首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The spectral changes of cytochrome P-450 caused by the addition of small molecules to liver microsomes were investigated precisely and the following conclusions were reached. 1. The Type I spectral change was entirely due to the interaction of the cytochrome with a hydrocarbon residue in a ligand. To induce the modified Type II spectral change, the presence of a hydroxyl group in a ligand was required. Compounds which contain a basic amino group induced the Type II spectral change. 2. The Type I spectral change was caused by the interaction of a ligand with the 419-nm form of cytochrome P-450, with its concomitant conversion to the 394-nm form. Whereas, compounds inducing modified Type II spectral change interacted with the 394nm form of the cytochrome. In this case, however, the 394-nm form was not converted back to the 419-nm form but was converted to a new state showing an absorption peak at 416 nm. The Type II spectral change-inducing interaction of a ligand with the cytochrome could occur with all forms of the cytochrome. 3. Both Type II and modified Type II compounds bound to the cytochrome at heme iron, and converted the cytochrome into modified ferrihemochromes. On the other hand, the Type I interaction occurred ina protein moiety of the cytochrome, and probably caused a conformational change of the cytochrome accompanied either by weakening of the internal ligand interaction or by displacement of the ligand with another one having a weaker field at the heme iron. 4. Type I and each of other two types of binding of compounds with cytochrome P-450 could occur simultaneously.  相似文献   

2.
A carbon monoxide-binding pigment which shows an absorption peak at about 450 nm in the reduced carbon monoxide difference spectrum was purified from the microsomal fraction of yeast grown anaerobically. The spectral characteristics of the pigment were practically identical with those of cytochrome P-450 of hepatic microsomes, especially from polycyclic hydrocarbon-induced animals. The pigment was denatured to P-420, and bound with ethyl isocyanide in the reduced state. Although Type I spectral change was not evident, the pigment showed Type II and modified Type II spectral changes upon binding with some organic compounds, as in the case of hepatic cytochrome P-450. These observations clearly indicate that the carbon monoxide-binding pigment of yeast microsomes may be designated as cytochrome P-450 of yeast.  相似文献   

3.
Benzo(α)pyrene treatment resulted in stimulation of only cytochrome P-450K and benzo(α)pyrene hydroxylase activity in rat kidney cortex microsomes. Spectral properties of cytochrome P-450K showed that the 452 nm peak of the reduced hemoprotein CO-complex was not shifted in benzo(α)pyrene-treated rats. The off-balance absolute spectrum of oxidized cytochrome P-450K displayed an absorption maximum at 414 nm, another band at 385 nm, and a distinct shoulder at 398 nm. Addition of benzo(α)pyrene to kidney microsomes resulted in a type I spectral change seen only in benzo(α)pyrene-treated rats. The addition of ethyl isocyanide to dithionitetreated microsomes from control rats gave rise to two Soret peaks, 432 nm and 458 nm. These peaks were proportionately increased in benzo(α)pyrene-treated rats; furthermore, the 458 nm peak was not shifted. The relative heights of the two peaks were in a pH-dependent equilibrium similar to that observed in liver; however, in contrast to liver, the pH, at which the ratio of the peak heights equals one, was the same for both benzo(α)pyrene-treated and control microsomes. These data indicate that the newly induced hemoprotein has spectral properties markedly different from those of the benzo(α)pyrene-induced liver hemoprotein, yet similar to those of the “noninduced” kidney hemoprotein. α-Naphthoflavone, an inhibitor of the aryl hydroxylase system, induced a type I spectral change, suggesting the mode of action of α-naphthoflavone to be its interaction with cytochrome P-450K probably at or near the active site. Finally, the rate of reduction of cytochrome P-450K was not affected by the presence of benzo(α)pyrene.  相似文献   

