首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mitochondria have been put forward as the saviours of anaerobes when their environment became oxygenated. However, despite oxygenic photosynthesis evolving around 2.7 billion years ago (Ga), followed by the "Great Oxidation" of the atmosphere ~ 2.4 Ga, the deep oceans remained largely anoxic and either iron-enriched or sulphidic until 580 million years ago, when the eukaryotic radiation was well underway. Atmospheric oxygen probably remained at an intermediate concentration (1-10% of the present level) from ~ 2.4 until ~ 0.8 Ga when a "lesser oxidation" began. This drastically changes the textbook view of the ecological conditions under which the mitochondrial endosymbiont established itself. It could explain the widespread distribution of anaerobic biochemistry in every eukaryotic supergroup: anaerobic biochemistry is hard-wired into the eukaryotes.  相似文献   

2.
When did oxygenic photosynthesis evolve?   总被引:1,自引:0,他引:1  
The atmosphere has apparently been oxygenated since the 'Great Oxidation Event' ca 2.4 Ga ago, but when the photosynthetic oxygen production began is debatable. However, geological and geochemical evidence from older sedimentary rocks indicates that oxygenic photosynthesis evolved well before this oxygenation event. Fluid-inclusion oils in ca 2.45 Ga sandstones contain hydrocarbon biomarkers evidently sourced from similarly ancient kerogen, preserved without subsequent contamination, and derived from organisms producing and requiring molecular oxygen. Mo and Re abundances and sulphur isotope systematics of slightly older (2.5 Ga) kerogenous shales record a transient pulse of atmospheric oxygen. As early as ca 2.7 Ga, stromatolites and biomarkers from evaporative lake sediments deficient in exogenous reducing power strongly imply that oxygen-producing cyanobacteria had already evolved. Even at ca 3.2 Ga, thick and widespread kerogenous shales are consistent with aerobic photoautrophic marine plankton, and U-Pb data from ca 3.8 Ga metasediments suggest that this metabolism could have arisen by the start of the geological record. Hence, the hypothesis that oxygenic photosynthesis evolved well before the atmosphere became permanently oxygenated seems well supported.  相似文献   

3.
Oceanic oxygenation events in the anoxic Ediacaran ocean   总被引:1,自引:0,他引:1       下载免费PDF全文
The ocean‐atmosphere system is typically envisioned to have gone through a unidirectional oxygenation with significant oxygen increases in the earliest (ca. 635 Ma), middle (ca. 580 Ma), or late (ca. 560 Ma) Ediacaran Period. However, temporally discontinuous geochemical data and the patchy metazoan fossil record have been inadequate to chart the details of Ediacaran ocean oxygenation, raising fundamental debates about the timing of ocean oxygenation, its purported unidirectional rise, and its causal relationship, if any, with the evolution of early animal life. To better understand the Ediacaran ocean redox evolution, we have conducted a multi‐proxy paleoredox study of a relatively continuous, deep‐water section in South China that was paleogeographically connected with the open ocean. Iron speciation and pyrite morphology indicate locally euxinic (anoxic and sulfidic) environments throughout the Ediacaran in this section. In the same rocks, redox sensitive element enrichments and sulfur isotope data provide evidence for multiple oceanic oxygenation events (OOEs) in a predominantly anoxic global Ediacaran–early Cambrian ocean. This dynamic redox landscape contrasts with a recent view of a redox‐static Ediacaran ocean without significant change in oxygen content. The duration of the Ediacaran OOEs may be comparable to those of the oceanic anoxic events (OAEs) in otherwise well‐oxygenated Phanerozoic oceans. Anoxic events caused mass extinctions followed by fast recovery in biologically diversified Phanerozoic oceans. In contrast, oxygenation events in otherwise ecologically monotonous anoxic Ediacaran–early Cambrian oceans may have stimulated biotic innovations followed by prolonged evolutionary stasis.  相似文献   

