首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the activation of a K+ current and inhibition of a Cl current by a cyanoguanidine activator of ATP-sensitive K+ channels (KATP) in the smooth muscle cell line A10. The efficacy of U83757, an analogue of pinacidil, as an activator of KATP was confirmed in single channel experiments on isolated ventricular myocytes. The effects of U83757 were examined in the clonal smooth muscle cell line A10 using voltage-sensitive dyes and digital fluorescent imaging techniques. Exposure of A10 cells to U83757 (10 nm to 1 m) produced a rapid membrane hyperpolarization as monitored by the membrane potential-sensitive dye bis-oxonol ([diBAC4(3)], 5 m). The U83757induced hyperpolarization was antagonized by glyburide and tetrapropylammonium (TPrA) but not by tetraethlylammonium (TEA) or charybdotoxin (ChTX). The molecular basis of the observed hyperpolarization was studied in whole-cell, voltage-clamp experiments. Exposure of voltage-clamped cells to U83757 (300 nm to 300 m) produced a hyperpolarizing shift in the zero current potential; however, the hyperpolarizing shift in reversal potential was associated with either an increase or decrease in membrane conductance. In solutions where E k=–82 mV and E Cl=0 mV, the reversal potential of the U83757-sensitive current was approximately –70 mV in those experiments where an increase in membrane conductance was observed. In experiments in which a decrease in conductance was observed, the reversal potential of the U83757-sensitive current was approximately 0 mV, suggesting that U83757 might be acting as a Cl channel blocker as well as a K+ channel opener. In experiments in which Cl current activation was specifically brought about by cellular swelling and performed in solutions where Cl was the major permeant ion, U83757 (300 nm to 300 m) produced a dose-dependent current inhibition. Taken together these results (i) demonstrate the presence of a K+-selective current which is sensitive to KATP channel openers in A10 cells and (ii) indicate that the hyperpolarizing effects of K+ channel openers in vascular smooth muscle may be due to both the inhibition of Cl currents as well as the activation of a K+-selective current.This work was supported in part by the following grants: PHS P01 DK44840 and GM36823 (D.J.N.). J.C.M. is an Established Investigator of the American Heart Association.  相似文献   

2.
Summary An electrogenic K+–Na+ symport with a high affinity for K+ has been found inChara (Smith & Walker, 1989). Under voltage-clamp conditions, the symport shows up as a change in membrane current upon adding either K+ or Na+ to the bathing medium in the presence of the other. Estimation of kinetic parameters for this transport has been difficult when using intact cells, since K+–Na+ current changes show a rapid falling off with time at K+ concentrations above 50 m. Cytoplasm-enriched cell fragments are used to overcome this difficulty since they do not show the rapid falling off of current change seen with intact cells. Current-voltage curves for the membrane in the absence or presence of either K+ or Na+ are obtained, yielding difference current-voltage curves which isolate the symport currents from other transport processes. The kinetic parameters describing this transport are found to be voltage dependent, withK m for K+ ranging from 30 down to 2 m as membrane potential varies from –140 to –400 mV, andK m for Na+ ranging between 470 and 700 m over a membrane potential range of –140 to –310 mV.Two different models for this transport system have been investigated. One of these involves the simultaneous transport of both the driver and substrate ions across the membrane, while the other allows for the possibility of the two ions being transported consecutively in two distinct reaction steps. The experimental results are shown to be consistent with either of these cotransport models, but they do suggest that binding of K+ occurs before that of Na+, and that movement of charge across the membrane (the voltage-dependent step) occurs when the transport protein has neither K+ nor Na+ bound to it.  相似文献   

