首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The mode of biosynthesis of penicillin-binding protein(PBP)-1 b in Escherichia coli was investigated by use of the plasmid carrying the ponB(PBP-1 b) gene region. Analyses of the products synthesized in minicells and in vitro showed that PBP-1 b was synthesized as two molecular species corresponding to the and components of PBP-1 b. The coding regions for the and components were located within the ca. 3.7 kb MluI-HincII fragment and transcribed in the direction from the HincII to the MluI site. The capacity for producing the component was abolished by a deletion extending to the MluI site ca. 0.7 kb inward from the HincII end of the ca. 3.7 kb fragment; the remaining 3.0 kb region with the MluI site at both ends directed the production of the component alone. The production of the component was enough to correct all the known defects caused by a ponB mutation. In addition to these results, the analyses for cross-reacting materials produced in correspondence to the various deletions indicated that the coding regions for the and components overlapped and that the N-terminal portion was responsible for the difference between the two components. The distal region about 0.7 kb long inward from the MluI end of the MluI-HincII fragment was dispensable for producing the functional PBP-1 b, although the PBP-1 b produced was curtailed. By a larger distal deletion reaching almost to the middle of the MluI-HincII fragment, the polypeptide produced for PBP-1 b lost the ability to bind penicillin and still retained a low but significant activity for glycan synthesis. We suggest, therefore, that the polypeptide portion required for transglycosylase activity resides on the N-terminal half of PBP-1 b, followed by the middle portion necessary for penicillin-binding and the C-terminal part dispensable for the function of PBP-1 b.  相似文献   

2.
Bacillus subtilis strains lacking penicillin-binding protein 1 (PBP1), encoded by ponA, required greater amounts of Mg2+ or Ca2+ for vegetative growth or spore outgrowth than the wild-type strain and strains lacking other high-molecular-weight (HMW) PBPs. Growth of ponA cells in a medium low in Mg2+ also resulted in greatly increased cell bending compared to wild-type cells or cells lacking other HMW PBPs. The addition of high levels of Mg2+ to growth media eliminated these phenotypes of a ponA mutant. In contrast to the effects of divalent cations, NaCl did not restore ponA cell growth in a divalent-cation-deficient medium. Surprisingly, wild-type cells swelled and then lysed during both vegetative growth and spore outgrowth when 500 mM NaCl was included in a divalent-cation-deficient medium. Again, Mg2+ addition was sufficient to allow normal vegetative growth and spore outgrowth of both wild-type and ponA cells in a medium with 500 mM NaCl. These studies demonstrate that (i) while HMW PBPs possess largely redundant functions in rich medium, when divalent cations are limiting, PBP1 is required for cell growth and spore outgrowth; and (ii) high levels of NaCl induce cell lysis in media deficient in divalent cations during both vegetative growth and spore outgrowth.  相似文献   

3.
Summary A strain of Escherichia coli K12 harboring simultaneously the temperature-sensitive dnaA46 mutation and a deletion of the trp-topA-cysB region plates with the same full efficiency at 30° C and 42° C. We have analyzed the possible involvement of the gene coding for topoisomerase I, topA, in this suppression phenomenon. The Ts phenotype was retrieved upon introduction of a plasmid-borne DNA fragment including an active topA gene into this strain, but not upon introduction of the same fragment harboring a topA::Tn1000 insertion. Replication seems to remain DnaA-dependent in the (topA) strain, however, since we have been unable to introduce a dnaA::Tn10 allele. We propose either that the dnaA46 gene product is overproduced and compensates for its thermal inactivation, or that initiation at oriC demands less DnaA protein in the absence of topoisomerase I.Abbreviations Apr ampicillin resistance - Cmr chloramphenicol resistance - Kmr Kanamycin resistance - Str streptomycin resistance - Tcr tetracycline resistance  相似文献   

4.
Summary A class of ompA mutants of Escherichia coli, exhibiting temperature-sensitive resistance towards phages using the OmpA protein as receptor, was analysed. The mutants produce detectable levels of the protein at 42°C but not at 30°C (Manning and Reeves 1976). They were found to have a deletion (one isolate) or insertions (three isolates) upstream of the coding part of the ompA gene. Several previously characterized mutants possessing insertions or a deletion in the non-translated 5 area of the gene also exhibited a similar temperature-sensitive phage resistance. This cold-sensitive phenotype is explained in terms of the recent discovery that the stability of ompA mRNA is regulated by the rate of cell growth (Nilsson et al. 1984).  相似文献   

