首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B P Kopnin  A V Gudkov 《Genetika》1983,19(6):872-880
The influence of some agents on gene amplification in Djungarian hamster and mouse cells was studied. The tumor promotor 12-O-tetradecanoylphorbol-13-acetate (TPA), the epidermal growth factor (EGF), insulin, and 5-bromodeoxyuridine (BUdR) increase the incidence of colchicine-resistance, connected with amplification of the genes, which probably encode the polypeptide p22. The highest frequency of gene amplification was observed after the pretreatment of cells with TPA, which enhanced the number of colchicine-resistant colonies 44-200-fold. Mitostatic agents colchicine and colcemid increased the number of methotrexate-resistant cells, 2.0-6.5 times. These cells usually arise as the result of amplification of dihydrofolate reductase genes. Dexamethasone and ethidium bromide did not change the portion of cells resistant to colchicine. Ethylmethane sulfonate (EMS) decreased the number of colchicine-resistant cells. The cells of two Djungarian hamster colchicine-resistant clones obtained after treatment with TPA did not differ from those of spontaneously derived colchicine-resistant clones. Both have similar survival patterns in the medium with different colchicine concentrations, unstable inheritance of the drug resistance, the additional chromosome 4 and small chromatin bodies-the structures containing the amplified genes. Possible mechanisms of the induction of gene amplification by the agents used are discussed.  相似文献   

2.
Barsoum and Varshavsky (Proc. Natl. Acad. Sci. U.S.A. 80:5330-5334, 1983) suggest that polypeptide mitogens and the mitogenic tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulate gene amplification by related pathways. I demonstrated that TPA and the polypeptide mitogen fibroblast growth factor (FGF) both increase the frequency of cadmium-resistant variants of Swiss-Webster 3T3 cells. The molecular basis for this phenomenon is the amplification of the metallothionein gene(s). To further characterize the relationship between mitogenesis and gene amplification, I examined the ability of TPA and FGF to increase the frequency of cadmium-resistant colonies in the 3T3 variant cell line 3T3-TNR9. Unlike 3T3 cells, 3T3-TNR9 cells cannot be stimulated by TPA to divide (E. Butler-Gralla and H. R. Herschman, J. Cell. Physiol. 107:59-68, 1981). TPA does not induce an increase in cadmium-resistant colonies of the TPA-nonproliferative 3T3-TNR9, variant, in contrast to its efficacy on 3T3 cells. FGF, a potent mitogen for 3T3-TNR9 cells as well as 3T3 cells, is equally effective for 3T3-TNR9 and 3T3 cells in inducing cadmium-resistant colonies. These data suggest that the pathways of TPA-induced gene amplification and TPA-stimulated mitogenesis share a common step(s). TPA caused transient inhibition of DNA synthesis in both dividing 3T3 and 3T3-TNR9 cells, suggesting that this latter response to TPA is not sufficient to enhance gene amplification.  相似文献   

3.
We have investigated different parameters characterizing carcinogen-mediated enhancement of methotrexate resistance in Chinese hamster ovary (CHO) cells and in simian virus 40-transformed Chinese hamster embryo (C060) cells. We show that this enhancement reflects dihydrofolate reductase (dhfr) gene amplification. The carcinogens used in this work are alkylating agents and UV irradiation. Both types of carcinogens induce a transient enhancement of methotrexate resistance which increases gradually from the time of treatment to 72 to 96 h later and decreases thereafter. Increasing doses of carcinogens decrease cell survival and increase the enhancement of methotrexate resistance. Enhancement was observed when cells were treated at different stages in the cell cycle, and it was maximal when cells were treated during the early S phase. These studies of carcinogen-mediated dhfr gene amplification coupled with our earlier studies on viral DNA amplification in simian virus 40-transformed cells demonstrate that the same parameters characterize the amplification of both genes. Possible cellular mechanisms responsible for the carcinogen-mediated gene amplification phenomenon are discussed.  相似文献   