3.
The dorsal skin of the leech Hirudo medicinalis was used for electrophysiological measurements performed in Ussing chambers. The leech skin is a tight epithelium (transepithelial resistance = 10.5±0.5 k· cm-2) with an initial short-circuit current of 29.0±2.9 A·cm-2. Removal of Na+ from the apical bath medium reduced short-circuit current about 55%. Ouabain (50mol·l-1) added to the basolateral solution, depressed the short-circuit current completely. The Na+ current saturated at a concentration of 90 mmol Na+·l-1 in the apical solution (K M=11.2±1.8 mmol·l-1). Amiloride (100 mol·l-1) on the apical side inhibited ca. 40% of the Na+ current and indicated the presence of Na+ channels. The dependence of Na+ current on the amiloride concentration followed Michaclis-Menten kinetics (K i=2.9±0.4 mol·l-1). The amiloride analogue benzamil had a higher affinity to the Na+ channel (K i=0.7±0.2 mol·l-1). Thus, Na+ channels in leech integument are less sensitive to amiloride than channels known from vertebrate epithelia. With 20 mmol Na+·l-1 in the mucosal solution the tissue showed an optimum amiloride-inhibitable current, and the amiloride-sensitive current under this condition was 86.8±2.3% of total short-circuit current. Higher Na+ concentrations lead to a decrease in amiloride-blockade short-circuit current. Sitmulation of the tissue with cyclic adenosine monophosphate (100 mol·l-1) and isobutylmethylxanthine (1 mmol·l-1) nearly doubled short-circuit current and increased amiloride-sensitive Na+ currents by 50%. By current fluctuation analysis we estimated single Na+ channel current (2.7±0.9 pA) and Na+ channel density (3.6±0.6 channels·m-2) under control conditions. After cyclic adenosine monophosphate stimulation Na+ channel density increased to 5.4±1.1 channels·m-2, whereas single Na+ channel current showed no significant change (1.9±0.2 pA). These data present a detailed investigation of an invertebrate epithelial Na+ channel, and show the similarities and differences to vertebrate Na+ channels. Whereas the channel properties are different from the classical vertebrate Na+ channel, the regulation by cyclic adenosine monophosphate seems similar. Stimulation of Na+ uptake by cyclic adenosine monophosphate is mediated by an increasing number of Na+ channels.Abbreviations slope of the background noise component - ADH antidiuretic hormone - cAMP cyclic adenosine monophosphate - f frequency - f c coner frequency of the Lorentzian noise component - Hepes N-hydroxyethylpiperazine-N-ethanesulphonic acid - BMX isobutyl-methylxanthine - i Na single Na+ channel current - I Na max, maximal inhibitable Na+ current - I SC short circuit current - K i half maximal blocker concentration - K M Michaelis constandard error of the mean - S (f) power density of the Lorentzian noise component - S 0 plateau value of the Lorentzian noise component - TMA tetramethylammonium - Trizma TRIS-hydroxymethyl-amino-methane - V max maximal reaction velocity - V T transepithelial potential - K half maximal blocker concentration  相似文献   

4.
Summary Patch-clamp and single cell [Ca2+] i measurements have been used to investigate the effects of the potassium channel modulators cromakalim, diazoxide and tolbutamide on the insulin-secreting cell line RINm5F. In intact cells, with an average cellular transmembrane potential of –62±2 mV (n=42) and an average basal [Ca2+] i of 102±6nm (n=37), glucose (2.5–10mm): (i) depolarized the membrane, through a decrease in the outward KATP current, (ii) evoked Ca2+ spike potentials, and (iii) caused a sharp rise in [Ca2+] i . In the continued presence of glucose both cromakalim (100–200 m) and diazoxide (100 m) repolarized the membrane, terminated Ca2+ spike potentials and attenuated the secretagogue-induced rise in [Ca2+] i . In whole cells (voltage-clamp records) and excised outside-out membrane patches, both cromakalim and diazoxide enhanced the current by opening ATP-sensitive K+ channels. Diazoxide was consistently found to be more potent than cromakalim. Tolbutamide, a specific inhibitor of ATP-sensitive K+ channels, reversed the effects of cromakalim on membrane potential and KATP currents.  相似文献   

5.
A toxic factor released from disrupted cells of Vibrio parahaemolyticus was partially purified by gel filtration after precipitation with (NH4)2SO4 at 40% saturation. The factor, which was a thermostable protein of 63 kDa, lysed human erythrocytes at a concentration of 0.15 g ml-1. Its LD50 by intravenous injection into mice was 6.4 g. Fluid accumulated in suckling mice force-fed with the toxic material (1 to 25 g). Haemolytic activity, which occurred maximall at 37°C and pH 7.0 was enhanced by Ca2+, Cu2+ and Zn2+, each at 1 mm. Anti-toxic-factor serum agglutinated V. parahaemolyticus cells. The factor may play a role in the pathogenesis of V. parahaemolyticus infections and in the host's defence mechanisms against infection by the microorganism.  相似文献   

