首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a phosphorus based Mannich condensation reaction the new pyridylphosphines {5-Ph2PCH2N(H)}C5H3(2-Cl)N (1-Cl) and {2-Ph2PCH2N(H)}C5H3(5-Br)N (1-Br) have been synthesised in good yields (60% and 88%, respectively) from Ph2PCH2OH and the appropriate aminopyridine. The ligands 1-Cl and 1-Br display variable coordination modes depending on the choice of late transition-metal complex used. Hence P-monodentate coordination has been observed for the mononuclear complexes AuCl(1-Cl) (2), AuCl(1-Br) (3), RuCl2(p-cymene)(1-Cl) (4), RuCl2(p-cymene)(1-Br) (5), RhCl2(Cp)(1-Cl) (6), RhCl2(Cp)(1-Br) (7), IrCl2(Cp)(1-Cl) (8), IrCl2(Cp)(1′-Cl) (8′), IrCl2(Cp)(1-Br) (9), cis-/trans-PdCl2(1-Cl)2 (10), cis-/trans-PdCl2(1-Br)2 (11), cis-PtCl2(1-Cl)2 (12) and cis-PtCl2(1-Br)2 (13). Reaction of Pd(Me)Cl(cod) (cod = cycloocta-1,5-diene) with either 1 equiv. of 1-Br or the known pyridylphosphines 1′-Cl, 1-OH or 1-H gave the P/N-chelate complexes Pd(Me)Cl(1-Br-1-H) (14)-(17). All new compounds have been fully characterised by spectroscopic and analytical methods. Furthermore the structures of 4, 5, 10 and 16 · (CH3)2SO have been elucidated by single crystal X-ray crystallography. A crystal structure of the dinuclear metallocycle trans,trans-[PdCl2{μ-P/N-{Ph2PCH2N(H)}C5H4N}]2 · CHCl3, 18 · CHCl3, has also been determined. Here 1-H bridges, using both P and pyridyl N donors, two dichloropalladium centres affording a 12-membered ring with the PdCl2 units adopting a head-to-tail arrangement.  相似文献   

2.
3.
Two novel phosphino-phosphaferrocenes [η5-C5H4(CH2)nPPh2]Fe(η5-PC4H2-2,5-Cy2) (PP1: n=1; PP2: n=2) have been designed and prepared in order to clarify weak chelate effect in the previously reported (η5-C5H4CH2PPh2)Fe[η5-PC4H2-2,5-((-)-menthyl)2] (1). 31P NMR studies of reactions of PP1 with PdCl2(cod) (6) revealed that PP1 showed stronger tendency to coordinate to the PdII center in bidentate fashion compared to 1. On the other hand, chelate effect in PP2 was negligibly weak and a reaction of PP2 with 6 in a PP2/6 = 2/1 molar ratio gave a complex PdCl2(PP2)2 (10) cleanly in which PP2 coordinated to the palladium center at the PPh2 moiety as a monodentate ligand. X-ray crystal structure studies of chelate complexes PdCl2(PP1) (7) and PdCl2(PP2) (9) showed that 9 had deviations from an idealized geometry in the square planar complex which could be attributed to a larger chelate ring of PP2, while PP1 in 7 constructed nearly ideal geometry for the square planar complex.From comparison of the coordination behavior between 1, PP1, and PP2, it is concluded that steric bulk of (-)-menthyl groups in 1 is the main factor of the weak chelate coordination of 1.  相似文献   

4.
In a preceding paper (Bull. Math. Biophysics,27, 175–185) the distribution function ofφ=? 1-? 2,—the difference of excitations in the two mutually inhibiting centers, has been derived in terms of the distribution functionsf 1(? 1) andf 2(? 2) of the two excitations. In the present note some properties of the distribution functionf(?) in terms of the propertiesf 1(? 1) andf 2(? 2) are derived.  相似文献   