4.
The addition of bovine serum albumin to rat liver microsomes resulted in the formation of the reverse type I spectral change (RI). Both the RI and the type I spectral change were obtained with liver microsomes in the absence of substrate by altering the temperature; an increase in temperature led to the formation of a type I spectral change while a lowering of the temperature resulted in the formation of a RI. This demonstrates that the RI is indeed the reverse of the type I spectral change rather than a modified type II. Temperature was also found to affect the substrate-induced type I and type II spectral changes; an increase in temperature resulted in a decrease in the aminopyrine-induced type I, but an increase in the aniline-induced type II spectral change.  相似文献   

5.
2-allyl-2-isopropylacetamide (AIA) causes marked induction of heme synthesis in rats and other species, degrades cytochrome P-450 in the presence of NADPH and causes experimental porphyria. Using difference spectroscopy we sought evidence of an interaction between AIA and P-450 in microsomes prepared from rat liver. AIA alone caused small and variable changes in the spectral properties of liver microsomes but markedly inhibited the Type I spectral change due to hexobarbitone. Phenobarbitone exhibited behaviour qualitatively similar to AIA. It is concluded that AIA binds to cytochrome P-450 without much altering its spectral properties but in such a way as to prevent the change induced by the Type I substrate hexobarbitone.  相似文献   

6.
Several drugs/chemicals were allowed to interact with the cytochrome P-450 dependent mixed function oxidase system in the postmitochrondrial supernatant fractions of Ficoll-Hypaque-separated granulocytes from human normal subjects and patients with chronic myeloid leukemia. The substrate-induced spectral changes were followed by recording the difference spectra. Compounds conventionally classified as type I and type II substrates, on addition to S1 fractions of both normal and leukemic granulocytes, caused spectral changes that were reverse to those reported for the rat liver microsomes. Aminopyrine, phenobarbital, and Tween 80 evoked a reverse type I spectral change with a peak at 420-430 nm and a trough at 380-400 nm, whereas aniline and pyridine induced a modified type I (a reverse type II) spectral change characterized by a peak at 408 nm and a trough at 421 nm. These changes were found to be quantitatively proportional to the amounts of substrate added. However, the magnitude of the peaks and troughs was considerably less in the S1 fraction of the leukemic granulocytes. Correspondingly, total heme content was significantly decreased in S1 fractions of CML granulocytes as compared to similar fractions of normal granulocytes.  相似文献   

7.
The binding of the amino steroid, 22-amino-23,24-bisnor-5-cholen-3 beta-ol (22-ABC), to rabbit liver cytochrome P-450 3c was studied using purified P-450 3c and liver microsomes prepared from rifampicin-treated B/J rabbits. 22-ABC binds to purified cytochrome P-450 3c producing a type II spectral change reflecting the coordination of the amine with the heme iron of the protein. In the absence of allosteric effectors, the binding is characterized by a Ks of 5 microM. In the presence of alpha-naphthoflavone or progesterone, the Ks decreases to 0.8 microM, indicating that these two compounds serve as positive effectors of the binding of 22-ABC to cytochrome P-450 3c. The antibiotic rifampicin induces cytochrome P-450 3c in rabbit liver microsomes, and the benzo(a)pyrene hydroxylase, estradiol 2-hydroxylase, and progesterone 6 beta-hydroxylase activities of these microsomes are stimulated by alpha-naphthoflavone. Moreover, the progesterone 6 beta-hydroxylase activity catalyzed by these microsomes exhibits a dependence on substrate concentration that is consistent with activation of the enzyme by the substrate, progesterone. The magnitude of the type II spectral change elicited by 22-ABC for microsomes prepared from rifampicin-treated B/J rabbits is greater than that observed for microsomes from untreated rabbits. For microsomes from rifampicin-treated rabbits, the apparent binding constant for 22-ABC was decreased 5-fold in the presence of alpha-naphthoflavone. We propose that the effects of alpha-naphthoflavone and progesterone on the binding of 22-ABC to cytochrome P-450 3c mimic the effects of the two positive effectors on the metabolism of substrates by increasing the affinity of the enzyme for substrate.  相似文献   