6.
Summary Transport of the nucleoside analog cytosine-arabinoside (CAR) in transformed hamster cells in culture has been studied in conditions of minimal metabolic conversion. Uptake (zero-trans in) properties at 20°C over a limited range of CAR concentrations were characterized by aK m of 350 m and a maximal velocity (V) of 780 m·min–1 (V/K m =2.28 min–1). Equilibrium exchange at 20°C over a wider range of concentrations was best described by a saturable component with aK m of 500 m and av of 1230 m·min–1 (V/K m =2.26 min–1) and either a saturable component of highK m or a nonsaturable component ofk=0.3 min–1. For the saturable component, thev/K m values were similar in both procedures.CAR transport was inhibited by various metabolizable nucleosides. Uptake of some of these nucleosides was inhibited by CAR. CAR transport and uridine uptake were inhibited in a reversible but partially competitive fashion by high affinity probes like S-(p-nitrobenzyl-6-mercaptoinosine (NBMI) (K i <0.5nm) and in an irreversible fashion by SH reagents such as N-ethylmaleiimide (NEM). The organomercurialp-hydroxymercuribenzene sulfonate (pMBS) markedly stimulated transport of these nucleosides, but also markedly potentiated the inhibitory effects of either NBMI or NEM. These effects are interpreted either in terms of models which invoke allosteric properties or in terms of two transport systems which display distinct chemical susceptibilities to externally added probes.  相似文献   

7.
Summary We have studied current (I Str) through the Na, K pump in amphibian oocytes under conditions designed to minimize parallel undesired currents. Specifically,I Str was measured as the strophanthidin-sensitive current in the presence of Ba2–, Cd2+ and gluconate (in place of external Cl). In addition,I Str was studied only after the difference currents from successive applications and washouts of strophanthidin (Str) were reproducible. The dose-response relationship to Str in four oocytes displayed a meanK 0.5 of 0.4 m, with 2–5 m producing 84–93% pump' block. From baseline data with 12 Na+-preloaded oocytes, voltage clamped in the range [–170, +50 mV] with and without 2–5 m Str, the averageI Str depended directly onV m up to a plateau at 0 mV with interpolated zero current at –165 mV. In three oocytes, lowering the external [Na+] markedly decreased the voltage sensitivity ofI p , while producing only a small change in the maximal outwardI Str. In contrast, decreasing the external [K+] from 25 to 2.5mm reducedI Str at 0 mV without substantially affecting its voltage dependence. At K+ concentrations of 1mm, both the absolute value ofI Str at 0 mV and the slope conductance were reduced. In eight oocytes, the activation of the averagedI Str by [K+] o over the voltage interval [–30, +30 mV] was well fit by the Hill equation, with K=1.7±0.4mm andnH (the minimum number of K+ binding sites) =1.7±0.4. The results unequivocally establish that the cardiotonic-sensitive current ofRana oocytes displays only a positive slope conductance for [K+] o >1mm. There is therefore no need to postulate more than one voltage-sensitive step in the cycling of the Na, K pump under physiologic conditions. The effects of varying external Na+ and K+ are consistent with results obtained in other tissues and may reflect an ion-well effect.  相似文献   