5.
A novel polymerizable organosilyl-modified Dawson-type polyoxometalate (POM) [α2-P2W17O61{CH2C(CH3)COO(CH2)3Si}2O]6− (1) was synthesized as both salt (Me2NH2-1) and H+ form (H-1). They were characterized with complete elemental analysis, thermogravimetric and differential thermal analysis (TG/DTA), FTIR, (1H, 13C, 29Si, 31P and 183W) NMR and n-butylamine titration method. H-1 was immobilized to a polymer network through free radical copolymerization with methyl methacrylate (MMA). The acidities of H-1 and hybrid copolymer (H-1-co-MMA) were evaluated using the Hammett indicators (dicinnamalacetone and benzalacetophenone; pKa values of the protonated indicators are −3.0 and −5.6, respectively). The pKa value of H-1 was estimated as that between −3.0 and −5.6 in CH3CN solution and H-1 was immobilized in H-1-co-MMA with the original acidity being retained. Glass transition point (Tg) and molecular weight distribution of H-1-co-MMA were affected by the used amount of H-1 because of the cross-linking effect of H-1.  相似文献   

6.
Four new imidazole-based ligands, 4-((1H-imidazol-4-yl)methyl)-2-phenyl-4,5-dihydrooxyzole (L OL 1), 4-((1H-imidazol-4-yl)methyl)-2-(tert-butyl)-4,5-dihydrooxyzole (L OL 2), 4-((1H-imidazol-4-yl)methyl)-2-methyl-4,5-dihydrooxyzole (L OL 3), and N-(2,2-dimethylpropylidene)-2-(1-trityl-1H-imidazol-4-yl-)ethyl amine (L imz 1), have been synthesized. The corresponding copper(I) complexes [Cu(I)(L OL 1)(CH3CN)]PF6 (CuL OL 1), [Cu(I)(L OL 2)(CH3CN)]PF6 (CuL OL 2), [Cu(I)(L OL 3)(CH3CN)]PF6 (CuL OL 3), [Cu(I)(L imz 1)(CH3CN)2]PF6 (CuL imz 1) as well as the Cu(I) complex derived from the known ligand bis(1-methylimidazol-2-yl)methane (BIMZ), [Cu(I)(BIMZ)(CH3CN)]PF6 (CuBIMZ), are screened as catalysts for the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC-H2) to 3,5-di-tert-butylquinone (3,5-DTBQ). The primary reaction product of these oxidations is 3,5-di-tert-butylsemiquinone (3,5-DTBSQ) which slowly converts to 3,5-DTBQ. Saturation kinetic studies reveal a trend of catalytic activity in the order CuL OL 3 ≈ CuL OL 1 > CuBIMZ > CuL OL 2 > CuL imz 1. Additionally, the catalytic activity of the copper(I) complexes towards the oxygenation of monophenols is investigated. As substrates 2,4-di-tert-butylphenol (2,4-DTBP-H), 3-tert-butylphenol (3-TBP-H), 4-methoxyphenol (4-MeOP-H), N-acetyl-l-tyrosine ethyl ester monohydrate (NATEE) and 8-hydroxyquinoline are employed. The oxygenation products are identified and characterized with the help of UV/Vis and NMR spectroscopy, mass spectrometry, and fluorescence measurements. Whereas the copper complexes with ligands containing combinations of imidazole and imine functions or two imidazole units (CuL imz 1 and CuBIMZ) are found to exhibit catalytic tyrosinase activity, the systems with ligands containing oxazoline just mediate a stoichiometric conversion. Correlations between the structures of the complexes and their reactivities are discussed.  相似文献   

7.
8.
Five new complexes [Cu2(L1)I2] (1), [Cu(L2)I]2 (2), {[Cu2(L2)I2](CH3CN)3} (3), [Cu2(L3)I2] (4) and {[Cu(L3)I](CH3CN)}2 (5) have been obtained by reacting three structurally related ligands, 2,3-bis(n-propylthiomethyl)quinoxaline (L1), 2,3-bis(tert-butylthiomethyl)quinoxaline (L2) and 2,3-bis[(o-aminophenyl)thiomethyl]quinoxaline (L3) with CuI, respectively, at different temperatures. Single crystal X-ray analyses show that 1, 3, 4 possess 1D chain structures, while 2 and 5 are discrete dinuclear molecules. It is interesting that the reactions of CuI with L1 at room temperature and 0 °C, respectively, only afforded same structure of 1 (1a and 1b), while using L2 (or L3) instead, two different frameworks 2 and 3 (or 4 and 5) have been obtained. The structural changes mainly resulted from the different conformations that L2 or L3 adopted at different temperatures. Our research indicates that terminal groups of ligands take an essential role in the framework formation, and the reaction temperature also has important effect on the construction of such Cu(I) coordination architectures. Furthermore, the influence of hydrogen bonds on the conformation of ligands and the supramolecular structures of these complexes have also been explored. The luminescence properties of complexes 1, 2, and 4 have been studied in solid state at room temperature.  相似文献   