5.
Our previous studies have shown thatEscherichia coli JE1011 possesses an errorfree DNA repair system that is inducible by heat shock or thiamine deprivation. However, it appears to be lacking inE. coli B, which islon . We now show that a similar, thermally inducible, error-free system is present inE. coli AB1157, although it requires more severe heat shock for its induction. Thelon mutant of this strain is similar toE. coli B and does not become more UV-resistant after heat shock, so this gene appears to play an essential role in the process. All three strains become more resistant to heat inactivation at 55°C following a 30°C48°C heat shock; this confirms that the induced UV and thermal resistances must arise by different mechanisms.  相似文献   

6.
Nalidixic acid-resistant mutants ofEscherichia coli CGSC #6353 capable of growth at 48°C were obtained by mutagenesis withN-methyl-N-nitro-N-nitrosoguanidine. Cotransductional analyses employing phage P1 indicated that the mutation resulting in the phenotype of growth at 48°C is an allele of thegyrA structural gene. Similar thermal inactivation kinetics were observed for ribosomes isolated from a thermotolerant (T/r) mutant grown at both 37°C and 48°C and from the parental strain grown at 37°C. Cell-free extracts prepared from the T/r mutant grown at 48°C exhibited a sharp increase in protein synthesis at 55°C, whereas this effect was not displayed by extracts from the mutant or parental strains grown at 37°C. In addition, preincubation at 55°C enhanced protein synthesis at 37°C up to 15-fold in an extract prepared from the T/r mutant grown at 48°C, whereas comparable values were 2.6- to 3.0-fold for extracts from the mutant and parental strains grown at 37°C.  相似文献   

7.
Shewanella sp. Ac10 is a psychrotrophic bacterium isolated from the Antarctica that actively grows at such low temperatures as 0°C. Immunoblot analyses showed that a heat-shock protein DnaK is inducibly formed by the bacterium at 24°C, which is much lower than the temperatures causing heat shock in mesophiles such as Escherichia coli. We found that the Shewanella DnaK (SheDnaK) shows much higher ATPase activity at low temperatures than the DnaK of E. coli (EcoDnaK): a characteristic of a cold-active enzyme. The recombinant SheDnaK gene supported neither the growth of a dnaK-null mutant of E. coli at 43°C nor phage propagation at an even lower temperature, 30°C. However, the recombinant SheDnaK gene enabled the E. coli mutant to grow at 15°C. This is the first report of a DnaK supporting the growth of a dnaK-null mutant at low temperatures.  相似文献   

8.
Summary The expression of recombinant single-chain urokinase-like plasminogen activator (rscuPA) in Escherichia coli was optimized by fusing the puk gene to different promoters and ribosome binding sequences. Comparison of the tac, trp and P L promoters showed that expression was maximal under tac control. Variation in the ribosome binding sequence and its distance to the AUG start codon yielded a further slight improvement of expression. The largest increase in rscuPA expression was achieved by variations in the host strain and growth conditions. In E. coli DG75 grown at 37°C maximal expression was achieved 30 min after induction and decreased gradually until 240 min after induction. Growth at 30°C yielded maximal expression 60 min after induction and resulted in reduced activity at longer times. Western blot analysis of the products showed that degradation of rscuPA was much larger at 37°C than at 30°C. Using E. coli CAG630 carrying the htpR mutation, which avoids heat shock response, for expression of rscuPA eliminated the instability of the product at both temperatures. Expression in this strain was even more efficient than in E. coli JM101 carrying the lon mutation. It is concluded that induction of the general heat-shock response in E. coli must be avoided to obtain stabilization of rscuPA. This drastically improves the overall yield of rscuPA from recombinant E. coli strains.  相似文献   

9.
The gene coding for the glutaryl 7-aminocephalosporanic acid (GL 7-ACA) acylase from Pseudomonas diminuta KAC-1 was cloned and expressed in Escherichia coli. The acylase gene was composed of 2160 base pairs and encoded a polypeptide of 720 amino acid residues. The E. coli BL21 carrying pET2, the plasmid construct for high expression of GL 7-ACA acylase gene, produced this enzyme at approx. 30% of the total proteins with 3.2 units activity mg protein–1. Growth at temperature below 31 °C and deletion of signal peptide increased the processing of precursor acylase to active enzyme in the recombinant E. coli cells.  相似文献   