8.
Summary [14C]Phthalate is transported into L1210 cells via two separate routes, an anion exchange system whose primary substrates are folate compounds, and a second less active system which is sensitive to bromosulfophthalein. When the principal uptake component was blocked by a specific irreversible inhibitor of this system, the remaining route (at pH 7.4) appeared to be saturable and was inhibited by several anions in addition to bromosulfophthalein (K i =2 m), including 8-anilino-1-naphthalein sulfonate (K i =25 m), unlabeled phthalate (K i =500 m), and chloride (K i =3500 m). A pronounced effect by pH was also observed. Influx and total uptake of phthalate both increased progressively with decreasing pH and reached values that were 20-fold higher at pH 6.0, compared with pH 7.4. This pH-dependent increase could be blocked, however, by the addition of compounds (nigericin and carbonylcyanidem-chlorophenylhydrazone) which, in combination, collapse proton gradients. Phthalate efflux was relatively insensitive to changes in extracellular pH but could be inhibited (up to 90%) by bromosulfophthalein. Several other anions also inhibited efflux, but to a lesser extent, while chloride, phthalate, lactate, glycolate and acetate enhanced efflux up to 1.8-fold. Efflux also increased at pH 6.0, but not at pH 7.5, upon addition of nigericin and carbonylcyanidem-chlorophenylhydrazone. These results suggest that phthalate is a nonphysiological substrate for a carrier system which mediates transport via an anion/H+ symport mechanism. This system is not the lactate/H+ symport carrier of L1210 cells since: (A) phthalate and lactate influx were inhibited to differing degrees by various anions; and (B) lactic anhydride inhibited the influx and efflux of lactate but had no effect on the transmembrane movement of phthalate. The specificity of this system suggests that its primary anion substrate may be chloride.  相似文献   

9.
Isolated embryos ofKarwinskia humboldtiana were cultured in vitro. The growth of embryos and development to plantlets on woody plant medium supplemented with indole-3-acetic acid 6.10-2 mol l–1, gibberellic acid (GA3) 3.10-2 mol l–1, and 6-benzylaminopurine (BA) 2 mol l–1 was obtained. Multiplication of shoots and rooting of excised shoots has been achieved. Callus formation on modified Murashige-Skoog medium supplemented with 1-naphthaleneacetic acid 10 mol l–1, GA3 14 mol l–1, and kinetin 5 mol l–1 on hypocotyls, or on root cultures on medium supplemented with 2.4-dichlorophenoxyacetic acid 10 mol l–1 and BA 10 mol l–1 was induced.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - TEM transmission electron microscopy  相似文献   

10.
Summary Glucose transport was studied in marine mussels of the genusMytilus. Initial observations, with intact animals and isolated gills, indicated that net uptake of glucose occurred in mussels by a carrier-mediated, Na+-sensitive process. Subsequent studies included use of brush-border membrane vesicles (BBMV) in order to characterize this transport in greater detail. The highest activity of Na+-dependent glucose transport was found in the brush-border membrane fractions used in this study, while basal-lateral membrane fractions contained the highest specific binding of ouabain. Glucose uptake into BBMV showed specificity for Na+, and concentrative glucose transport was observed in the presence of an inwardly directed Na+ gradient. There was a single saturable pathway for glucose uptake, with an apparentK t of 3 m in BBMV and 9 m in intact gills. The kinetics of Na+ activation of glucose uptake were sigmoidal, with apparent Hill coefficients of 1.5 in BBMV and 1.2 in isolated gills, indicating that more than one Na+ may be involved in the transport of each glucose. Harmaline inhibited glucose transport in mussel BBMV with aK i of 44 m. The uptake of glucose was electrogenic and stimulated by an inside-negative membrane potential. The substrate specificity in intact gills and BBMV resembled that of Na+-glucose cotransporters in other systems;d-glucose and -methyl glucopyranoside were the most effective inhibitors of Na+-glucose transport,d-galactose was intermediate in its inhibition, and there was little or no effect ofl-glucose,d-fructose, 2-deoxy-glucose, or 3-O-methyl glucose. Phlorizin was an effective inhibitor of Na+-glucose uptake, with an apparentK i of 154nm in BBMV and 21nm in intact gills. While the qualitative characteristics of glucose transport in the mussel gill were similar to those in other epithelia, the quantitative characteristics of this process reflect adaptation to the seawater environment of this animal.  相似文献   