4.
Nitrogen fixation is a critical part of the global nitrogen cycle, replacing biologically available reduced nitrogen lost by denitrification. The redox‐sensitive trace metals Fe and Mo are key components of the primary nitrogenase enzyme used by cyanobacteria (and other prokaryotes) to fix atmospheric N2 into bioessential compounds. Progressive oxygenation of the Earth's atmosphere has forced changes in the redox state of the oceans through geologic time, from anoxic Fe‐enriched waters in the Archean to partially sulfidic deep waters by the mid‐Proterozoic. This development of ocean redox chemistry during the Precambrian led to fluctuations in Fe and Mo availability that could have significantly impacted the ability of prokaryotes to fix nitrogen. It has been suggested that metal limitation of nitrogen fixation and nitrate assimilation, along with increased rates of denitrification, could have resulted in globally reduced rates of primary production and nitrogen‐starved oceans through much of the Proterozoic. To test the first part of this hypothesis, we grew N2‐fixing cyanobacteria in cultures with metal concentrations reflecting an anoxic Archean ocean (high Fe, low Mo), a sulfidic Proterozoic ocean (low Fe, moderate Mo), and an oxic Phanerozoic ocean (low Fe, high Mo). We measured low rates of cellular N2 fixation under [Fe] and [Mo] estimated for the Archean ocean. With decreased [Fe] and higher [Mo] representing sulfidic Proterozoic conditions, N2 fixation, growth, and biomass C:N were similar to those observed with metal concentrations of the fully oxygenated oceans that likely developed in the Phanerozoic. Our results raise the possibility that an initial rise in atmospheric oxygen could actually have enhanced nitrogen fixation rates to near modern marine levels, providing that phosphate was available and rising O2 levels did not markedly inhibit nitrogenase activity.  相似文献   

5.
The evolutionary history of oxygenesis is controversial. Form I of ribulose 1,5‐bisphosphate carboxylase/oxygenase (Rubisco) in oxygen‐tolerant organisms both enables them to carry out oxygenic extraction of carbon from air and enables the competitive process of photorespiration. Carbon isotopic evidence is presented from ~2.9 Ga stromatolites from Steep Rock, Ontario, Canada, ~2.9 Ga stromatolites from Mushandike, Zimbabwe, and ~2.7 Ga stromatolites in the Belingwe belt, Zimbabwe. The data imply that in all three localities the reef‐building autotrophs included organisms using Form I Rubisco. This inference, though not conclusive, is supported by other geochemical evidence that these stromatolites formed in oxic conditions. Collectively, the implication is that oxygenic photosynthesizers first appeared ~2.9 Ga ago, and were abundant 2.7–2.65 Ga ago. Rubisco specificity (its preference for CO2 over O2) and compensation constraints (the limits on carbon fixation) may explain the paradox that despite the inferred evolution of oxygenesis 2.9 Ga ago, the Late Archaean air was anoxic. The atmospheric CO2:O2 ratio, and hence greenhouse warming, may reflect Form I Rubisco's specificity for CO2 over O2. The system may be bistable under the warming Sun, with liquid oceans occurring in either anoxic (H2O with abundant CH4 plus CO2) or oxic (H2O with more abundant CO2, but little CH4) greenhouse states. Transition between the two states would involve catastrophic remaking of the biosphere. Build‐up of a very high atmospheric inventory of CO2 in the 2.3 Ga glaciation may have allowed the atmosphere to move up the CO2 compensation line to reach stability in an oxygen‐rich system. Since then, Form I Rubisco specificity and consequent compensation limits may have maintained the long‐term atmospheric disproportion between O2 and CO2, which is now close to both CO2 and O2 compensation barriers.  相似文献   