9.
Last-century climate change has led to variable increases of the intrinsic water-use efficiency (Wi; the ratio of net CO2 assimilation to stomatal conductance for water vapor) of trees and C3 grassland ecosystems, but the causes of the variability are not well understood. Here, we address putative drivers underlying variable Wi responses in a wide range of grassland communities. Wi was estimated from carbon isotope discrimination in archived herbage samples from 16 contrasting fertilizer treatments in the Park Grass Experiment, Rothamsted, England, for the 1915 to 1929 and 1995 to 2009 periods. Changes in Wi were analyzed in relation to nitrogen input, soil pH, species richness, and functional group composition. Treatments included liming as well as phosphorus and potassium additions with or without ammonium or nitrate fertilizer applications at three levels. Wi increased between 11% and 25% (P < 0.001) in the different treatments between the two periods. None of the fertilizers had a direct effect on the change of Wi (ΔWi). However, soil pH (P < 0.05), species richness (P < 0.01), and percentage grass content (P < 0.01) were significantly related to ΔWi. Grass-dominated, species-poor plots on acidic soils showed the largest ΔWi (+14.7 μmol mol−1). The ΔWi response of these acidic plots was probably related to drought effects resulting from aluminum toxicity on root growth. Our results from the Park Grass Experiment show that Wi in grassland communities consistently increased over a wide range of nutrient inputs, soil pH, and plant community compositions during the last century.The intrinsic water-use efficiency (Wi) of plants is controlled by photosynthetic carbon assimilation and stomatal conductance via the leaf-level coupling of CO2 and water fluxes. A general, but variable, increase of Wi under rising atmospheric CO2 has been observed in long-term studies (Peñuelas et al., 2011; Franks et al., 2013; Saurer et al., 2014), but little is known about other environmental or ecosystem factors, which may interact with the effect of increasing CO2 on Wi. An improved understanding of putative interactive mechanisms is important because changes in Wi may have significant effects on the global terrestrial carbon and water cycles (Gedney et al., 2006; Betts et al., 2007). This study explores the interactive effects of the increase in atmospheric CO2 (observed over the last century), nutrient loading, and soil pH together with other related effects on plant species richness and functional group composition on the coupling of plant CO2 and water fluxes in a seminatural grassland in southeastern England.Wi is a leaf-level efficiency that has also been termed potential water-use efficiency or physiological water-use efficiency, as it excludes the direct influence of vapor pressure deficit (VPD), a parameter determined by environmental conditions, on leaf-level water-use efficiency (Farquhar et al., 1989; Franks et al., 2013). Wi reports the relationship between net CO2 assimilation rate (An) and stomatal conductance for water vapor (gH2O):(1)According to the first law of Fick, An can be given as the product of the stomatal conductance for CO2 (gCO2) and the concentration gradient between the atmosphere (ca) and the leaf internal gas space (ci): An= gCO2 (caci). Using gCO2 (caci) instead of An in Equation 1, replacement of gH2O/gCO2 by the numerical value of gH2O/gCO2 (1.6) and rearrangement yields the following alternative expression of Wi:(2)Equation 2 reveals that past changes of Wi must have been controlled by two parameters: the change of ca and the concurrent change of 1 – ci/ca, the relative gradient for CO2 diffusion into the leaf (Franks et al., 2013). A change in the relative gradient is determined by the changes in An relative to gH2O, as leaves respond to changing ca and other environmental factors. In particular, Equation 2 shows that any variation in the climate change response of Wi is determined by the ci/ca response, if the comparison is made for vegetation at the same location and in the same period of time.Studies with C3 vegetation, including trees/forests and C3 grasslands, have revealed a general increase of Wi in the last century (Bert et al., 1997; Duquesnay et al., 1998; Feng, 1999; Arneth et al., 2002; Saurer et al., 2004; Barbosa et al., 2010; Köhler et al., 2010; Andreu-Hayles et al., 2011). In many cases, ci/ca, estimated by 13C discrimination (Farquhar et al., 1989), varied relatively little. Indeed, it has been suggested, based on theoretical grounds and empirical evidence from studies over geological/evolutionary to short time scales, that adaptive feedback responses will tend to maintain ci/ca approximately constant (Ehleringer and Cerling, 1995; Franks et al., 2013), as plants optimize carbon gain with respect to water loss (Cowan and Farquhar, 1977). Yet, ci/ca-dependent variation in the Wi response to climate change has also been noted (Peñuelas et al., 2011; Köhler et al., 2012) over the last century, indicating that additional factors, perhaps including other global change drivers, can modify the Wi response over this time scale, at least transiently. A meta-analysis by Peñuelas et al. (2011) reports ci/ca-dependent increases of Wi for different forests between 6% and 36% from the early 1960s to 2000s. A recent study by Saurer et al. (2014) on European forest trees found increases in Wi ranging from 1% to 53% during the last century. The strongest increase of Wi was recorded in regions where summer soil-water availability decreased in the last century. For different grassland communities, the ci/ca-dependent increases of Wi varied between 13% and 28% at one site (Köhler et al., 2012) from 1915 to 2009. Evidently, such variation can have important repercussions for the coupling of terrestrial CO2 and water fluxes. Yet, little is known about the mechanism(s) underlying the variation.At the Park Grass Experiment (PGE) at Rothamsted, England, Köhler et al. (2012) observed a nitrogen supply-dependent enhancement of the Wi response on plots receiving nitrate fertilizer and maintained at a near-neutral soil pH by liming. However, the actual relationship between nitrogen supply and Wi response did not hold when the unlimed control (soil pH approximately 5.2) was included in the comparison. Remarkably, however, there was a significant positive relationship between the grass content of the community and the Wi response of the experimental plots in the investigation. These results suggested that the effect of nutrient supply on the Wi response of the grassland communities was indirect, perhaps working via effects on soil pH and/or vegetation composition (plant species richness or functional group composition).The PGE provides a unique opportunity to study century-scale variation in the ci/ca-dependent variation of Wi for a wide range of diverse grassland communities. Much of the extant ecosystem-scale variability of plant species richness and soil pH in temperate grasslands of Europe (Ceulemans et al., 2014) is included in the range of plot-scale plant species richness and soil pH at the PGE (which is reported in this investigation). The different long-term applications of fertilizer and lime over the past century have resulted in substantial changes in soil pH, species richness, and grass content on the experimental plots, but in most cases, within-plot changes over the study period considered here (1915–2009) were comparatively small (Crawley et al., 2005; Silvertown et al., 2006). All experimental plots are located at the same site and are exposed to the same weather conditions. Consequently, trends in climate as a direct driver for differences in Wi between plots can be ruled out.Here, we explore putative mechanisms underlying eventual ci/ca-dependent variation of Wi during the last century at the PGE by, first, quantifying the sustained effect of a wide range of contrasting fertilizer treatments (n = 16) on the change of Wi during the last century and, second, analyzing the relationships between the observed Wi response of treatments and the respective nutrient status, soil pH, plant species richness, and plant functional group composition of the grassland communities.  相似文献   

