contrast, no effect of thyroid hormones was observed on acid cholesterol ester hydrolase activity in heart. These results suggest that thyroid hormones may regulate the catabolism of serum lipoproteins, in part, by alterations in lysosomal acid cholesterol ester hydrolase activity in liver and epididymal fat pads.  相似文献   

16.
We have shown that TSH increases PG levels in isolated bovine thyroid cells. We now report that TSH also increases PG levels in rat and mouse thyroid, and that these effects may be mediated via cyclic AMP. PG and cyclic AMP levels in intact rat and mouse thyroid lobes were measured by radioimmunoassay. During 60-min incubations at 37°C, 25 mU/ml TSH effected a 75–83% increase in PGE1 and PGF ”equivalents“ in rat thyroid; parallel measurements of endogenous cyclic AMP in these intact thyroid lobes revealed that maximal TSH-induced increase in cyclic AMP also required 60-min incubations. In mouse thyroid, 5 mU/ml TSH increased PGE1 and PGF levels 38–82% above basal; this TSH effect was evident within 15 min of incubation, thus mimicking the time-course of TSH-induced increase in mouse thyroid cyclic AMP. Exogenous DBcAMP, 0.5 to 3 mM, effected a dose-related increase in mouse thyroid PG levels. The stimulatory effects of both TSH and DBcAMP on mouse thyroid PG levels were abolished by aspirin and indomethacin. These studies suggest that TSH-induced increase in endogenous PG levels in thyroid may be mediated by cyclic AMP.  相似文献   

17.
Bovine thyroid tissue exhibited cAMP-dependent and Ca2+-dependent protien kinase activities as well as a basal (cAMP- and Ca2+-independent) one, and phosphoprotein phosphatase activity. Although the former two protein kiniase activities were not clearly demonstrated using endogenous protein as substrate, they were clearly shown in soluble, particulate and plasma membrane fractions using exogenous histones as substrate. The highest specific activities were in the plasma membrane. The apparent Km values of cAMP and Ca2+ for the membrane-bound protein kinase were 5·10?8 M and 8.3·10?4M (in the presence of 1 mM EGTA), respectively. The apparent Km values of Mg2+ were 7·10?4 M (without cAMP and Ca2+, 5·10?4 M (with cAMP) and 1.3·10?3 M (with Ca2+), and those ATP were 3.5·10?5 M (with or without cAMP) and 8.5·10?5 M (with Ca2+). The Ca2+-dependent protein kinase could be dissociated from the membrane by EGTA-washing. The enzyme activity so released was further activated by added phospholipid (phosphatidylserine/1,3-diolein), but not by calmodulin. Phosphoprotein phosphatase activity was also clearly demonstrated in all of the fractions using 32P-labeled mixed histones as substrate. The activity was not modified by either cAMP or Ca2+, but was sitmulated by a rather broad range (5–25 mM) of Mg2+ and Mn2+. NaCl and substrate concentrations also influenced the activity. Pyrophosphate, ATP, inorganic phosphate and NaF inhibited the activity in a dose-dependent manner. Trifluoperazine, chlorpromazine, dibucaine and Triton X-100 (above 0.05%, w/v) specifically inhibited the Ca2+-dependent protein kinase in plasma membranes. Repetitive phosphorylation of intrinsic and extrinsic proteins by the membrane-bound enzyme activities clearly showed an important co-ordination of them at the step of protein phosphorylation. These findings suggest that these enzyme activities in plasma membranes may contribute to regulation of thyroid function in response to external stimuli.  相似文献   

18.
The amino acid sequence of the beta subunit of rabbit lutropin (lLH) has been determined. The amino terminus of about 97% of the beta subunit has a two amino acid extension (pyro-Glu-Pro) compared to other lutropin beta sequences. Overlapping peptides from trypsin and chymotrypsin digestions of the performic acid-oxidized beta subunit and trypsin digestion of the S-aminoethylated cysteine beta subunit were isolated by chromatography on TSK Fractogel 40F and high-pressure liquid chromatography (HPLC). Sequencing was by a combination of the dansyl-Edman method and the direct Edman method. Amide placements were established by HPLC analysis of the PTH amino acid derivatives. The proposed sequence of lLH subunit is: This sequence is highly homologous to the other known lutropin beta subunits, especially rat and pig lutropin beta (91%). Partial cleavage of the peptide bond between Asp-79 and Pro-80 was observed during cyanogen bromide treatment. Rabbit thyrotropin and thyrotropin beta subunit copurified with lLH and lLH except at a final chromatography on Sephadex G-100.  相似文献   

19.
    
Treatment of bovine thyroid plasma membranes with phospholipase A or C inhibited the stimulation of adenylate cyclase activity by thyroid-stimulating hormone (TSH). In general, basal and NaF-stimulated adenylate cyclase activity was not influenced by such treatment. When plasma membranes were incubated with 1–2 units/ml phospholipase A, subsequent addition of phosphatidylcholine or phosphatidylserine but not phosphatidylethanolamine partially restored TSH stimulation. Phosphatidylcholine was more effective than phosphatidylserine in that it caused greater restoration of the TSH response and smaller amounts of phosphatidylcholine were active. However, when the TSH effect was obliterated by treatment of plasma membranes with 10 units/ml phospholipase A, phospholipids were unable to restore any response to TSH. Lubrol PX, a nonionic detergent, inhibited basal, TSH- and NaF-stimulated adenylate cyclase activities in thyroid plasma membranes. Although phosphatidylcholine partially restored TSH stimulation of adenylate cyclase activity in the presence of Lubrol PX, it did not have a similar effect on the stimulation induced by NaF. These results indicate that phospholipids are probably essential components in the system by which TSH stimulates adenylate cyclase activity in thyroid plasma membranes. The effects do not seem to involve the catalytic activity of adenylate cyclase but the data do not permit a distinction between decreased binding of TSH to its receptor or impairment of the signal from the bound hormone to the enzyme activity.  相似文献   

20.
促甲状腺素(TSH)通过甲状腺细胞膜上的TSH受体(TSHR),产生第二信使cAMP,从而激活cAMP反应性起动子,而使相应的基因获得表达.实验结果表明,在构建有TSHR和糖蛋白激素cAMP反应性起动子以及萤光素基因(Luc)的转染细胞中,经补肾益精中药固真方提取液(1×10~(-4)稀释)处理3~5d后,可下调TSHR基因的表达,并使TSHR数目减少.提示固真方可调整甲状腺细胞的功能,或许有利于调整甲状腺机能亢进.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号