8.
On the binding of aflatoxin B 1 and its metabolites to hepatic microsomes   总被引:1,自引:0,他引:1  
The metabolism of aflatoxin B1 was studied using the cytochrome P450-dependent mixed function oxidase system of rat liver microsomes. An aflatoxin metabolite produced in the presence of microsomes and NADPH and not produced in the presence of SKF-525A seems to become covalently bound to microsomes. The bound metabolite is observed as a spectral peak at 412 nm by means of difference spectroscopy. This metabolite appears to be related to either aflatoxin B2a or its precursor.  相似文献   

9.
9-Hydroxyellipticine (9-OHE), a potent inhibitor of rat liver monooxygenase activities, binds to the various forms of partially purified lung cytochromes P-450 from untreated and 3-methylcholanthrene (3-MC)-treated rabbits. The spectral data (lambda max: 428 nm (ox.), 447 nm (red.), Ks: 10 microM and 5 muM for cytochrome I and cytochrome II from 3-MC-treated rabbits respectively) resemble those obtained with cytochrome P-450 purified from liver of Aroclor 1254-pretreated rats (lambda max: 428 nm (ox.), 445 nm (red.), Ks: 8 microM). 9-OHE has been shown to inhibit the benzo[a]pyrene hydroxylase activity of rat and rabbit lung microsomes. The inhibitory effect was higher towards the 3-MC-induced lung microsomes than with the control microsomes. However, the lung microsomes, as well as the liver microsomes of rabbits were less sensitive to inhibition by 9-OHE than the corresponding microsomes from rats. These results suggest that rabbit and rat cytochromes P-450 have subtle structural differences.  相似文献   

10.
Microsomal membranes from the slow-growing Morris hepatoma 9618A catalyze, in the presence of t-butyl hydroperoxide, lower rates of lipid peroxidation than rat liver microsomes. The cytochrome P-450 content of hepatoma microsomes is about 40% that of the liver. SKF 525-A, an inhibitor of mixed-function oxidase, produces in hepatoma microsomes a P-450 type I binding spectrum similar to that of hepatic microsomes. The concentration of the inhibitor required for half-maximal spectral change is about 2 microM in both microsome types. SKF 525-A or ethylmorphine inhibit lipid peroxidation of normal and tumor microsomes to the same extent (about 60%). Treatment of the tumor-bearing rats with 3-methylcholanthrene increases the hepatoma cytochrome P-450 to values comparable to those of control membranes, although the hemoprotein has a peak in the CO-reduced difference absorption spectrum at 448 nm. The cytochrome P-448 induction is accompanied by an almost complete restoration of the hydroperoxide-dependent lipid peroxidation.  相似文献   

11.
In the presence of TPNH, O2 and ADP-Fe+3 rat liver microsomes yield difference spectral changes at 237 nm and 267–270 nm that correlate with the kinetics of lipid peroxidation as measured by the rate of malonaldehyde formation and O2 and TPNH consumption. Mn+2 EDTA, aniline, and reduced glutathione were inhibitory. It is suggested that the difference spectral changes at 237 nm and 267–270 nm are essentially due to conjugated diene and malonaldehyde formation, respectively.  相似文献   

12.
With the use of detergents and successive column chromatographies, Tetrahymena b-type cytochrome was purified from microsomes to a specific content of 36.0 nmol per mg of protein. The purified form showed a single band on SDS-polyacrylamide gel with molecular weight of 22,000. The spectral properties of the reduced b-type cytochrome, the α-peak of which is situated at 560 nm and asymmetric with a shoulder at 556 nm, was different from that of rat liver microsomal cytochrome b5. However, it was reducible by NADH in the presence of NADH-cytochrome b5 reductase purified from rat liver microsomes.The results indicated that the microsomal b-type cytochrome should be designated as cytochrome b5 of a ciliated protozoan, Tetrahymena pyriformis.  相似文献   

13.
A photolabile azido derivative of the kaurene oxidase inhibitor 1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-l-yl) pentan-3-ol (paclobutrazol) has been synthesized for use as a photoaffinity labeling agent. The compound was tested as an inhibitor of the oxidation of ent-kaurene catalyzed by cell-free preparations from endosperm of Cucurbita maxima. The I50 of the azido derivative was 9.5 nanomolar, which compares well with that of paclobutrazol (6.3 nanomolar in our measurements). The azido compound bound to Cytochrome P-450 in microsomes from Cucurbita maxima, and induced a Type II spectral change, with an apparent binding constant of 0.24±0.04 micromolar.  相似文献   