10.
The reaction of [Ru(CO)2Cl2]n with bis(2-pyridylmethyl)amine (bpma) in refluxing ethanol followed by anion exchange yields two products: cis,fac-[Ru(bpma)(CO)2Cl]PF6 (1a, 71%) and trans,fac-[Ru(bpma)(CO)2Cl]PF6 (1b, 29%). Reaction of 1a with AgBF4 in acetone, followed by acetonitrile and then anion exchange gave cis,fac-[Ru(bpma)(CO)2(CH3CN)](PF6)2 (2a). In the same way, 1b afforded trans,fac-[Ru(bpma)(CO)2(CH3CN)](PF6)2 (2b). Reaction of depolymerized [Ru(CO)2Cl2]n with bpma in ethanol at room temperature afforded cis,cis-[Ru(η2-bpma)(CO)2Cl2] (3). In refluxing ethanol, 3 was converted to cis,fac-[Ru(bpma)(CO)2Cl]Cl (1a-Cl). Heating 3 in chlorobenzene afforded 1b-Cl, exclusively; heating 3 in ethylene glycol gave mainly 1a-Cl. Heating 1a-Cl in ethanol resulted in no isomerization, but heating in chlorobenzene gave a mixture of 3 and 1b-Cl. Anion exchange for PF6 with 1a-Cl and 1b-Cl afforded 1a and 1b, respectively, whereas anion exchange for BPh4 afforded 1a-BPh4. Compounds 1a, 1b, 2a and 3 have been structurally characterized.  相似文献   