4.
A Sakai  M Sato 《Mutation research》1989,214(2):285-296
The present studies intend to heighten the sensitivity of BALB/3T3 cells to chemical carcinogens in a transformation assay, by including exposure of carcinogen-treated cells to a tumor promoter, 12-O-tetradecanoylphorbol 13-acetate (TPA). In the assay, cells were first treated with a known or suspected carcinogen for 72 h, cultured in normal medium for 3 days, exposed to media with and without TPA for 2 weeks, and cultured in normal medium for an additional 3 weeks. Benzo[a]pyrene, a potent carcinogen with a polycyclic aromatic hydrocarbon structure, caused transformation in the presence and absence of TPA. N-Methyl-N'-nitro-N-nitrosoguanidine (MNNG), a carcinogen with direct-acting alkylating ability, did not induce significant transformation without TPA, while treatment with MNNG followed by TPA produced numerous transformed foci, classifying MNNG as an initiating agent of transformation under the condition presented in this report. 3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (AF-2), sodium nitrite and butylated hydroxyanisole (BHA), which are carcinogenic and/or mutagenic, produced transformed foci in significant numbers of treated dishes in the presence but not in the absence of TPA. Butylated hydroxytoluene (BHT) and sodium saccharin, which are considered to be a modifier and a promoter of carcinogenesis, did not cause significant transformation with or without TPA treatment. These studies suggest that this 2-stage transformation system is capable of detecting a wider range of chemical carcinogens as initiating agents than the standard assay. Studies on the transformation assay schedule revealed that the proportion of dishes with foci, the number of foci per dish and sizes of foci all increased in the normal medium after the termination of TPA treatment. Therefore, transformed cells appear to proliferate independently of TPA after those cells are released by TPA from postconfluence inhibition of cell division.  相似文献   

5.
The tumor-promoting phorbol ester 12-O-tetradecanoyl phorbol-13-acetate (TPA) enhanced 1-isoproterenol and prostaglandin E1 stimulated cyclic AMP formation in clones of mouse myeloid leukemic cells. The enhancement was found up to 3h after TPA treatment and had disappeared after 24h, indicating its reversibility. The effect of TPA was not inhibited by removal of extracellular Ca2+ or pre-treatment with the calcium ionophore A23187. This enhancement by TPA seems to involve a different pathway than enhancement of response to the same hormones after treatment with the anti-tubulin alkaloids colchicine or vinblastine, since a myeloid leukemic cell mutant clone that was non-responsive to the anti-tubulin alkaloids responded to TPA. Furthermore, combined treatment of colchicine-sensitive cells with TPA and colchicine showed an additive stimulating effect. The enhancement of cell response to hormones by TPA was found in myeloid leukemic cell clones that either were or were not induced to differentiate after treatment with TPA. This suggests that enhancement of the effect of these and possibly other hormones by TPA may be an initial step of TPA action, but that this enhancement is not sufficient to induce the wide repertoire of TPA effects including induction of differentiation.  相似文献   

6.
G0-arrested human diploid fibroblasts, TIG-1, was stimulated to induce DNA synthesis by serum, epidermal growth factor (EGF), colchicine, colcemid, or 12-O-tetradecanoylphorbol-13-acetate (TPA). The induction of DNA synthesis was mediated by protein kinase C (PKC) when stimulated with TPA but not when stimulated with other agents. When TPA-stimulated cells were immediately treated with colcemid, induction of DNA synthesis was reduced. This reduction diminished when colcemid was added more than 6 h after TPA treatment. Conversely, when colcemid-stimulated cells were treated with TPA, induction of DNA synthesis was also reduced. This reduction was enhanced when the interval between the addition of two stimulants was extended. PKC-deprivation abolished both stimulatory and inhibitory effects of TPA on DNA synthesis. Staurosporine blocked an induction of DNA synthesis by TPA but appeared to be ineffective on the inhibitory action of TPA on DNA synthesis by colcemid. These results suggest that the inhibitory effect of TPA on the induction of DNA synthesis by colcemid is mediated by down regulation-sensitive and staurosporine-insensitive PKC.  相似文献   