10.
A random mutation strategy using mutator strain, Epicurian coli XL1-Red, was applied to a plasmid, pND018, constructed by inserting a Lactococcus lacis bacteriophage resistance gene (abiI) into a L. lactis/E. coli shuttle vector (pDL278), to introduce random mutations throughout the plasmid. Following transformation of the mutated plasmid library to a plasmid free and phage sensitive strain of L. lactis (LM0230), mutated plasmids were screened by cross-streaking and efficiency of plaquing (EOP) assays. Two strains with enhanced resistance were obtained, as well as several phage sensitive strains. Repeated transformation of the mutated plasmids to LM0230 confirmed that the observed phenotypes were caused by mutations located on the plasmids. The EOP values and plaque morphology of two enhanced phage resistance mutants were characterized at 30°C and 37°C. These results indicate that this simple procedure can be applied to generate modified plasmids with improved phage resistance, which may be of commercial value.  相似文献   

11.
Summary The replication of the bacteriocinogenic factor Clo DF13 was studied in Escherichia coli mutants which lack either DNA polymerase I (polA1 and resA1 mutants), DNA polymerase II (polB1 mutant) or DNA polymerase III (dnaE mutant). DNA polymerase I is required for Clo DF13 replication. The Clo DF13 factor, however, can be maintained in a strain carrying the polA107 mutation and thus lacking the 53 exonucleolytic activity of DNA polymerase I. DNA polymerase II is not required for transfer replication and maintenance of the Clo DF13 plasmid. In the temperature sensitive dnaE mutant, Clo DF13 can replicate at the nonpermissive temperature during the first two hours after the temperature shift from 30°C to 43°C. During this period DNA polymerase III seems not to be essential for Clo DF13 replication.  相似文献   

12.
Summary DNA-dependent RNA polymerase has been found to be preferentially released at 43° C from the folded nucleoids of an E. coli dnaA ts mutant when compared with the same nucleoids at 30° C or with nucleoids of a dnaA + strain at either 30° or 43° C. The polypeptides released are identical in molecular weight with those of the and constituent polypeptides of the core enzyme of a known E. coli RNA polymerase. In addition, these polypeptides are precipitated by specific anti-RNA polymerase rabbit IgG. The implications of the interactions of RNA polymerase with the dnaA gene product are discussed.  相似文献   

13.
A cryptic 2.85 kb plasmid (pBf1) was isolated from the rumen bacteriumButyrivibrio fibrisolvens strain AR10, ampped with restriction endonucleases, and cleavage sites suitable for attachment toEscherichia coli plasmids were identified. AR10 was not able to be cured of pBf1 by growth at 42°C or in 0.25 g ampicillin/ml, but growth in 50 g acridine orange/ml for three culture passages produced cured colonies at a frequency of <1%. Chimeric plasmids were constructed by combining pBf1 with theE. coli plasmid pUC18, in addition to the clindamycin resistance gene fromBacteroides fragilis plasmid pDP1 (pCW2 and pCW3), or the CAT gene fromE. coli plasmid pKK232-8 (pCK1). For plasmid construction, pBf1 was cleaved at two alternative restriction sites to increase the likelihood that replication control sequences would remain functional in at least one of the plasmids. Electroporation of AR10 yielded transformant populations that clearly maintained the plasmids and that appeared to express the ampicillinase gene of pUC18, although transformants were not readily selectable with any of the three antibiotics. The suitability of pBf1 as a replicon on which to base the construction of shuttle vectors was demonstrated clearly, by persistence of plasmid pCW3 in the absence of selective pressure, and the addition of appropriate selection factors is expected to yield practical transformation vectors.  相似文献   

14.
Smirnova  G. V.  Zakirova  O. N.  Oktyabr'skii  O. N. 《Microbiology》2001,70(5):512-518
Shifting the temperature from 30 to 45°C in an aerobic Escherichia coliculture inhibited the expression of the antioxidant genes katG, katE, sodA, and gor.The expression was evaluated by measuring -galactosidase activity in E. colistrains that contained fusions of the antioxidant gene promoters with the lacZoperon. Heat shock inhibited catalase and glutathione reductase, lowered the intracellular level of glutathione, and increased its extracellular level. It also suppressed the growth of mutants deficient in the katG-encoded catalase HPI, whereas the sensitivity of the wild-type andsodA sodBmutant cells to heat shock was almost the same. In the E. coliculture adapted to growth at 42°C, the content of both intracellular and extracellular glutathione was two times higher than in the culture grown at 30°C. The temperature-adapted cells grown aerobically at 42°C showed an increased ability to express the fused katG–lacZgenes.  相似文献   

15.
Summary We have examined DNA strand breakage, DNA degradation, and the rate of DNA synthesis in lig and lig-recB strains of Escherichia coli K12 incubated in the presence and absence of 3 g/ml chloramphenicol. Substantial DNA strand breakage and DNA degradation is observed in the lig strain upon growth at 40°C; however, such strand breakage and DNA degradation is not observed in the lig-recB strain. Incubation of the lig strain at 40°C in the presence of 3 g/ml chloramphenicol reduces the amount of DNA strand breakage and DNA degradation to the level observed in the lig-recB strain. Together, these results demonstrate that exonuclease V (the recBC gene product) is responsible for the increased DNA degradation associated with DNA ligase deficiency.  相似文献   