11.
On the basis of the winter bread wheat cultivar Obryi, two independent disomic addition lines BC12F with the chromosome of the E. sibiricus St genome are created. A practical algorithm for determining the probabilities of transmission of the odd chromosome separately through male and female gametes in selfpollination of hemizygous hybrids from the equation p2–(1 + f1f4) × p + f1 = 0 is proposed, where p is the probability of the formation of viable gametes with the considered chromosome and f1 and f4 are the empirical frequencies of the corresponding homozygotes with and without the trait. The probability of transmission of an alien univalent chromosome through pollen (p) is associated with the frequency of its transmission through the egg cell (p) in backcrosses and in self-pollination (1–f4) by the equation p = 1–f4/(1–p). The calculated empirically dependent estimates of the probabilities of transmission of the added chromosome through the egg cell p = 18.7% and through pollen p = 4.3% correspond to the empirical frequencies obtained for backcrosses. The coefficients of the gamete selection V = 0.748 and V = 0.172 are calculated, and the expected segregation for the alien trait controlled by a dominant gene located in the added chromosome is determined—with the trait: without the trait is 0.222: 0.778 in F2; 0.187: 0.813 in equational and 0.043: 0.957 in certational backcrosses.  相似文献   

12.
Schiff bases L1-L5 {N-[1-pyridine-2-ylethylidene]pyridine-2-amine (L1), 3-methyl-N-[1-pyridine-2-ylmethylidene]pyridine-2-amine (L2), 3-methyl-N-[1-pyridine-2-ylethylidene]pyridine-2-amine (L3), 4-methyl-N-[1-pyridine-2-ylmethylidene]pyridine-2-amine (L4), 4-methyl-N-[1-pyridine-2-ylethylidene]pyridine-2-amine (L5)} were synthesized and on reaction with Co(NO3)2·6H2O, complexes having the molecular formulae [Co(L1O)2]NO3 (1), [Co(L2O)2]NO3·xH2O (2a, x = 2; 2b, x = 3), [Co(L3O)2]NO3 (3), [Co(L4O)2]NO3·4H2O (4), [Co(L5O)2]NO3 (5) were isolated from the respective imines. The salt [Co(L2O)2]PF6 (2c) was obtained by treating 2 with KPF6. Complexes 1-5 were formed as a result of addition of a water molecule across the imine function and the resultant alcohol binds in its deprotonated form. The alcoholate ion remained bound in a facial tridentate fashion to the low-spin cobalt(III). X-ray crystal structure determination confirmed the presence of trans-trans-trans-NANPO (A = aminopyridyl and P = pyridyl) disposition in 2a and cis-cis-trans-NANPO in 2b, 2c and 4. Water dimers in 2a, 2b, 4 and water-nitrate ion network in 2a were other notable features.  相似文献   

13.
Three cluster-based coordination polymers, namely [Zn3(bpy)3(hip)2] · 5H2O (1), [Co3(bpy)3(hip)2] · 5H2O (2) and [Cd3(bpy)3(hip)2] (3) (bpy=2,2-bipyridine, hip=4-hydroxyl-isophthalate) were synthesized and structurally characterized. X-ray single-crystal structural analyses revealed that both 1 and 2 crystallize in the chiral space group P21, while 3 crystallizes in the centric space group Pccn. Compounds 1 and 2 are isomorphous and both have (4,4) topological layered structures constructed from trinuclear metal clusters. Compound 3 also shows layered structure of (4,4) topology constructed from trinulear Cd(II) cores. The layers are stacked in a staggered ?ABAB? fashion in 1 and 2 but in an overlapped ?AAA? fashion in 3. There are two types of coordination modes of hip ligand in 1 and 2 but only one in 3. The structural difference between 1 (or 2) and 3 may be attributed to the difference of metal ion nature such as the ionic radius and coordination preference, resulting in the different orientation fashions of the auxiliary bpy ligands, stacking fashions of the layers, as well as chirality of the crystals. The chiral structures of 1 and 2 were also confirmed by measurements of powder second-harmonic-generation (SHG) measurements, which show that 1 and 2 have SHG intensity of 0.50 and 0.02 relative to that of urea, respectively.  相似文献   

