首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Formation of the postsynaptic membrane at the skeletal neuromuscular junction (NMJ) requires activation of the muscle-specific receptor tyrosine kinase (MuSK). Few intracellular mediators or modulators of MuSK actions are known. E3 ubiquitin ligases may serve this role, because activities of several receptor tyrosine kinases, G-protein-coupled receptors and channels are modulated by ubiquitination. Here, we report identification of a putative Ariadne-like ubiquitin ligase (PAUL) that binds to the cytoplasmic domain of MuSK. PAUL is expressed in numerous tissues of developing and adult mice, and is present at NMJs in muscle fibers but is not confined to them.  相似文献   

2.
α-Amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) are the primary mediators of excitatory synaptic transmission in the brain. Alterations in AMPAR localization and turnover have been considered critical mechanisms underpinning synaptic plasticity and higher brain functions, but the molecular processes that control AMPAR trafficking and stability are still not fully understood. Here, we report that mammalian AMPARs are subject to ubiquitination in neurons and in transfected heterologous cells. Ubiquitination facilitates AMPAR endocytosis, leading to a reduction in AMPAR cell-surface localization and total receptor abundance. Mutation of lysine residues to arginine residues at the glutamate receptor subunit 1 (GluA1) C-terminus dramatically reduces GluA1 ubiquitination and abolishes ubiquitin-dependent GluA1 internalization and degradation, indicating that the lysine residues, particularly K868, are sites of ubiquitination. We also find that the E3 ligase neural precursor cell expressed, developmentally down-regulated 4 (Nedd4) is enriched in synaptosomes and co-localizes and associates with AMPARs in neurons. Nedd4 expression leads to AMPAR ubiquitination, leading to reduced AMPAR surface expression and suppressed excitatory synaptic transmission. Conversely, knockdown of Nedd4 by specific siRNAs abolishes AMPAR ubiquitination. These data indicate that Nedd4 is the E3 ubiquitin ligase responsible for AMPAR ubiquitination, a modification that regulates multiple aspects of AMPAR molecular biology including trafficking, localization and stability.  相似文献   

3.
The N-methyl-D-aspartate receptor (NMDAR) plays a critical role in synaptic plasticity. Post-translational modifications of NMDARs, such as phosphorylation, alter both the activity and trafficking properties of NMDARs. Ubiquitination is increasingly being recognized as another post-translational modification that can alter synaptic protein composition and function. We identified Mind bomb-2 as an E3 ubiquitin ligase that interacts with and ubiquitinates the NR2B subunit of the NMDAR in mammalian cells. The protein-protein interaction and the ubiquitination of the NR2B subunit were found to be enhanced in a Fyn phosphorylation-dependent manner. Immunocytochemical studies reveal that Mind bomb-2 is localized to postsynaptic sites and colocalizes with the NMDAR in apical dendrites of hippocampal neurons. Furthermore, we show that NMDAR activity is down-regulated by Mind bomb-2. These results identify a specific E3 ubiquitin ligase as a novel interactant with the NR2B subunit and suggest a possible mechanism for the regulation of NMDAR function involving both phosphorylation and ubiquitination.  相似文献   

4.
We recently identified the liver X receptor-regulated E3 ubiquitin ligase inducible degrader of the LDL receptor (IDOL) as a modulator of lipoprotein metabolism. Acting as an E3 ubiquitin ligase, IDOL triggers ubiquitination and subsequent degradation of the low density lipoprotein receptor (LDLR). We demonstrate here that this outcome requires the conserved FERM and RING domains present in IDOL. The RING domain promotes ubiquitination in vitro and Lys-63-specific ubiquitination of the LDLR in vivo in response to IDOL or liver X receptor activation. We further identify RING residues that differentially influence ubiquitination of the LDLR or stability of IDOL. The FERM domain interacts with the LDLR and in living cells co-localizes with the receptor at the plasma membrane. Homology modeling revealed a phosphotyrosine-binding element embedded in the FERM domain. Mutating residues within this region or residues in the LDLR preceding the NPVY endocytosis motif abrogate LDLR degradation by IDOL. Collectively, our results indicate that both the FERM and RING domains are required for promoting lysosomal degradation of the LDLR by IDOL. Our findings may facilitate development of structure-based IDOL inhibitors aimed at increasing LDLR abundance in therapeutic strategies to treat cardiovascular disease.  相似文献   

