首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat C6 glioma cultures were exposed to labelled sodium phosphate after treatment with NE with or without propanolol. Histones and non-histone proteins (NHP) were extracted from chromatin and there was no significant change in the specific activity of the total pool of histones and NHP between control and other two groups. However, after electrophoretic separation F2a2 histone showed a 60% increase while F2b and F3 histones exhibited a 40% decrease in phosphorylation in response to NE. There was no significant change in the gel pattern of NHP from different groups on SDS-PAGE. However, the 30k dalton NHP showed an increase in phosphorylation in response to NE and this increment was blocked by propanolol. The possible role of β-receptors on nuclear protein phosphorylation and genomic expression is discussed.  相似文献   

2.
Effects of increased levels of arachidonic acid (AA) were analyzed in vitro by employment of C6 glioma cells and astrocytes from primary culture. The cells were suspended in a physiological medium added with arachidonic acid (AA) in a concentration range from 0.01 to 0.5 mM. The concentration profiles of the fatty acid and AA-metabolited were subsequently followed for 90 min. AA was measured by gas chromatography, whereas the AA-metabolites PGF2 and LTB4 by radioimmunoassay (RIA). Following administration of AA at 0.05 or 0.1 mM the medium was completely cleared from the fatty acid within 10 to 15 min. However, when 0.5 mM were added, AA concentrations of 0.36±0.055 mM were found at 20 min, while 0.275±0.045 mM at 90 min. Addition of AA (0.1 mM) to cell-free medium was also associated with a steady decline of its concentration, although the decrease was markedly delayed as compared to the clearance in the presence of glial cells. AA was subjected to dose-dependent metabolisation in the cell suspension as demonstrated by the production of PGF2 and LTB4. Following addition of 0.01 or 0.5 mM, concentrations of PGF2 increased to a 1.9- or 4.9-fold level within 10 min, whereas those of LTB4 rose to a 1.3- or 33.7-fold level. This was attenuated or completely blocked, respectively, by the cyclo- and lipoxygenase inhibitor BW 755C. Formation of both metabolites from AA was also observed when studying astrocytes from primary culture. The current findings demonstrate an impressive efficacy of C6 glioma cells and astrocytes to clear arachidonic acid from the suspension medium and to convert the lipid compound into prostaglandins and leukotrienes. Uptake and metabolisation of AA by the glial elements may play an important role in vivo, for example in cerebral ischemia.  相似文献   

3.
Subcellular fractions from cultured C-6 glioma cells prepared by methods similar to those for crude synaptosomal fractions of rat cerebral cortex accumulated [35S]taurine as did intact glioma cells. Thus, the accumulation of taurine was dependent on temperature and sodium concentration and sensitive to osmotic shock. The kinetic properties of this uptake are characterized by an apparent Km, of about 25 μm, The properties of taurine uptake into subcellular fractions from C-6 glioma cells were compared with those of crude synaptosomal fractions and differences could be observed in temperature sensitivity and with metabolic inhibitors, which were less potent in the glioma preparation. Equilibrium density gradient centrifugation of subcellular fractions from glioma cells revealed that particles containing [35S]taurine sediment to a lower buoyant density than mitochondria. But on co-sedimentation of subcellular fractions from glioma cells with synaptosomal fractions derived from cerebral cortex, differences in the buoyant density between these two preparations could be found. The findings support the possibility of a contamination of synaptosomal fractions with subcellular fractions derived from glial origin.  相似文献   

4.
Changes in the size and dry mass of glioma C-6 intact cells in culture were investigated for 35-50 min at 5 min intervals by means of vital cytointerferometry. Rhythmic variations in the size, dry mass and protein concentration were thereby revealed in glioma cells. These variations fall into the category of circahoralian ones. While considerable variations in the cell area and dry mass were observed, changes in protein concentration were less pronounced. Addition of dibutyryl cylic AMP (db-cAMP), in a concentration of 10(-3) mol/l to the cultivation medium, produced no effect on the rhythm of the above parameters in glioma C-6 cells.  相似文献   