6.
Recent years have witnessed major upheavals in views about early eukaryotic evolution. One very significant finding was that mitochondria, including hydrogenosomes and the newly discovered mitosomes, are just as ubiquitous and defining among eukaryotes as the nucleus itself. A second important advance concerns the readjustment, still in progress, about phylogenetic relationships among eukaryotic groups and the roughly six new eukaryotic supergroups that are currently at the focus of much attention. From the standpoint of energy metabolism (the biochemical means through which eukaryotes gain their ATP, thereby enabling any and all evolution of other traits), understanding of mitochondria among eukaryotic anaerobes has improved. The mainstream formulations of endosymbiotic theory did not predict the ubiquity of mitochondria among anaerobic eukaryotes, while an alternative hypothesis that specifically addressed the evolutionary origin of energy metabolism among eukaryotic anaerobes did. Those developments in biology have been paralleled by a similar upheaval in the Earth sciences regarding views about the prevalence of oxygen in the oceans during the Proterozoic (the time from ca 2.5 to 0.6 Ga ago). The new model of Proterozoic ocean chemistry indicates that the oceans were anoxic and sulphidic during most of the Proterozoic. Its proponents suggest the underlying geochemical mechanism to entail the weathering of continental sulphides by atmospheric oxygen to sulphate, which was carried into the oceans as sulphate, fueling marine sulphate reducers (anaerobic, hydrogen sulphide-producing prokaryotes) on a global scale. Taken together, these two mutually compatible developments in biology and geology underscore the evolutionary significance of oxygen-independent ATP-generating pathways in mitochondria, including those of various metazoan groups, as a watermark of the environments within which eukaryotes arose and diversified into their major lineages.  相似文献   

7.
When cyanobacteria originated and diversified, and what their ancient traits were, remain critical unresolved problems. Here, we used a phylogenomic approach to construct a well‐resolved ‘core’ cyanobacterial tree. The branching positions of four lineages (Thermosynechococcus elongatus, Synechococcus elongatus, Synechococcus PCC 7335 and Acaryochloris marina) were problematic, probably due to long branch attraction artifacts. A consensus genomic tree was used to study trait evolution using ancestral state reconstruction (ASR). The early cyanobacteria were probably unicellular, freshwater, had small cell diameters, and lacked the traits to form thick microbial mats. Relaxed molecular clock analyses suggested that early cyanobacterial lineages were restricted to freshwater ecosystems until at least 2.4 Ga, before diversifying into coastal brackish and marine environments. The resultant increases in niche space and nutrient availability, and consequent sedimentation of organic carbon into the deep oceans, would have generated large pulses of oxygen into the biosphere, possibly explaining why oxygen rose so rapidly. Rapid atmospheric oxidation could have destroyed the methane‐driven greenhouse with simultaneous drawdown in pCO2, precipitating ‘Snowball Earth’ conditions. The traits associated with the formation of thick, laminated microbial mats (large cell diameters, filamentous growth, sheaths, motility and nitrogen fixation) were not seen until after diversification of the LPP, SPM and PNT clades, after 2.32 Ga. The appearance of these traits overlaps with a global carbon isotopic excursion between 2.2 and 2.1 Ga. Thus, a massive re‐ordering of biogeochemical cycles caused by the appearance of complex laminated microbial communities in marine environments may have caused this excursion. Finally, we show that ASR may provide an explanation for why cyanobacterial microfossils have not been observed until after 2.0 Ga, and make suggestions for how future paleobiological searches for early cyanobacteria might proceed. In summary, key evolutionary events in the microbial world may have triggered some of the key geologic upheavals on the Paleoproterozoic Earth.  相似文献   

8.
Graptolites nearly became extinct in the latest Wenlock in all preserved stratigraphic sequences of this age. Graptolite mortalities occurred along the western coast of Laurentia and at sites that surrounded the Proto‐Tethys. Graptolite mass mortalities took place among deep‐water, open ocean dwelling organisms. After the mass mortalities, only the Pristiograptus dubius group and retiolids surface or near‐surface dwellers, survived. For a period of time, little speciation or diversification occurred. The base of the Ludlow is marked by diversification, with appearances of S. colonus, M. nilssoni and other groups which occur in near surface waters. None of the extensive plate movements postulated for the Silurian readily explain the mass extinctions that occurred. During the Silurian, global temperatures were warmer than present and atmospheric oxygen concentrations were lower, creating extensive oceanic anoxia. Below the oxygenated surface layers of the ocean, was an anoxic, non‐sulfidic zone (i.e. nitrate‐reducing) above a sulfidic zone. Graptolites lived over a range of depth from the oxygenated zone to either near or in the nitrate‐reducing zones. As the oxygen concentration declined through the Silurian, the depth of the oxic zone would have become shoaler with expanding anoxia. Late Wenlock graptolites that were unable to migrate to shallower depths, living in borderline oxygen conditions, could have been killed, resulting in the mortalities of the late Wenlock. Only those graptolites that were surface dwellers survived, adapted and reradiated.  相似文献   