5.
PSD-95 is a major scaffolding protein of the postsynaptic density, tethering NMDA- and AMPA-type glutamate receptors to signaling proteins and the neuronal cytoskeleton. Here we show that PSD-95 is regulated by the ubiquitin-proteasome pathway. PSD-95 interacts with and is ubiquitinated by the E3 ligase Mdm2. In response to NMDA receptor activation, PSD-95 is ubiquitinated and rapidly removed from synaptic sites by proteasome-dependent degradation. Mutations that block PSD-95 ubiquitination prevent NMDA-induced AMPA receptor endocytosis. Likewise, proteasome inhibitors prevent NMDA-induced AMPA receptor internalization and synaptically induced long-term depression. This is consistent with the notion that PSD-95 levels are an important determinant of AMPA receptor number at the synapse. These data suggest that ubiquitination of PSD-95 through an Mdm2-mediated pathway is critical in regulating AMPA receptor surface expression during synaptic plasticity.  相似文献   

6.
7.
《Autophagy》2013,9(1):168-169
Beyond its role as a response to starvation, autophagy has been increasingly implicated as part of the normal mechanisms regulating growth and remodeling of various cells and tissues during development. In recently published work we demonstrate that autophagy promotes synaptic development of the Drosophila larval neuromuscular junction (NMJ). We find that autophagy acts by downregulating an E3 ubiquitin ligase, Highwire (Hiw), which limits NMJ growth via a MAPKKK pathway. A similar role for autophagy in the synaptic remodeling that occurs during learning and memory remains an intriguing possibility.  相似文献   

8.
The ubiquitin-proteasome system plays an important role in synaptic development and function. However, many components of this system, and how they act to affect synapses, are still not well understood. In this study, we use the Drosophila neuromuscular junction to study the in vivo function of Liquid facets (Lqf), a homolog of mammalian epsin 1. Our data show that Lqf plays a novel role in synapse development and function. Contrary to prior models, Lqf is not required for clathrin-mediated endocytosis of synaptic vesicles. Lqf is required to maintain bouton size and shape and to sustain synapse growth by acting as a specific substrate of the deubiquitinating enzyme Fat facets. However, Lqf is not a substrate of the Highwire (Hiw) E3 ubiquitin ligase; neither is it required for synapse overgrowth in hiw mutants. Interestingly, Lqf converges on the Hiw pathway by negatively regulating transmitter release in the hiw mutant. These observations demonstrate that Lqf plays distinct roles in two ubiquitin pathways to regulate structural and functional plasticity of the synapse.  相似文献   

9.
Wang Q  Zhang B  Wang YE  Xiong WC  Mei L 《Neuro-Signals》2008,16(2-3):246-253
The neuromuscular junction, the synapse between motor neurons and muscle cells, serves as an excellent model for studying synapse formation. Agrin is believed to be released by motor neurons to induce postsynaptic differentiation at the neuromuscular junction. MuSK, a receptor tyrosine kinase, appears to be a key component of the agrin receptor complex. However, how agrin activates MuSK remains unclear. To address this question, we characterized the binding of the MuSK extracellular region to the muscle cell surface. The MuSK ectodomain was found to bind to muscle cells in a manner dependent on stimulation with neural agrin. Moreover, the binding was myotube specific and appeared to be mediated by two regions in the MuSK: one region containing the first and second immunoglobin domains and the other containing the cysteine-rich domain. Importantly, recombinant proteins containing the binding activity can block full-length MuSK binding to muscle cells and agrin-induced AChR clustering. These results suggest that the Ig1/2 domain of MuSK is involved in AChR clustering by binding to the muscle surface.  相似文献   