7.
tsJT16 is a G0/G1 ts mutant from the Fischer rat fibroblast line. It has a ts defect in a function operating early after growth stimulation with fetal bovine serum (FBS). A primarily induced gene product, p70, was not synthesized at 40 degrees C after stimulation with serum, while c-fos and c-myc mRNAs accumulated under the same condition. This paper reports that p70 was synthesized following stimulation of G0-arrested cells with platelet-derived growth factor, epidermal growth factor (EGF), and 12-0-tetradecanoylphorbol-13-acetate (TPA) at 34 degrees C, but not at 40 degrees C. However, it was synthesized at both temperatures after addition of A23187. In protein kinase C-deprived cells, peptide growth factors and A23187 induced p70 at 34 degrees C, whereas TPA did not. Fibroblast growth factor and insulin did not induce p70. Induction of c-fos and c-myc occurred at both temperatures after the stimulation with FBS, TPA or A23187. These results indicated that the defect in tsJT16 to induce p70 is likely to be located at the common downstream of protein kinase C-dependent and -independent pathways, but is independent from the pathway of calcium mobilization.  相似文献   

8.
9.
Control of terminal cell differentiation was studied using the human promyelocytic leukemia cell line, HL-60. HL-60 cells are known to undergo terminal monocytic differentiation when continuously exposed to 1.6 nM tetradecanoylphorbol acetate (TPA). The dose-response relationship between TPA concentration and induced differentiation is relatively steep. TPA (1.1 nM) induces little G1/0 specific growth inhibition or phenotypic differentiation. In contrast, pretreating the cells with a pulse exposure to hydroxyurea promotes their capability to terminally differentiate in response to TPA. Initially exponentially proliferating cells exposed for 20 h, approximately one doubling time, to 0.3 mM hydroxyurea, a subcytotoxic dose, underwent rapid G1/0 specific growth arrest and cell differentiation in response to subsequent exposure to 1.1 nM TPA. The extent of terminal differentiation was comparable to that induced by 1.6 nM TPA. The results support the hypothesis that early events in induction of terminal HL-60 cell differentiation depend on an S phase-specific process which may involve gene amplification.  相似文献   

10.
In quiescent Balb/c 3T3 cells, competence factors such as 12-O-tetradecanoylphorbol-13-acetate (TPA) and platelet-derived growth factor (PDGF) synergize with progression factors such as insulin to initiate DNA synthesis. In this study, we found that colchicine, a microtubule-disrupting agent, acted synergistically with TPA, but not with insulin, to induce the maximal stimulation of DNA synthesis. Colchicine also synergized with PDGF in the presence of epidermal growth factor to elicit nearly the optimal induction of DNA synthesis. Moreover, it acted synergistically with fibroblast growth factor, another competence factor. These results suggest that colchicine acts as a progression factor like insulin in quiescent Balb/c 3T3 cells.  相似文献   

11.
The effect of the phorbol diester 12-0-tetradecanoylphorbol-13-acetate (TPA) on hexose transport in undifferentiated and differentiated BALB/c 3T3 preadipose cells was studied. Additon of TPA to undifferentiated or fully differentiated cultures resulted in an increased rate of both 2-deoxyglucose uptake and 3-0-methylglucose transport; the time course and maximal stimulation differed for each type of culture and for each hexose. In confluent, undifferentiated cells, half-maximal stimulation of 2-deoxyglucose uptake occurred at 3 nM TPA, while the half-maximal stimulation of 3–0-methylglucose occurred at 30 nM. Epidermal growth factor and fetal bovine serum increased 2-deoxyglucose uptake in undifferentiated cells, while insulin did not. Insulin did, however, stimulate 3–0-methylglucose transport in differentiated cells. From dose-response curves in differentiated cells, halfmaximally effective concentrations were 0.17 nM for insulin and 30 nM for TPA. At optimal concentrations and incubation times for each, TPA was significantly more effective than insulin in stimulating hexose transport in differentiated cells. It was also shown that insulin could further increase hexose transport in maximally stimulated TPA-treated cells. Cycloheximide inhibited by 75% the increase in hexose transport by TPA in differentiated cells, while having no effect on the response of these cells to insulin. In differentiated cells, chronic exposure to insulin abolished the ability of these cells to respond acutely to insulin addition but they could still respond to TPA. On the other hand, differentiated cells exposed continuously to TPA for 5 days retained the ability to activate 3–0-methylglucose transport after either TPA or insulin addition. These results demonstrate that TPA can stimulate hexose transport directly in both undifferentiated and differentiated 3T3 cells and suggest that TPA and insulin affect transport by different mechanisms.  相似文献   