9.
A substantial body of evidence suggests that subsurface water masses in mid‐Proterozoic marine basins were commonly anoxic, either euxinic (sulfidic) or ferruginous (free ferrous iron). To further document redox variations during this interval, a multiproxy geochemical and paleobiological investigation was conducted on the approximately 1000‐m‐thick Mesoproterozoic (Lower Riphean) Arlan Member of the Kaltasy Formation, central Russia. Iron speciation geochemistry, supported by organic geochemistry, redox‐sensitive trace element abundances, and pyrite sulfur isotope values, indicates that basinal calcareous shales of the Arlan Member were deposited beneath an oxygenated water column, and consistent with this interpretation, eukaryotic microfossils are abundant in basinal facies. The Rhenium–Osmium (Re–Os) systematics of the Arlan shales yield depositional ages of 1414 ± 40 and 1427 ± 43 Ma for two horizons near the base of the succession, consistent with previously proposed correlations. The presence of free oxygen in a basinal environment adds an important end member to Proterozoic redox heterogeneity, requiring an explanation in light of previous data from time‐equivalent basins. Very low total organic carbon contents in the Arlan Member are perhaps the key—oxic deep waters are more likely (under any level of atmospheric O2) in oligotrophic systems with low export production. Documentation of a full range of redox heterogeneity in subsurface waters and the existence of local redox controls indicate that no single stratigraphic section or basin can adequately capture both the mean redox profile of Proterozoic oceans and its variance at any given point in time.  相似文献   

10.
Upon comparison of results obtained from growing eight different species of anaerobic bacteria in deep agar under two and three atm of pure oxygen with results of growing them in air under atomospheric pressure, it appears possible that the old terms of "microaerophobic," "very strict anaerobe," and "microaerophilic" can be replaced by precise values corresponding to the size of the inhibition zone produced by oxygen under various pressures when the bacteria are grown in a solid medium. The simultaneous effect of the dilution of the inoculum and the pressure of oxygen used was determined with the help of an electronic computer according to the standard multiple regression method. Two indices have been worked out which express the sensitivity of the species at different oxygen pressures when varying numbers of anaerobic bacteria are used: X sp, which is the size in millimeters of the inhibition zone when 1:10 dilutions of the culture are grown under pure oxygen at atmospheric pressure (lp=0), and B sp, which is the result of multiplying by 1.43 the difference in size of inhibition zone when 1:10 dilutions of the culture are grown under atmospheric air (lp = -0.7) and under pure oxygen at 1 atm absolute.  相似文献   

11.
In female rats, rectal temperature (Tre), tail vasomotor response, oxygen uptake (VO2), and carbon dioxide production (VCO2) were measured in proestrus and estrus stages during treadmill running at two different speeds at an ambient temperature (Ta) of 24 degrees C. Experiments were performed at 2.00-6.00 a.m., when the difference in Tre was greatest between the two stages; Tre at rest in the estrus stage was 0.54 degrees C higher than in the proestrus stage. In a mild warm environment, threshold Tre for a rise in tail skin temperature (Ttail) was also higher in the estrus stage than in the proestrus stage. In contrast, no difference was seen in the threshold Tre and steady state Tre at the end of exercise between proestrus and estrus stages. These values were higher at the higher work intensity. VO2 was also similar between the two stages, except in the second 5 min after the beginning of exercise, when VO2 was greater and Tre rose more steeply in the proestrus stage. These data indicate that deep body temperature during exercise is regulated at a certain level depending on the work intensity and is not influenced by the estrus cycle.  相似文献   