16.
Abstract:Enterotoxigenic Escherichia coli causes diarrhea by producing several virulence factors including heat-labile enterotoxin (LT). LT is maximally expressed at 37°C. The histone-like nucleoid structuring protein (H-NS) appears to inhibit LT expression by binding to a downstream regulatory element (DRE) at low temperatures. An hns+ E. coli strain, X7026, carrying an LT–beta-galactosidase translational fusion plasmid (pLT-lac) was shown to be responsive to varying amounts of sodium chloride (NaCl) as well as sucrose or lithium chloride. Maximal responsiveness to the various osmolytes was obtained with cells grown at 37°C under microaerophilic conditions. Temperature-osmotic upshift experiments demonstrate LT expression is thermo-osmoregulated. pLT-lac was tested in an hns strain or its congenic hns+ strain for its response to NaCl. LT expression is elevated in the hns strain regardless of NaCl concentration and retains its osmoresponsiveness. The response of the DRE deletion plasmid (pLT-lacNC) to NaCl is similar to that of the undeleted plasmid.  相似文献   

17.
The entire coding sequence of the tonB gene, except for nine codons at the 3 end, was deleted from the chromosome of Escherichia coli. Introduction of the btuB451 suppressor mutant tonB1 into the chromosome of such a tonB deletion strain showed that the tonB1 allele was active as a suppressor in a single copy at 37° C and 42° C but not at 28° C. No temperature dependence was seen when FepA- or FhuA-dependent activities of the tonB1 gene product (TonBQ160K) were tested. The btuB451 suppressor activity of tonB1 was inhibited by the simultaneous presence within the cells of the tonB + allele on a multicopy plasmid. This represents the first case of dominance among different tonB alleles. Inhibition of suppression was abolished by overexpression of the btuB451-encoded receptor protein. Competition for binding of TonB+ and TonBQ150K to ExbB was excluded as the cause of dominance. Based on our data we conclude that competition for binding of TonB + and TonBQ160K to the btuB451 gene product is the reason for the observed dominance. The implications of these findings for the mechanism of btuB451 suppression by tonB1 are discussed.  相似文献   

18.
Summary The nucleotide sequence of the rpsE gene for the ribosomal protein S5 of a mutant of E. coli showing cold-sensitive growth revealed the presence of an insertion sequence, IS1, near the 3-end of the gene. This mutant grows very slowly even at the permissive temperature (30°C). At temperatures below 20°C, its growth becomes negligible. It is likely that the presence of IS1 disturbs the continued translation of the polycistronic messenger RNA of the spc-operon from the point of IS1 insertion downwards, especially at the unfavorable temperatures.  相似文献   

19.
Summary A tif-1 umuC36 double mutant of Escherichia coli was constructed. It has been found that the umuC36 mutation prevents both increased spontaneous mutagenesis and enhanced reactivation of UV-irradiated , phenomena normally observed in the tif-1 strain grown at 42°C. When the plasmid pKM101 was introduced into tif-1 umuC36, an elevated spontaneous reversion rate of the his-4 mutation observed at 30°C was further increased 6-fold at 42°C. This was accompanied by a 10-fold increase in the ability of tif-1umuC36 containing pKM101 and grown before infection at 42°C to reactivate UV-irradiated .  相似文献   

20.
Summary We constructed a strain of E. coli K12 carrying polA1 (an amber mutation of the DNA polymerase I gene; De Lucia and Cairns, 1969), and sup-126 (a temperature-sensitive amber suppressor; Nagata and Horiuchi, 1973). DNA polymerizing activity of the enzyme in this strain is virtually undetectable if the cells are grown at 42°C, but if grown at 30°C it is sufficiently present. By mutagenizing this strain, and after appropriate screening, we obtained mutants no longer able to grow at 42°, but able to do so when the normally functioning polA gene is present. One of them, called TS41, was most extensively studied. It acquired a mutation named pdeB41 which was found to be located between ilv and metE on the E. coli linkage map. Its phenotype is pleiotropic. The mutation by itself, i.e., if present in a polA + cell, does not kill the cell at 42°, but does so as in TS41 when it is reconstructed into a pdeB41 polA1 sup-126 triple mutant by P1 transduction. The mutation by itself renders the cell sensitive to UV, and tolerant to phage deficient in recombination. It is also a mutator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号