14.
Glucose solutions incubated at low oxygen concentration gave rise to the appearance of an absorption band in the UVA-visible region after 10 days. Further characterization evidenced that this band was composed by a single chomophore with maximum absorption bands at 335 and 365 nm. HPLC/MS and UV spectroscopy assays indicated that this product is composed by five unities of furan. Importantly, the presence of a compound with identical spectral and chromatographic properties was observed in the water-soluble fraction of cataractous human eye lenses. The photo-biological effects of this glucose-derived chromophore (GDC) have been addressed using targets of biological relevance, such as water-soluble proteins from eye lens and the proteasome present in this protein mixture. Increased protein oxidation and protein crosslinking was observed when lens proteins were exposed to UVA-visible light in the presence of GDC under a 5% and 20% oxygen atmosphere. In addition, an increased proteasome peptidase activity was also observed. However, the use of D2O resulted in decreased proteasome activity, suggesting that singlet oxygen promotes the impairment of proteasome activity. Our results suggest that the species generated by Type I and Type II mechanisms have opposite effects on proteasome activity, being Type I a positive activator while Type II lead to impairment of proteasome function.  相似文献   

15.
D Kupfer 《Life sciences》1974,15(4):657-670
The spectral changes associated with the addition of prostaglandins (PGs) to hepatic microsomes from guinea pigs and rats were examined. PGA1, PGA2, PGE1, PGE2, PGF and PGF when added to guinea pig liver microsomes exhibited type I spectra. The binding affinities as determined from spectral dissociation constants (Ks) were highest with PGA1 and PGA2. With liver microsomes from control or 3-methyl-cholanthrene (MC)-treated rats, PGs did not yield type I spectra; however, in this case a weak spectrum, designated here as type “II” was at times observed, With microsomes from phenobarbital (Pb)-treated rats only PGA1 and PGA2 yielded type I spectra; again in absence of type I spectrum, a weak type “II” was occasionally observed. The addition of PGA1 and PGA2 to liver microsomes from Pb-treated rats inhibited the microcomal mediated hydroxylation of hexobarbital. The inhibition by PGA1 was competitive; the Ki = 8.2 × 10?4 M was found to be similar in magnitude to the Ks = 7.3 × 10?4 M of PGA1 observed with rat liver microsomes. These observations suggested that PGs particularly of the A series interact with the hepatic microsomal cytochrome P-450 monooxygenase system.  相似文献   

16.
The addition of n-octylamine to microsomes prepared from the midgut of tobacco hornworm (Manduca sexta) larvae causes an unusual spectral interaction. The initial optical difference spectrum appears to be the sum of reduced cytochrome b5 and a type II difference spectrum of cytochrome P-450. This initial spectrum is unstable and diminishes in size, with a concurrent shift in peak (424 to 428 nm) and trough (409 and 392 to approx. 400 nm) positions, to yield a stable spectrum identical to the type II spectrum of cytochrome P-450. Thus, in addition to its interaction with cytochrome P-450, n-octylamine causes a reduction of cytochrome b5 which subsequently becomes reoxidized.The casual factor for this unusual spectral interaction occurs in the cytoplasm and appears to be protein-bound. It was also present in similar preparations from the tobacco budworm (Heliothis virescens) but not in those from rat or mouse liver or abdomens from insecticide-resistant or susceptible houseflies (Musca domestica).Microsomes from rat and mouse liver, but not those from housefly abdomens, exhibit similar unusual spectral interactions with n-octylamine when supplemented with the soluble factor from the hornworm.  相似文献   