12.
This study characterizes amplified structures carrying the human multidrug resistance (MDR) genes in colchicine-selected multidrug resistant KB cell lines and strongly supports a model of gene amplification in which small circular extrachromosomal DNA elements generated from contiguous chromosomal DNA regions multimerize to form cytologically detectable double minute chromosomes (DMs). The human MDR1 gene encodes the 170-kDa P-glycoprotein, which is a plasma membrane pump for many structurally unrelated chemotherapeutic drugs. MDR1 and its homolog, MDR2, undergo amplification when KB cells are subjected to stepwise selection in increasing concentrations of colchicine. The structure of the amplification unit at each step of drug selection was characterized using both high-voltage gel electrophoresis and pulsed-field gel electrophoresis (PFGE) techniques. An 890-kb submicroscopic extrachromosomal circular DNA element carrying the MDR1 and MDR2 genes was detected in cell line KB-ChR-8-5-11, the earliest step in drug selection in which conventional Southern/hybridization analyses detected MDR gene amplification. When KB-ChR-8-5-11 was subjected to stepwise increases in colchicine, this circular DNA element dimerized as detected by PFGE with and without digestion with Not 1, which linearizes the 890-kb amplicon. This dimerization process, which also occurred at the next step of colchicine selection, resulted in the formation of cytologically detectable DMs revealed by analysis of Giemsa-stained metaphase spreads.  相似文献   

13.
Previous studies indicated that the potent tumor promoter 12--0--tetradecanoyl-phorbol-13-acetate (TPA) enhances transformation of rat embryo cells (2 degrees RE) by a mutant of human Ad5 (H5ts125). This study examines the effect of TPA, its structural analogs and epidermal growth factor (EGF) on anchorage-independent growth of a cloned population of H5ts125-transformed 2 degrees RE cells (clone E11). Both TPA and EGF (approximately 10(-8) M) induced a 3--5 fold increase in agar cloning efficiency of E11 cells. In addition, macroscopic colonies appeared earlier and were larger and more diffuse. The TPA analogs phorbol--12,13--didecanoate (PDD) and ingenol--3,20--dibenzoate also enhanced growth in agar of E11 cells, whereas phorbol, 4 alpha PDD and 4--0--meTPA, which are inactive as tumor promoters, failed to enhance agar growth. In contrast to the results obtained with E11 cells, TPA, PDD or ingenol--3,20--bidenzoate failed to induce growth in agar of normal 2 degrees RE cells. Dexamethasone (10(-5)--10(-6) M), trans retinoic acid (10(-5)--10(-6) M) and the protease inhibitors leupeptin, antipain and elastatinol did not inhibit the ability of TPA to enhance the growth of E11 cells in agar. The TPA-enhanced anchorage independence was a stable property, since subclones of E11 cells isolated from TPA-agar plates had a higher agar cloning efficiency than the parental E11 cells when retested in the absence of TPA. This effect of TPA does not appear to reflect simple selection of a subpopulation of cells. When the parental E11 cells were first cloned in monolayer culture in the absence of TPA, all ten randomly picked clones showed enhanced growth in agar in the presence of TPA. In addition, prior growth of E11 cells in monolayer culture in the presence of TPA did not enhance their subsequent growth in agar. This system therefore provides an example in which TPA appears to enhance the acquisition of a stable cell property, and thus may be a useful model for studying mechanisms of tumor promotion and progression.  相似文献   