5.
High mobility group (HMG) proteins 14 and 17 of rat C6 glioma cells are phosphorylated invivo on both serine and threonine. In HMG 14 about 60% of the total [32P]phosphate was identified as phosphoserine and 40% as phosphothreonine. In HMG 17, there was 88% phosphoserine and 12% phosphothreonine. Glioma cell nuclear protein kinase NII phosphorylates HMG 14 and 17 invitro on serine as well as threonine and the relative percentages of [32P]phosphoamino acid are similar to those seen invivo. Nuclear protein kinase NI and the type I and II cAMP-dependent protein kinases exhibit only minor phosphorylating activity towards HMG 14 and 17. We conclude that nuclear protein kinase NII is responsible for the phosphorylation of HMG 14 and 17 invivo.  相似文献   

6.
The inhibitory effects of 4 retinoids, namely, retinal (Ral), retinoic acid (RA), retinyl acetate (RAc), and retinyl palmitate (RP), and 3 carotenoid including beta-carotene (BCT), lycopene (LCP), and crocetin (CCT) on the growth and DNA synthesis of rat C-6 glioma cells were studied. All the retinoids and carotenoids caused reduction of plating efficiency and inhibition of the cellular growth. RA was the most potent inhibitor of plating efficiency, followed in decreasing order by RAc, Ral, LCP, RP, BCT, and CCT. The effects of various doses of retinoids and carotenoids on the inhibition of DNA synthesis were clearly demonstrated in the growing C-6 glioma cells, whereas negligible effects of these compounds on the RNA and protein synthesis were observed. These results suggested that retinoids or carotenoids are biologically active as anti-tumor agents against brain tumor cells in culture, while carotenoids appeared to be less active.  相似文献   

7.
In this study, the effect of thyroid hormone (triiodothyronine, T(3)) on the secretion of mitogenic growth factors in astrocytes and C6 glioma cells was examined. The proliferating activity of T(3) could be due, at least in part, to the astrocyte secretion of acidic and basic fibroblast growth factor (aFGF and bFGF), tumor necrosis factor-beta, and transforming growth factor-beta. In contrast, the conditioned medium (CM) of T(3)-treated C6 cells was mitogenic to this cell line only after hyaluronidase digestion, suggesting the impairment of growth factor mitogenic activity by hyaluronic acid. Furthermore, the presence of bFGF was significantly greater in the CM of both T(3)-treated astrocytes and T(3)-treated C6 cells than in the corresponding control CM. These data show that T(3) induces cerebellar astrocytes to secrete mitogenic growth factors, predominantly bFGF, that could influence astrocyte and neuronal proliferation via autocrine and paracrine pathways.  相似文献   

8.
Cultured confluent rat astrocytes and C6 rat astrocytoma cells transport lysine with similar kinetic parameters. More than one transport mechanism may exist as suggested by discontinuities in the kinetic parameters. Sodium ion has a dual effect, being inhibitory between 1 and 10 mM and stimulatory between 30 and 137 mM. Exchange transport appears to be a minor component of lysine influx. The rate of transport into confluent cells is also affected by the recency of culture medium replacement, probably reflecting hormonal influences.  相似文献   

9.
Responsiveness to catecholamines was studied in two different strains of rat glioma C6 cells. The C6 cells of low passage possessed a high capacity to accumulate cyclic AMP in response to (-)-isoproterenol. Cholera toxin was also able to stimulate cyclic AMP accumulation in these cells. High passage C6 cells were unresponsive to (-)-isoproterenol or to cholera toxin except in the presence of a high concentration of phosphodiesterase inhibitor. The affinity of beta-adrenergic receptors on both strains for (-) [3H] dihydroalprenolol was similar; however, C6 low passage possessed several times the number of beta-adrenergic receptors found in C6 high passage. This difference correlated with the difference found in (-)-isoproterenol-stimulated adenylate cyclase between C6 low passage and high passage. The sodium fluoride-stimulated adenylate cyclase was similar in both strains. Cyclic AMP phosphodiesterase activity was 2-3 times higher in homogenates of C6 high passage than in low passage. In intact cells, the rate of breakdown of cyclic AMP was 5-times faster in C6 high passage than in low passage. Thus, differences in beta-adrenergic receptor number and phosphodiesterase activity explain in part the lack of responsiveness of C6 high passage. Our studies indicate that continuous subculturing of rat glioma C6 cells led to complex alterations in the beta-adrenergic receptor-adenylate cyclase system.  相似文献   