10.
Neuronal plasticity relies on tightly regulated control of protein levels at synapses. One mechanism to control protein abundance is the ubiquitin-proteasome degradation system. Recent studies have implicated ubiquitin-mediated protein degradation in synaptic development, function, and plasticity, but little is known about the regulatory mechanisms controlling ubiquitylation in neurons. In contrast, ubiquitylation has long been studied as a central regulator of the eukaryotic cell cycle. A critical mediator of cell-cycle transitions, the anaphase-promoting complex/cyclosome (APC/C), is an E3 ubiquitin ligase. Although the APC/C has been detected in several differentiated cell types, a functional role for the complex in postmitotic cells has been elusive. We describe a novel postmitotic role for the APC/C at Drosophila neuromuscular synapses: independent regulation of synaptic growth and synaptic transmission. In neurons, the APC/C controls synaptic size via a downstream effector Liprin-alpha; in muscles, the APC/C regulates synaptic transmission, controlling the concentration of a postsynaptic glutamate receptor.  相似文献   

11.
Triggering of the T cell antigen receptor (TCR).CD3 complex induces its ubiquitination. However, the molecular events that lead to ubiquitin conjugation to these cell surface molecules have not been defined. Here we report that Cbl, a RING-type E3 ubiquitin-protein ligase, promotes ubiquitination of TCR zeta chain, which requires its functional variant Src homology 2 domain and an intact RING finger. The tyrosine kinase Zap-70, which binds to both TCR zeta and Cbl, plays an adaptor role in these events. Mutations in TCR zeta, Zap-70, or Cbl that disrupt the interaction between TCR zeta and Zap-70 or between Zap-70 and Cbl reduce ubiquitination of TCR zeta. Our results suggest a novel mechanism by which Cbl negatively regulates T cell development and activation by inducing ubiquitination of the TCR.CD3 components.  相似文献   

12.
Little is known about how synaptic activity is modulated in the central nervous system. We have identified SCRAPPER, a synapse-localized E3 ubiquitin ligase, which regulates neural transmission. SCRAPPER directly binds and ubiquitinates RIM1, a modulator of presynaptic plasticity. In neurons from Scrapper-knockout (SCR-KO) mice, RIM1 had a longer half-life with significant reduction in ubiquitination, indicating that SCRAPPER is the predominant ubiquitin ligase that mediates RIM1 degradation. As anticipated in a RIM1 degradation defect mutant, SCR-KO mice displayed altered electrophysiological synaptic activity, i.e., increased frequency of miniature excitatory postsynaptic currents. This phenotype of SCR-KO mice was phenocopied by RIM1 overexpression and could be rescued by re-expression of SCRAPPER or knockdown of RIM1. The acute effects of proteasome inhibitors, such as upregulation of RIM1 and the release probability, were blocked by the impairment of SCRAPPER. Thus, SCRAPPER has an essential function in regulating proteasome-mediated degradation of RIM1 required for synaptic tuning.  相似文献   

13.
The cytoplasmic polyadenylation element-binding protein 3 (CPEB3), a regulator of local protein synthesis, is the mouse homolog of ApCPEB, a functional prion protein in Aplysia. Here, we provide evidence that CPEB3 is activated by Neuralized1, an E3 ubiquitin ligase. In hippocampal cultures, CPEB3 activated by Neuralized1-mediated ubiquitination leads both to the growth of new dendritic spines and to an increase of the GluA1 and GluA2 subunits of AMPA receptors, two CPEB3 targets essential for synaptic plasticity. Conditional overexpression of Neuralized1 similarly increases GluA1 and GluA2 and the number of spines and functional synapses in the hippocampus and is reflected in enhanced hippocampal-dependent memory and synaptic plasticity. By contrast, inhibition of Neuralized1 reduces GluA1 and GluA2 levels and impairs hippocampal-dependent memory and synaptic plasticity. These results suggest a model whereby Neuralized1-dependent ubiquitination facilitates hippocampal plasticity and hippocampal-dependent memory storage by modulating the activity of CPEB3 and CPEB3-dependent protein synthesis and synapse formation.  相似文献   