14.
15.
An adriamycin-resistant human colonic cancer cell line was characterized. This clone exhibits the classical multidrug resistance (MDR) phenotype, being cross-resistant to hydrophobic drugs such as colchicine, and vinblastine. In contrast, this clone shows a normal response to DNA-damaging agents. The appearance of MDR in these cells was linked to a decreased accumulation of the drug [3H]colchicine as compared to the drug-sensitive cells. This MDR line expressed 80-100 fold increased levels of the specific 4.5-kb mdr mRNA, and a gene amplification. Our results indicate that MDR in human colonic cancer cells can result from increased expression of at least one member of the mdr gene family.  相似文献   

16.
Bombesin caused a marked stimulation of 32Pi into phosphatidylinositol (PI), with no apparent lag, and into phosphatidylcholine (PC), after a lag of about 20 min. Stimulation was blocked by the bombesin receptor antagonist, [D-Arg1, D-Pro2, D-Trp7,9, Leu11] substance P, indicating that the effects on both PI and PC were mediated through the same receptor. The tumor-promoting phorbol ester 12-0-tetradecanoylphorbol-13-acetate (TPA) and dioctanoylglycerol (diC8) both directly activate protein kinase C and in this report were shown to stimulate 32Pi incorporation into PC but not into Pl. In addition, TPA stimulated the release of [3H]choline and [3H]phosphocholine and the accumulation of [3H]diacyglycerol from prelabelled cells. These results strongly suggest that TPA activates a phospholipase C specific for PC. Pretreatment of cells with phorbol-12, 13-dibutyrate (PDBu) for 24 h depleted cellular protein kinase C activity and inhibited the ability of TPA to induce these effects suggesting a direct involvement of protein kinase C. Similarly the bombesin stimulation of 32Pi into PC and of [3H]choline and [3H]phosphocholine release was inhibited by PDBu pretreatment. DiC8 and, to a lesser extent, TPA stimulated the translocation of CTP:phosphocholine cytidylytransferase from the cytosolic to the particulate fraction. DiC8 also stimulated this translocation in cells depleted of protein kinase C. It was concluded that both bombesin and TPA activated protein kinase C leading to activation of a phospholipase C specific for PC.  相似文献   

17.
The E1A gene of adenovirus type 5 (Ad5) induces morphological transformation and anchorage-independent growth in cloned rat embryo fibroblast (CREF) cells. In contrast, CREF cells transfected with a beta 1 protein kinase C (PKC) gene and expressing low-levels of beta 1 PKC display a CREF-like morphology and do not form colonies when grown in agar. The combination of Ad5 E1A and low-level beta 1 PKC expression in the same CREF cell line results in an enhanced ability to grow when suspended in agar. In Ad5 E1A and Ad5 E1A + low-level beta 1 PKC expressing CREF clones, the tumor promoting agent 12-0-tetradecanoyl-phorbol-13-acetate (TPA) further enhances anchorage-independence. In contrast, TPA does not induce CREF cells or transfected CREF cells expressing low-levels of beta 1 PKC to grow in agar. Low-level beta 1 PKC expression in transfected CREF cells is associated with a modest 1.2 to 1.6-fold increase in binding of [3H]-phorbol-12,13-dibutyrate (PDBu) and only a 2.3-fold increase in PKC enzymatic activity. In contrast, specific beta 1 PKC-retroviral vector transformed CREF clones (CREF-RV-PKC) display higher levels of PKC mRNA, PDBu binding and PKC enzymatic activity. A majority of CREF-RV-PKC clones exhibit a transformed morphology and grow more rapidly in monolayer culture, form macroscopic colonies in agar in the absence of TPA and in many independent clones TPA further enhances anchorage-independent growth. This effect is not directly related to the level of enhanced [3H]-PDBu binding. The present study indicates that the effect of beta 1 PKC on cellular phenotype in immortal rat embryo cells is complex and is affected by its mode of insertion into CREF cells, i.e. transfection versus retroviral insertion. In addition, the combination of a transfected Ad5 E1A and a beta 1 PKC gene in the same CREF clone results in an enhanced expression of the transformed phenotype in both the absence and presence of TPA.  相似文献   