14.
In order to further understand the coordination chemistry of diazamesocyclic systems, a series of mononuclear NiII complexes with 1,4-diazacycloheptane (DACH) functionalized by additional imidazole or pyridine donor pendants, including [NiL1](ClO4)2 · H2O (1), [NiL1Cl](ClO4) (2), [NiL2Cl](ClO4) · CH3OH (3), [NiL2Cl][NiL2](ClO4)3 (4) and [NiL3](ClO4)2 (5), where L1 = 1,4-bis(N-1-methylimidazol-2-yl-methyl)-1,4-diazacycloheptane, L2 = 1,4-bis(pyridyl-2-yl-methyl)-1,4-diazacycloheptane, and L3 = 1,4-bis-(imidazol-4-yl-methyl)-1,4-diazacycloheptane, have been prepared and characterized. A detailed study on the solid structures and solution spectra of these complexes indicates that tetradentate ligands L1, L2 and L3 would lead to new NiII complexes with different coordination environments in the solid states and solution. The N-methyl substituted imidazole functionalized ligand L1 forms green compound 2 and yellow product 1; while the pyridine functionalized ligand L2 affords red product 4 and green complex 3; the ligand L3 results in only one stable mononuclear NiII product 5. The solution behaviors of these interesting compounds were also investigated by UV-Vis technique.  相似文献   

15.
In our efforts to investigate the factors that affect the formation of coordination architectures, such as secondary coordination donors and pendant skeletons of the carboxylic acid ligands, as well as H-bonding and other weak interactions, two kinds of ligands: (a) 3-(2-pyridyl)pyrazole (L1) with a non-coordinated N atom as a H-bonding donor, a 2,2′-bipyridyl-like chelating ligand, and (b) four carboxylic ligands with different secondary coordination donors and/or pendant skeletons, 1,4-benzenedicarboxylic acid (H2L2), 4-sulfobenzoic acid (H2L3), quinoline-4-carboxylic acid (HL4) and fumaric acid (H2L5), have been selected to react with Mn(II) salts, and five new complexes, [Mn(L1)2(SO4)]2 (1), [Mn(L1)2(L2)] (2), [Mn(L1)(HL3)2] (3), Mn(L1)2(L4)2 (4), and [Mn(L1)2(L5)] (5), have been obtained and structurally characterized. The structural differences of 1-5 can be attributed to the introduction of the different carboxylic acid ligands (H2L2, H2L3, HL4, and H2L5) with different secondary coordination donors and pendant skeletons, respectively. This result also reveals that the typical H-bonding (i.e. N-H?O and O-H?O) and some other intra- or inter-molecular weak interactions, such as C-H?O weak H-bonding and π?π interactions, often play important roles in the formation of supramolecular aggregates, especially in the aspect of linking the multi-nuclear discrete subunits or low-dimensional entities into high-dimensional supramolecular networks.  相似文献   

16.
Two hitherto unknown mixed-ligand tris chelated complexes containing 2-aminothiophenolate, [Et4N]2[MIV(NH-(C6H4)-S)(mnt)2] (M = Mo, 1a; W, 2a) and two mixed-ligand tris chelate complex containing N,N-diethyldithiocarbamate, [Et4N]2[MIV(Et2NS2)(mnt)2] (M = Mo, 1b; W, 2b) have been synthesized and characterized structurally. Although these complexes are supposed to be quite similar to the well-known symmetric tris chelate complexes of maleonitriledithiolate (mnt), [Et4N]2[MIV(mnt)3] (M = Mo, 1c; W, 2c), but display both trigonal prismatic and distorted trigonal prismatic geometry in their crystal structure indicating the possibility of an equilibrium between these two structural possibilities in solution. Unlike extreme stability of 1b, 2b, 1c and 2c, both 1a and 2a are highly unstable in solution. In contrast to one reversible reduction in case of 1b and 2b, 1a and 2a exhibited no possible reduction up to −1.2 V and two sequential oxidation steps which have been further investigated with EPR study. Differences in stability and electrochemical behavior of 1a, 1b, 2a and 2b have been correlated with theoretical calculations at DFT level in comparison with long known 1c and 2c.  相似文献   