10.
The isolation and expansion of precursor cells in a serum-free culture system allows for the systematic characterization of their properties and the intrinsic and extrinsic signals that regulate their function. The discovery of neural stem cells in the adult mouse brain was made possible by the creation of a novel culture system subsequently termed the neurosphere assay. Therein, the dissociated adult mouse periventricular area was plated in the presence of epidermal growth factor, but in the absence of adhesive substrates, which resulted in the generation of spheres of proliferating cells that detached from the plate bottom and remained suspended in the media. Since its inception, the neurosphere culture system has been widely used in the neural precursor cell field and has been extensively adapted for the isolation and expansion of corneal, cardiac, skin, prostate, mammary and brain tumor stem cells. The original neurosphere culture protocol, which takes approximately 10 d to complete, is described here in detail.  相似文献   

11.
Cultured astrocytes and glioma cells in a confluent state do not have a constant cellular concentration of glutathione. After exposure of the cells to fresh culture medium, the glutathione content of both cell types rose sharply and after a few days, fell back. For the glioma cells, the glutathione rise was higher and earlier and the fall was sharper than that of the astrocytes. Glutathione added to the culture medium had little effect on the cellular content of glutathione of astrocytes except at the highest concentrations (1 mM). Exogenous glutathione did increase the glutathione content of glioma cells and appeared to have a toxic effect at the highest concentrations. Both cell types maintained a low, constant concentration of reduced glutathione in the medium and consumed the added excess.  相似文献   

12.
1. Cultured astrocytes cells release a variety of low and high molecular weight messenger substances and express proteins of the exocytotic pathway including synaptic SNARE proteins. For analyzing the molecular mechanisms of astrocytic messenger release, permanent cell lines with astrocytic properties would provide useful tools.2. We analyzed the potential of the human malignant astrocytoma-derived cell line U373 MG to express proteins involved in regulated exo- and endocytosis. An immunoblot analysis identified the astrocyte marker glial fibrillary acidic protein, microtubule-associated protein 2, the v-SNAREs VAMP I, VAMP II, and cellubrevin and the t-SN AREs syntaxin I, SNAP-23, and SNAP-25.3. The cells also express the secretory granule protein secretogranin II. Although secretogranin II immunofluorescence reveals larger fluorescence spots, the majority of the SNARE proteins is associated with smaller organelles. The immunofluorescence is distributed throughout the cytoplasm and accumulates at processes and the growing edges of cells.4. The organellar association of SNARE proteins was confirmed by heterologous expression of recombinant fusion proteins. Following subcellular fractionation organelles of lower buoyant density carried the majority of VAMP II. Secretogranin II was associated with organelles of high buoyant density containing a small contribution of VAMP II.5. The results suggest that U373 MG cells have in common a considerable number of properties with long-term cultured astrocytes rather than with cultured oligodendrocytes or neurons. They contain two types of organelles that can be physically separated and may be employed in the differential release of messengers.  相似文献   