12.
Palaeoclimates: the first two billion years   总被引:2,自引:0,他引:2  
Earth's climate during the Archaean remains highly uncertain, as the relevant geologic evidence is sparse and occasionally contradictory. Oxygen isotopes in cherts suggest that between 3.5 and 3.2 Gyr ago (Ga) the Archaean climate was hot (55-85 degrees C); however, the fact that these cherts have experienced only a modest amount of weathering suggests that the climate was temperate, as today. The presence of diamictites in the Pongola Supergroup and the Witwatersrand Basin of South Africa suggests that by 2.9 Ga the climate was glacial. The Late Archaean was relatively warm; then glaciation (possibly of global extent) reappeared in the Early Palaeoproterozoic, around 2.3-2.4 Ga. Fitting these climatic constraints with a model requires high concentrations of atmospheric CO2 or CH4, or both. Solar luminosity was 20-25% lower than today, so elevated greenhouse gas concentrations were needed just to keep the mean surface temperature above freezing. A rise in O2 at approximately 2.4 Ga, and a concomitant decrease in CH4, provides a natural explanation for the Palaeoproterozoic glaciations. The Mid-Archaean glaciations may have been caused by a drawdown in H2 and CH4 caused by the origin of bacterial sulphate reduction. More work is needed to test this latter hypothesis.  相似文献   

13.
This article examines the geological evidence for the rise of atmospheric oxygen and the origin of oxygenic photosynthesis. The evidence for the rise of atmospheric oxygen places a minimum time constraint before which oxygenic photosynthesis must have developed, and was subsequently established as the primary control on the atmospheric oxygen level. The geological evidence places the global rise of atmospheric oxygen, termed the Great Oxidation Event (GOE), between ~2.45 and ~2.32 Ga, and it is captured within the Duitschland Formation, which shows a transition from mass-independent to mass-dependent sulfur isotope fractionation. The rise of atmospheric oxygen during this interval is closely associated with a number of environmental changes, such as glaciations and intense continental weathering, and led to dramatic changes in the oxidation state of the ocean and the seawater inventory of transition elements. There are other features of the geologic record predating the GOE by as much as 200–300 million years, perhaps extending as far back as the Mesoarchean–Neoarchean boundary at 2.8 Ga, that suggest the presence of low level, transient or local, oxygenation. If verified, these features would not only imply an earlier origin for oxygenic photosynthesis, but also require a mechanism to decouple oxygen production from oxidation of Earth’s surface environments. Most hypotheses for the GOE suggest that oxygen production by oxygenic photosynthesis is a precondition for the rise of oxygen, but that a synchronous change in atmospheric oxygen level is not required by the onset of this oxygen source. The potential lag-time in the response of Earth surface environments is related to the way that oxygen sinks, such as reduced Fe and sulfur compounds, respond to oxygen production. Changes in oxygen level imply an imbalance in the sources and sinks for oxygen. Changes in the cycling of oxygen have occurred at various times before and after the GOE, and do not appear to require corresponding changes in the intensity of oxygenic photosynthesis. The available geological constraints for these changes do not, however, disallow a direct role for this metabolism. The geological evidence for early oxygen and hypotheses for the controls on oxygen level are the basis for the interpretation of photosynthetic oxygen production as examined in this review.  相似文献   

14.
Mounting evidence indicates the presence of a near complete biological nitrogen cycle in redox-stratified oceans during the late Archean to early Proterozoic (c. 2.5-2.0 Ga). It has been suggested that the iron (Fe)- or vanadium (V)-dependent nitrogenase rather than molybdenum (Mo)-dependent form was responsible for dinitrogen fixation during this time because oceans were depleted in Mo and rich in Fe. We evaluated this hypothesis by examining the phylogenetic relationships of proteins that are required for the biosynthesis of the active site cofactor of Mo-nitrogenase in relation to structural proteins required for Fe-, V- and Mo-nitrogenase. The results are highly suggestive that among extant nitrogen-fixing organisms for which genomic information exists, Mo-nitrogenase is unlikely to have been associated with the Last Universal Common Ancestor. Rather, the origin of Mo-nitrogenase can be traced to an ancestor of the anaerobic and hydrogenotrophic methanogens with acquisition in the bacterial domain via lateral gene transfer involving an anaerobic member of the Firmicutes. A comparison of substitution rates estimated for proteins required for the biosynthesis of the nitrogenase active site cofactor and for a set of paralogous proteins required for the biosynthesis of bacteriochlorophyll suggests that Nif emerged from a nitrogenase-like ancestor approximately 1.5-2.2 Ga. An origin and ensuing proliferation of Mo-nitrogenase under anoxic conditions would likely have occurred in an environment where anaerobic methanogens and Firmicutes coexisted and where Mo was at least episodically available, such as in a redox-stratified Proterozoic ocean basin.  相似文献   