14.
YY Choo  T Hagen 《PloS one》2012,7(7):e41350
Cullin E3 ligases are the largest family of ubiquitin ligases with diverse cellular functions. One of seven cullin proteins serves as a scaffold protein for the assembly of the multisubunit ubiquitin ligase complex. Cullin binds the RING domain protein Rbx1/Rbx2 via its C-terminus and a cullin-specific substrate adaptor protein via its N-terminus. In the Cul3 ubiquitin ligase complex, Cul3 substrate receptors contain a BTB/POZ domain. Several studies have established that Cul3-based E3 ubiquitin ligases exist in a dimeric state which is required for binding of a number of substrates and has been suggested to promote ubiquitin transfer. In two different models, Cul3 has been proposed to dimerize either via BTB/POZ domain dependent substrate receptor homodimerization or via direct interaction between two Cul3 proteins that is mediated by Nedd8 modification of one of the dimerization partners. In this study, we show that the majority of the Cul3 proteins in cells exist as dimers or multimers and that Cul3 self-association is mediated via the Cul3 N-terminus while the Cul3 C-terminus is not required. Furthermore, we show that Cul3 self-association is independent of its modification with Nedd8. Our results provide evidence for BTB substrate receptor dependent Cul3 dimerization which is likely to play an important role in promoting substrate ubiquitination.  相似文献   

15.
Congenital myasthenic syndromes (CMS) are rare genetic diseases affecting the neuromuscular junction (NMJ) and are characterized by a dysfunction of the neurotransmission. They are heterogeneous at their pathophysiological level and can be classified in three categories according to their presynaptic, synaptic and postsynaptic origins. We report here the first case of a human neuromuscular transmission dysfunction due to mutations in the gene encoding a postsynaptic molecule, the muscle-specific receptor tyrosine kinase (MuSK). Gene analysis identified two heteroallelic mutations, a frameshift mutation (c.220insC) and a missense mutation (V790M). The muscle biopsy showed dramatic pre- and postsynaptic structural abnormalities of the neuromuscular junction and severe decrease in acetylcholine receptor (AChR) epsilon-subunit and MuSK expression. In vitro and in vivo expression experiments were performed using mutant MuSK reproducing the human mutations. The frameshift mutation led to the absence of MuSK expression. The missense mutation did not affect MuSK catalytic kinase activity but diminished expression and stability of MuSK leading to decreased agrin-dependent AChR aggregation, a critical step in the formation of the neuromuscular junction. In electroporated mouse muscle, overexpression of the missense mutation induced, within a week, a phenotype similar to the patient muscle biopsy: a severe decrease in synaptic AChR and an aberrant axonal outgrowth. These results strongly suggest that the missense mutation, in the presence of a null mutation on the other allele, is responsible for the dramatic synaptic changes observed in the patient.  相似文献   

16.
Shc family proteins serve as phosphotyrosine adaptor molecules in various receptor-mediated signaling pathways. In mammals, three distinct Shc genes have been described that encode proteins characterized by two phosphotyrosine-interaction modules, an amino-terminal phosphotyrosine binding (PTB) domain and a carboxy-terminal Src homology 2 domain. Here, we report the analysis of an uncharacterized fourth Shc family protein, ShcD/Shc4, that is expressed in adult brain and skeletal muscle. Consistent with this expression pattern, we find that ShcD can associate via its PTB domain with the phosphorylated muscle-specific kinase (MuSK) receptor tyrosine kinase and undergo tyrosine phosphorylation downstream of activated MuSK. Interestingly, additional sites of tyrosine phosphorylation, including a novel Grb2 binding site, are present on ShcD that are not found in other Shc family proteins. Activation of MuSK upon agrin binding at the neuromuscular junction (NMJ) induces clustering and tyrosine phosphorylation of acetylcholine receptors (AChRs) required for synaptic transmission. ShcD is coexpressed with MuSK in the postsynaptic region of the NMJ, and in cultured myotubes stimulated with agrin, expression of ShcD appears to be important for early tyrosine phosphorylation of the AChR. Thus, we have characterized a new member of the Shc family of docking proteins, which may mediate a specific aspect of signaling downstream of the MuSK receptor.  相似文献   