13.
M Merle  I Pianet  P Canioni  J Labouesse 《Biochimie》1992,74(9-10):919-930
Rat astroglial cells in primary culture (95% enrichment) and C6 glioma cells were adapted to grow on microcarrier beads. In vivo 31P NMR spectra were collected from cell-covered beads perfused in the NMR tube. The NMR-visible phosphorylated metabolite contents of both cell types were determined using saturation factors calculated from the values of longitudinal relaxation times determined for C6 cells using progressive saturation experiments. On the other hand, the amounts of phosphorylated metabolites in cells were determined from proton decoupled 31P NMR spectra of cell perchloric acid extracts. The results indicate that the NTP and Pi contents of the normal and tumoral cells were similar, whereas the PCr level was higher in C6 cells and the NDP and phosphomonoester levels higher in astrocytes. The comparison of 1H NMR spectra of cell perchloric acid extracts evidenced larger inositol and alanine contents in C6 cells, whereas larger taurine and choline (and choline derivatives) contents were found in astrocytes. The Glu/Gln ratio was very different, 3.5 and 1 in C6 cells and astrocytes, respectively. In both cases, the more intense resonance in the 1H NMR spectrum was assigned to glycine. Based on the comparison of the metabolite content of a tumoral and a normal cell of glial origin, this work emphasizes the usefulness of a multinuclear NMR study in characterizing intrinsic differences between normal and tumoral cells.  相似文献   

14.
15.
Oxidative stress is implicated in a variety of disorders including neurodegenerative diseases, and H(2)O(2) is important in the generation of reactive oxygen and oxidative stress. In this study, we have examined the rate of extracellular H(2)O(2) elimination and relevant enzyme activities in cultured astrocytes and C6 glioma cells and have analyzed the results based on a mathematical model. As compared with other types of cultured cells, astrocytes showed higher activity of glutathione peroxidase (GPx) but lower activities for GSH recycling. C6 cells showed relatively low GPx activity, and treatment of C6 cells with dibutyryl-cAMP, which induces astrocytic differentiation, increased catalase activity and H(2)O(2) permeation rate but exerted little effect on other enzyme activities. A mathematical model [N. Makino, K. Sasaki, N. Hashida, Y. Sakakura, A metabolic model describing the H(2)O(2) elimination by mammalian cells including H(2)O(2) permeation through cytoplasmic and peroxisomal membranes: comparison with experimental data, Biochim. Biophys. Acta 1673 (2004) 149-159.], which includes relevant enzymes and H(2)O(2) permeation through membranes, was found to be fitted well to the H(2)O(2) concentration dependences of removal reaction with the permeation rate constants as variable parameters. As compared with PC12 cells as a culture model for neuron, H(2)O(2) removal activity of astrocytes was considerably higher at physiological H(2)O(2) concentrations. The details of the mathematical model are presented in Appendix.  相似文献   

16.
The relationship between cell density and the activity of 2':3'-cyclic nucleotide 3'-phosphohydrolase (CNP), an enzyme believed to be specific to oligodendroglial cells and myelin in the brain, has been studied in cultured C-6 glioma cells. Over a 12-day period, the specific activity of CNP underwent a 4-fold increase in conjunction with an increase in the cell density (total protein/flask) and a decline in the growth rate of the cultures. In contrast, the specific activity of Na+,K+-ATPase was not influenced by cell density. Experiments with cultures seeded at different initial densities indicated that the increase in CNP activity coincided with the attainment of a specific cell density rather than with the length of time that the cells were maintained in culture. Arrest of cell proliferation in non-confluent C-6 cells by means of thymidine blockade was not sufficient to cause an increase in the activity of CNP; however, removal of serum from the culture medium resulted in a 3-fold induction of the enzyme in the absence of a high degree of cell contact. The induction of CNP in cells maintained in serum-free medium paralleled the development of a series of distinct morphological changes reminiscent of glial differentiation, which occurred within 48 hours after removal of the serum. Inhibition of protein synthesis by cycloheximide prevented the induction of CNP in serum-free cultures. The demonstration that an enhancement of an oligodendroglial characteristic in C-6 glioma cells can be obtained by growing the cells to high density or by removing serum from the medium, provides further support for the suggestion that these cells may be analogous to the glial stem cells present in the developing brain.  相似文献   