15.
16.
An anoxic, sulfidic ocean that may have existed during the Proterozoic Eon (0.54-2.4 Ga) would have had limited trace metal abundances because of the low solubility of metal sulfides. The lack of copper, in particular, could have had a significant impact on marine denitrification. Copper is needed for the enzyme that controls the final step of denitrification, from N(2) O to N(2) . Today, only about 5-6% of denitrification results in release of N(2) O. If all denitrification stopped at N(2) O during the Proterozoic, the N(2) O flux could have been 15-20 times higher than today, producing N(2) O concentrations of several ppmv, but only if O(2) levels were relatively high (>0.1 PAL). At lower O(2) levels, N(2) O is rapidly photodissociated. Methane concentrations may also have been elevated during this time, as has been previously suggested. A lack of dissolved O(2) and sulfate in the deep ocean could have produced a high methane flux from marine sediments, as much as 10-20 times today's methane flux from land. The photochemical lifetime of CH(4) increases as more CH(4) is added to the atmosphere, so CH(4) concentrations of up to 100 ppmv are possible during this time. The combined greenhouse effect of CH(4) and N(2) O could have provided up to 10° of warming, thereby keeping the surface warm during the Proterozoic without necessitating high CO(2) levels. A second oxygenation event near the end of the Proterozoic would have resulted in a reduction in both atmospheric N(2) O and CH(4) , perhaps triggering the Neoproterozoic "Snowball Earth" glaciations.  相似文献   

17.
Changes in the Miocene deep-sea benthic foraminifera at DSDP Site 289 closely correlate to the climatically induced variations in deep and bottom waters in the Pacific Ocean. In early Miocene time, oxygen and carbon isotopes indicate that bottom waters were relatively warm and poorly oxygenated. Benthic foraminiferal assemblages are characterized by various species inherited from the Oligocene. Expansion of the Antarctic icecap in the early middle Miocene, 14–16 m.y. ago, increased oxygen isotope values, produced cold, more oxygenated bottom waters and lead to a turnover in the benthic foraminifera. An Oligocene—early Miocene assemblage was replaced by a cibicidoid-dominated assemblage. Some species became extinct and benthic faunas became more bathymetrically restricted with the increased stratification of deep waters in the ocean. In mid-Miocene time, Epistominella exigua and E. umbonifera, indicative of young, oxygenated bottom waters, are relatively common at DSDP Site 289. Further glacial expansion 5–9 m.y. ago lowered sealevel, increased oceanic upwelling and associated biological productivity and intensified the oxygen minima. Abundant hispid and costate uvigerines become a dominant faunal element at shallow depths above 2500 m as E. umbonifera becomes common to abundant below 2500 m. By late Miocene time, benthic faunas similar in species composition and proportion to modern faunas on the Ontong-Java plateau, had become established.  相似文献   

18.
We report in situ secondary ion mass spectrometer sulphur isotope data for sedimentary pyrite from the 2.52 Ga Upper Campbellrand Subgroup, Transvaal, South Africa. The analysed sedimentary rocks represent a transition in depositional environment from very shallow to deeper water, with strong sedimentological, facies distribution and geochemical evidence for the presence of a shallow redox chemocline. Data were obtained directly in thin section in order to preserve petrographic context. They reveal a very large extent of isotopic fractionation both in mass‐independent (MIF) and in mass‐dependent fractionation (MDF) on unprecedentedly small scale. In the shallow‐water microbical carbonates, three types of pyrite were identified. The texturally oldest pyrite is found as small, isotopically little fractionated grains in the microbial mats. Large (several mm) spheroidal pyrite concretions, which postdate the mat pyrite, record strong evidence for an origin by bacterial sulphate reduction. Rare pyrite surrounding late fenestral calcite is inferred to have formed from recycled bacterial pyrite on account of the slope of its correlated MIF and MDF array. This latter type of pyrite was also found in an interbedded black shale and a carbonate laminite. In a deeper water chert, pyrite with very heavy sulphur indicates partial to almost complete sulphate reduction across a chemocline whose existence has been inferred independently. The combined picture from all the studied samples is that of a sulphate availability‐limited environment, in which sulphur was cycled between reservoirs according to changing redox conditions established across the chemocline. Cycling apparently reduced the extent of recorded sulphur isotope fractionation relative to what is expected from projection in the correlated MIF and MDF arrays. This is consistent with regionally relatively high free oxygen concentrations in the shallow water, permitting locally strong MDF. Our new observations add to the growing evidence for a complex, fluctuating evolution of free atmospheric oxygen between c. 2.7 Ga and 2.3 Ga.  相似文献   