17.
In this paper we report on the synthesis and characterization of three cobalt complexes described as [CoII(L1)2] (1), [CoII(L2)] (2), and [CoIII(L1)2]ClO4(3). These complexes contain the deprotonated forms of the [NN′O] tridentate ligand HL1 and its newly synthesized [N2N′2O2] hexadentate counterpart H2L2, namely, 2,4-diiodo-6-((pyridine-2-ylmethylamino)methyl)phenol and 6,6′-((ethane-1,2-diylbis((pyridin-2-ylmethyl) azanediyl))bis(methylene))bis(2,4-diiodophenol). Characterizations for 1-3 include electrospray ionization (ESI) spectrometry, infrared, and UV-visible spectroscopies, and elemental analyses. A detailed 1H-NMR study was conducted for 3 and X-ray structural data was obtained for 2. The viability of this series as potential agents for proteasome inhibition and cell apoptotic induction involving PC-3 cancer cells is presented comparing the behavior of the untethered [NN′O]2 six-coordinate 1 and 3 and the tethered counterpart 2 with a 1:1 metal-to-ligand ratio. It is observed that the tethering in 2 decreases inhibition activity. When 1 and 3 are compared, the most inert, but redox-active, cobalt(III) species shows the highest chymotrypsin-like activity inhibition on purified proteasome and PC-3 cancer cells. A hypothesis based on the role of oxidation states for proteasome inhibition is offered.  相似文献   

18.
The ligands 1-hydroxymethylpyrazole (hl1), 1-(2-hydroxyethyl)pyrazole (hl2) and 1-(3-hydroxypropyl)pyrazole (hl3) react with [PdCl2(CH3CN)2] to give trans-[PdCl2(hl)2] compounds. Due to a hindered rotation around the Pd-bond, these compounds present two different conformations in solution: anti and syn. The conformation presented depends on the relative disposition of the hydroxyalkylic chains of the two pyrazolic ligands. The present study was carried out on the basis of NMR experiments. The present paper reports the crystal structure of trans-[PdCl2(hl2)2]. The synthesis and characterisation of compounds [Pd(hl)4](BF4)2 (hl = hl1, hl2 and hl3) starting from [Pd(CH3CN)4](BF4)2 and the corresponding chlorocomplexes trans-[PdCl2(hl)2] are also described.  相似文献   

19.
The three-substituted dipyridyl ligand bis(3-pyridylmethyl)sulfide (L1) was prepared by the reaction of 3-(chloromethyl)pyridine hydrochloride with thioacetamide under basic conditions. L1 was reacted with CuI to give complexes with 1:2 and 1:1 molar ratios. Crystal structures of [(CuI)2(L1)] (1) and [CuI(L1)] (2) were determined. In complex 1 the CuI species formed a one-dimensional staircase polymer to which L1 was bound in a side-by-side fashion with π-π interactions between the ligands on each side. Complex 2 consisted of a one-dimensional ribbon polymer of metallomacrocycles formed from two L1 ligands bridging Cu2I2 dimers which were fused within the macrocyclic ring. The analogous disulfide ligand bis(3-pyridylmethyl)disulfide (L2) was prepared by oxidation of the corresponding thiol 3-(sulfanylmethyl)pyridine. L2 was reacted with CuI in 1:2 and 1:1 molar ratios and products isolated but only the 1:1 product was able to be crystallised. The crystal structure of [CuI(L2)] (3) consisted of a one-dimensional ribbon polymer of metallomacrocycles formed from two L2 ligands linked through Cu2I2 dimers. The difference in the metallomacrocycle linking between the related structures 2 and 3 was attributed to the difference in ligand conformation.  相似文献   

20.
The reaction of dimeric precursor [Ir(CO)2Cl]2 with two molar equivalent of the pyridine-ester ligands (L) like methyl picolinate (a), ethyl picolinate (b), methyl nicotinate (c), ethyl nicotinate (d), methyl isonicotinate (e) and ethyl isonicotinate (f) affords the tetra coordinated neutral complexes of the type [Ir(CO)2ClL] (1a-f). The single crystal X-ray structure of 1d reveals that the Ir atom occupies the centre of an approximately square planar geometry with two CO groups cis- to each other. Intermolecular C-H?O and Ir?C interactions greatly stabilize the supramolecular structure of 1d in the solid state. The oxidative addition (OA) reactions of 1a-f with different electrophiles such as CH3I, C2H5I and I2 undergo decarbonylation of one CO group to generate the oxidized products of the type [Ir(CO)RClIL] where R = -CH3 (2a-f); -C2H5 (3a-f) and [Ir(CO)ClI2L] (4a-f). Kinetic study of the reaction of 1c-f with CH3I indicates a first order reaction which follow the order 1d > 1c > 1f > 1e. All the synthesized complexes were characterized by elemental analyses, IR, and multinuclear NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号