17.
18.
Previous studies showed that the chemotherapeutic effect of temozolomide (TMZ) and vincristine (VCR) against glioma might be blunted by the co-culture with astrocytes, and connexin-43 (CX43) was thought to play a vital role in the communication between glioma cells and astrocytes. In this study, we aimed to investigate the combined chemotherapeutic effect of AS602801 and TMZ/ VCR in glioma cells both. Dye transfer assay was used to evaluate the gap junction activity between U251 cells and astrocytes. Western blot and immunohistochemistry were carried out to analyse the expression of p-JNK, CX43 and CASP-3 proteins treated under different conditions. AS602801 significantly suppressed the gap junction activity between U251 cells and astrocytes. The expression of p-JNK and CX43 was remarkably inhibited by AS602801. TMZ/VCR-induced apoptosis of glioma cells was effectively enhanced by AS602801 treatment. Accordingly, the inhibitory role of TMZ/VCR in the expression of p-JNK, CX43 and CASP-3 in glioma cells was notably restored by AS602801. Furthermore, in a glioma cell xenograft, AS602801 showed an apparent capability to enhance TMZ/VCR-induced tumour cell apoptosis through altering the expression of p-JNK, CX43 and CASP-3. The findings of this study demonstrated that the co-culture of glioma cells with astrocytes blunted the tumour killing effect of TMZ and VCR. AS602801 down-regulated CX43 expression by inhibiting JNK. And AS602801 also sensitized glioma cells to TMZ/VCR by blocking the gap junction communication between glioma cells and astrocytes via down-regulating CX43, indicating its potential role as a novel adjuvant chemotherapeutic agent in the treatment of glioma.  相似文献   

19.
Glioma glutamate release has been shown to promote the growth of glioma cells and induce neuronal injuries from epilepsy to neuronal death. However, potential counteractions from normal astrocytes against glioma glutamate release have not been fully evaluated. In this study, we investigated the glutamate/glutamine cycling between glioma cells and astrocytes and their impact on neuronal function. Co-cultures of glioma cells with astrocytes (CGA) in direct contact were established under different mix ratio of astrocyte/glioma. Culture medium conditioned in these CGAs were sampled for HPLC measurement, for neuronal ratiometric calcium imaging, and for neuronal survival assay. We found: (1) High levels of glutaminase expression in glioma cells, but not in astrocytes, glutaminase enables glioma cells to release large amount of glutamate in the presence of glutamine. (2) Glutamate levels in CGAs were directly determined by the astrocyte/glioma ratios, indicating a balance between glioma glutamate release and astrocyte glutamate uptake. (3) Culture media from CGAs of higher glioma/astrocyte ratios induced stronger neuronal Ca2+ response and more severe neuronal death. (4) Co-culturing with astrocytes significantly reduced the growth rate of glioma cells. These results indicate that normal astrocytes in the brain play pivotal roles in glioma growth inhibition and in reducing neuronal injuries from glioma glutamate release. However, as tumor growth, the protective role of astrocytes gradually succumb to glioma cells.  相似文献   

20.
C-6 glial cells were studied in culture with respect to morphological and biochemical changes under several experimental conditions. Doubling time was 33 hr for cells plated at either 0.5 or 1.0×106 cells per flask. Markedly reduced cell growth and astrocyte-like appearance were observed following dibutyryl cyclic AMP (DBcAMP) treatment. An inverse relationship between cell density and DNA, RNA, and protein content per cell was observed. AChE and BuChE activities were also inversely related to cell density, and treatment with DBcAMP increased enzyme activity, but did not alter the cell density relationship. Uptake of3H-norepinephrine also decreased with increasing cell density. In DBcAMP-treated cells,3H-NE uptake was markedly lower than in nontreated controls, and cortisol treatment decreased the uptake of3H-NE in DBcAMP-treated cells further still. We interpreted the foregoing changes to indicate that cellular activity is cell density-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号