17.
LNX1 (ligand of numb protein-X1) is a RING and PDZ domain-containing E3 ubiquitin ligase that ubiquitinates human c-Src kinase. Here, we report the identification and structure of the ubiquitination domain of LNX1, the identification of Ubc13/Ube2V2 as a functional E2 in vitro, and the structural and functional studies of the Ubc13~Ub intermediate in complex with the ubiquitination domain of LNX1. The RING domain of LNX1 is embedded between two zinc-finger motifs (Zn-RING-Zn), both of which are crucial for its ubiquitination activity. In the heterodimeric complex, the ubiquitin of one monomer shares more buried surface area with LNX1 of the other monomer and these interactions are unique and essential for catalysis. This study reveals how the LNX1 RING domain is structurally and mechanistically dependent on other motifs for its E3 ligase activity, and describes how dimeric LNX1 recruits ubiquitin-loaded Ubc13 for Ub transfer via E3 ligase-mediated catalysis.  相似文献   

18.
Byun B  Jung Y 《Molecules and cells》2008,25(2):289-293
The role of SPOP in the ubiquitination of ER alpha by the Cullin3-based E3 ubiquitin ligase complex was investigated. We showed that the N-terminal region of SPOP containing the MATH domain interacts with the AF-2 domain of ER alpha in cultured human embryonic 293 cells. SPOP was required for coimmunoprecipitation of ER alpha; with Cullin3. This is the first report of the essential role of SPOP in ERalpha ubiquitination by the Cullin3-based E3 ubiquitin ligase complex. We also demonstrated repression of the transactivation capability of ER alpha; in cultured mammalian cells.  相似文献   

19.
The regulated localization of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-type glutamate receptors (AMPARs) to synapses is an important component of synaptic signaling and plasticity. Regulated ubiquitination and endocytosis determine the synaptic levels of AMPARs, but it is unclear which factors conduct these processes. To identify genes that regulate AMPAR synaptic abundance, we screened for mutants that accumulate high synaptic levels of the AMPAR subunit GLR-1 in Caenorhabditis elegans. GLR-1 is localized to postsynaptic clusters, and mutants for the BTB-Kelch protein KEL-8 have increased GLR-1 levels at clusters, whereas the levels and localization of other synaptic proteins seem normal. KEL-8 is a neuronal protein and is localized to sites adjacent to GLR-1 postsynaptic clusters along the ventral cord neurites. KEL-8 is required for the ubiquitin-mediated turnover of GLR-1 subunits, and kel-8 mutants show an increased frequency of spontaneous reversals in locomotion, suggesting increased levels of GLR-1 are present at synapses. KEL-8 binds to CUL-3, a Cullin 3 ubiquitin ligase subunit that we also find mediates GLR-1 turnover. Our findings indicate that KEL-8 is a substrate receptor for Cullin 3 ubiquitin ligases that is required for the proteolysis of GLR-1 receptors and suggest a novel postmitotic role in neurons for Kelch/CUL3 ubiquitin ligases.  相似文献   

20.
The ubiquitin E3 ligase gene related to anergy in lymphocytes (GRAIL) (Rnf128) is a type 1 transmembrane protein that induces T cell anergy through the ubiquitination activity of its cytosolic RING finger. GRAIL also contains an equally large luminal region consisting primarily of an uncharacterized protease-associated (PA) domain. Using two-hybrid technology to screen for proteins that bound the PA domain we identified CD151, a member of the tetraspanin family of membrane proteins. GRAIL bound to the luminal/extracellular portion of both CD151 and the related tetraspanin CD81 using its PA domain, which promoted ubiquitination of cytosolic lysine residues. GRAIL exhibited specificity for lysines only within the tetraspanin amino terminus even in the presence of other cytosolic lysine residues in the substrate. GRAIL-mediated ubiquitination promoted proteasomal degradation and cell surface down-regulation of tetraspanins via Lys-48 linkages. As a result, the juxtaposition of PA and RING finger domains across a lipid bilayer facilitates the capture of transmembrane substrates for subsequent ubiquitination. These findings identify for the first time a single subunit E3 ligase containing a substrate-binding domain spatially restricted by a membrane from its E2 recruitment domain as well as an E3 ligase for members of the tetraspanin family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号