17.
Stopped flow spectrophotometry has shown the occurrence of two distinct spectral intermediates in the reaction of oxygen with the reduced form of highly purified cytochrome P-450 from liver microsomes. As indicated by difference spectra, Complex I (with maxima at 430 and 450 nm) is rapidly formed and then decays to form Complex II (with a broad maximum at 440 nm), which resembles the intermediate seen in steady state experiments. In the reaction sequence, P-450LMredO2Complex I→Complex II→P-450LMox the last step is rate-limiting. The rate of that step is inadequate to account for the known turnover number of the enzyme in benzphetamine hydroxylation unless NADPH-cytochrome P-450 reductase or cytochrome b5 is added. The latter protein does not appear to function as an electron carrier in this process.  相似文献   

18.
A class of inositol phosphate-containing oligosaccharides (IPG) derived from a membrane glycan-phosphatidylinositol precursor (GPI) has been identified as a possible mediator of insulin action. Saltiel's laboratory has recently communicated an in vitro assay for the synthesis of GPI in rat liver microsomes. Herein we have established this method in rat and human liver microsomes, it being our end point to evaluate if the pool of GPI was normal in diabetes and if failure of insulin to generate IPG from GPI could be involved in the mechanism of insulin resistance in Type II diabetes. However, subsequent to the detailed study of [3H]myoinositol incorporation into phospholipids in liver microsomes from our study subjects, we demonstrated by gas chromatography/mass spectrometry analysis that the material reported to be GPI is a mixture of lysophospholipids that does not contain hexosamine, ethanolamine, or amino acids.  相似文献   

19.
Fluorography of 14C-labelled glutamic acid residues in vitamin K-dependent protein precursors in lung microsomes (microsomal fractions) shows that the lung has several substrates that are not found in the liver. These precursor proteins unique to the lung have apparent molecular masses of 65, 53, 50, 36, 31 and 13 kDa. Type II epithelial cells appear to synthesize most of the vitamin K-dependent proteins in the lung. The 36 and the 31 kDa precursors also found in Type-II-cell microsomes have a similar molecular mass to those of surfactant-associated proteins, and we have previously shown [Rannels, Gallaher, Wallin & Rannels (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 5952-5956] that the 36 kDa protein is one of the precursors for these proteins. Immunoblotting of membrane fragments of Type-II-cell microsomes with plasma prothrombin antibodies identified two prothrombin-like antigens of apparent molecular masses 68 and 65 kDa. This raises the question as to whether Type II cells are also a potential site for synthesis of prothrombin and possibly other vitamin K-dependent clotting factors. Pulmonary macrophages appear to be devoid of vitamin K-dependent carboxylase activity. However, Type II epithelial cells have significant activity, and this activity was unaltered when these cells were maintained in primary culture for 3 days, suggesting that carboxylase activity is expressed in lung alveolar epithelium independently of culture-induced changes in cellular differentiation. Carboxylase activity in Type II cells was enhanced 2-fold when cells were cultured for 24 h in the presence of 50 microM-warfarin. Type II cells, therefore, resemble hepatocytes with regard to their response to coumarin anticoagulant drugs.  相似文献   

20.
Some pharmacological properties of ellipticine (E) and its derivatives linked to their interaction with cytochrome P-450 have been investigated with human liver microsomes. 9-Hydroxyellipticine (9-OHE) interacts with human liver cytochrome P-450 exhibiting a type II spectrum (λmax: 428 nm, Ks = 1.1 μM). After incubation with human liver microsomes the E was converted to 9-OHE; 7-hydroxyellipticine was not produced. The cytotoxic effect of this biotransformation has been evaluated on leukemic L1210 cells, in vitro, and found to be equal to those elicited by liver microsomes of control or phenobarbital (PB) pretreated rats. Moreover, 9-OHE and 9-fluoroellipticine (9-FE) strongly inhibit the benzo[a]pyrene hydroxylase (AHH) activity of human liver microsomes (I50 = 2.6 μM and 1.6 μM, respectively) as well as the mutagenesis induced by the polycyclic aromatic hydrocarbon 2-acetylaminofluorene (AAF); 1 μg/plate of each of these compounds is able to inhibit by more than 50% the mutagenicity of 5 μg/plate AAF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号