18.
Earlier we have found that the development of resistance to colchicine in mammalian cells in vitro is due to gene amplification leading to decreased plasma membrane permeability to the selective agent and some other unrelated drugs. By a stepwise self-renaturation procedure followed by chromatography on hydroxyapatite we isolated the fraction of middle-repeated sequences (DNAc0t = 10-250) enriched in amplified DNA from the DNA of colchicine-resistant Djungarian hamster cell line. Blotting-hybridization with [32P]DNAc0t = 10-250 performed in the presence of the excess of unlabelled DNA from wild type cells reveals amplified sequences in resistant cell lines. The comparison of DNAs from cell lines resistant to colchicine, adriablastin and actinomycin D showed that common but not identical DNA sequences are amplified in these cases. In situ hybridization with [3H]DNAc0t = 10-250 indicates that amplified sequences are located in the long homogeneously staining regions (HSRs) of the marker chromosomes. These results suggest that DNAc0t = 10-250 may be used for screening of recombinant molecules containing amplified sequences.  相似文献   

19.
Cytochalasin D was found to reduce the endocytosis of ricin and the fluid phase markers [14C]sucrose and Lucifer Yellow in Vero cells without reducing the uptake of transferrin. The number of coated pits at the plasma membrane was not affected by the treatment. Cytochalasin D also reduced the endocytosis of ricin in cells where uptake of transferrin from coated pits was blocked by low cytosolic pH. Colchicine had a similar effect as cytochalasin D. Both drugs inhibited the exocytosis of ricin from the cells, and they reduced the rate by which ricin intoxicated the cells. Cytochalasin D had essentially no effect on the ability of the cells to bind transferrin, whereas colchicine reduced the binding to some extent. Epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA) increased the endocytic uptake of ricin in A431 cells both under normal culture conditions and when the coated pit/coated vesicle pathway was blocked by acidification of the cytosol. In contrast, EGF and TPA had no stimulatory effect on the uptake of transferrin at normal cytoplasmic pH, and they did not abolish the ability of low cytoplasmic pH to inhibit endocytic uptake of transferrin. The results indicate that cytochalasin D and colchicine selectively inhibit endocytic uptake from non-clathrin-coated areas of the cell membrane whereas EGF and TPA stimulate it. The data support the view that there are different endocytic mechanisms, and they indicate that at least in some cell types the non-clathrin-coated endocytosis can be modulated.  相似文献   

20.
B P Kopnin  A A Stavrovskaia 《Genetika》1979,15(12):2233-2236
The studies of the high level of colchicine resistance of mouse L cells have shown that two mutagens (EMS and NMM) do not induce cell variants resistant to 8 microgram/ml of colchicine in the population of mouse heteroploid L-53 cells (subline of L cells, the level of colchicine resistance 140) and that colchicine resistance of L-53 cells gradually diminishes when cells are propagated in non-selective conditions: after 1 month it diminishes 2-fold, after 3 month--9-fold. The extent of the decrease of the drug resistance was the same in 6 independent cultures obtained from the inoculum of 200 cells and in control cultures propagated by large quantities of cells. These data coincide with the results of the previous studies of lower level of colchicine resistance. In both studies the frequency of the occurrence of colchicine resistant variants in selective medium was about 2.10(-4). These data are consistent with the hypothesis that colchicine resistance of mouse L cells is not due to a gene mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号