19.
The inactivation by hydrostatic pressure of muscle-type lactate dehydrogenase (M4-LDH, EC 1.1.1.27; L-lactate: NAD+ oxidoreductase) homologues from five shallow-living and six deep-living marine teleost fishes was compared. The pressures which inactivate these enzymes are much higher than the pressures experienced by any of the species. To determine whether hydrostatic pressure effects on protein aggregation state and conformation might influence proteolysis, the inactivation of LDH by the proteases, trypsin (EC 3.4.21.4) and subtilisin (EC 3.4.4.16) was determined at atmospheric pressure and 1,000 atm pressure. At 10 degrees C and atmospheric pressure, the enzymes of the shallow-living fishes are inactivated four times faster by trypsin and three times faster by subtilisin than are the homologues of the deep-living species. At 1,000 atm pressure, the homologues of shallow-occurring fishes were inactivated 28 to 64% more than predicted from the summed effects of denaturation by 1,000 atm pressure and tryptic inactivation at atmospheric pressure. In contrast, the homologues of the deep-sea species were inactivated by trypsin 0 to 21% more than expected. At 1,000 atm, inactivation by subtilisin increased to a similar degree for enzymes from both deep- and shallow-living species. However, at 1,000 atm, the M4-LDH homologues of the deep-sea species lost less activity (55.3%) than did the homologues of the shallow species (86.4%). In comparisons made at 200 atm, a pressure typical of the habitat of the deep-occurring species, tryptic inactivation of the LDH of the shallow-living Sebastes melanops was increased 14%. No pressure inactivation of the enzyme is evident at 200 atm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Manganese (Mn) oxidation in marine environments requires oxygen (O2) or other reactive oxygen species in the water column, and widespread Mn oxide deposition in ancient sedimentary rocks has long been used as a proxy for oxidation. The oxygenation of Earth's atmosphere and oceans across the Archean-Proterozoic boundary are associated with massive Mn deposits, whereas the interval from 1.8–1.0 Ga is generally believed to be a time of low atmospheric oxygen with an apparent hiatus in sedimentary Mn deposition. Here, we report geochemical and mineralogical analyses from 1.1 Ga manganiferous marine-shelf siltstones from the Bangemall Supergroup, Western Australia, which underlie recently discovered economically significant manganese deposits. Layers bearing Mn carbonate microspheres, comparable with major global Mn deposits, reveal that intense periods of sedimentary Mn deposition occurred in the late Mesoproterozoic. Iron geochemical data suggest anoxic-ferruginous seafloor conditions at the onset of Mn deposition, followed by oxic conditions in the water column as Mn deposition persisted and eventually ceased. These data imply there was spatially widespread surface oxygenation ~1.1 Ga with sufficiently oxic conditions in shelf environments to oxidize marine Mn(II). Comparable large stratiform Mn carbonate deposits also occur in ~1.4 Ga marine siltstones hosted in underlying sedimentary units. These deposits are greater or at least commensurate in scale (tonnage) to those that followed the major oxygenation transitions from the Neoproterozoic. Such a period of sedimentary manganogenesis is inconsistent with a model of persistently low O2 throughout the entirety of the Mesoproterozoic and provides robust evidence for dynamic redox changes in the mid to late Mesoproterozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号