11.
Summary Thiamin transport in human erythrocytes and resealed pink ghosts was evaluated by incubating both preparations at 37 or 20°C in the presence of [3H]-thiamin of high specific activity. The rate of uptake was consistently higher in erythrocytes than in ghosts. In both preparations, the time course of uptake was independent from the presence of Na+ and did not reach equilibrium after 60 min incubation. At concentrations below 0.5 m and at 37°C, thiamin was taken up predominantly by a saturable mechanism in both erythrocytes and ghosts. Apparent kinetic constants were: for erythrocytes,K m =0.12, 0.11 and 0.10 m andJ max=0.01, 0.02 and 0.03 pmol·l–1 intracellular water after 3, 15, and 30 min incubation times, respectively; for ghosts,K m =0.16 and 0.51 m andJ max=0.01 and 0.04 pmol·l–1 intracellular water after 15 and 30 min incubation times, respectively. At 20°C, the saturable component disappeared in both preparations. Erythrocyte thiamin transport was not influenced by the presence ofd-glucose or metabolic inhibitors. In both preparations, thiamin transport was inhibited competitively by unlabeled thiamin, pyrithiamin, amprolium and, to a lesser extent, oxythiamin, the inhibiting effect being always more marked in erythrocytes than in ghosts. Only approximately 20% of the thiamin taken up by erythrocytes was protein-(probably membrane-) bound. A similar proportion was esterified to thiamin pyrophosphate. Separate experiments using valinomycin and SCN showed that the transport of thiamin, which is a cation at pH 7.4, is unaffected by changes in membrane potential in both preparations.  相似文献   

12.
Summary Addition of 0.1–0.3 m A23187, a divalent cation ionophore, to human erythrocytes suspended in a 1.0mm 45Ca2+-containing buffer results in a small ( two fold) increase in [Ca2+] i , a significant decrease in osmotic fragility, and a decrease in intracellular K+ (100 mmoles/liter of cells to 70 mmoles/liter cells) without significant alteration of intracellular [Na+]. This decrease in [K+] i is associated with a significant decrease in packed cell volume and correlates directly with the observed alteration is osmotic fragility. Increasing extracellular K+ to 125mm prevents the A23187-induced changes in osmotic fragility, K+ content and cell volume, but does not prevent the ionophore-induced uptake of45Ca2+. Addition of 0.1–0.3 m A23187 to toad erythrocytes leads to an increase in45Ca2+ uptake comparable to that observed in human erythrocytes, but does not alter osmotic fragility, cell volume or K+ content. Higher concentrations of ionophore (3.0–10.0 m) cause a 30- to 50-fold increase in45Ca2+ uptake and concomitant change in K+ content, cell volume and osmotic fragility. These changes in cell properties can be prevented by increasing extracellular [K+] to 90mm. The difference in sensitivity of the two cell types to A23187 is attributed to the presence of additional intracellular calcium pools within toad erythrocytes that prevent an increase in cytoplasmic Ca2+ until Ca2+ uptake is increased substantially at the higher concentrations of A23187.  相似文献   

13.
Summary Ascorbic acid is essential for the formation of bone by osteoblasts, but the mechanism by which osteoblasts transport ascorbate has not been investigated previously. We examined the uptake ofl-[14C]ascorbate by a rat osteoblast-like cell line (ROS 17/2.8) and by primary cultures of rat calvaria cells. In both systems, cells accumulatedl-[14C]ascorbate during incubations of 1–30 min at 37°C. Unlike propionic acid, which diffuses across membranes in protonated form, ascorbic acid did not markedly alter cytosolic pH. Initial ascorbate uptake rate saturated with increasing substrate concentration, reflecting a high-affinity interaction that could be described by Michaelis-Menten kinetics (apparentK m =30±2 m andV max=1460±140 nmol ascorbate/g protein/min in ROS 17/2.8 cells incubated with 138mm extracellular Na+). Consistent with a stereoselective carrier-mediated mechanism, unlabeledl-ascorbate was a more potent inhibitor (IC50=30±5 m) ofl-[14C]ascorbate transport than wasd-isoascorbate (IC50=380±55 m). Uptake was dependent on both temperature and Na+, since it was inhibited by cooling to 4°C and by substitution of K+, Li+ or N-methyl-d-glucamine for extracellular Na+. Decreasing the external Na+ concentration lowered both the affinity of the transporter for ascorbate and the apparent maximum velocity of transport. We conclude that osteoblasts possess a stereoselective, high-affinity, Na+-dependent transport system for ascorbate. This system may play a role in the regulation of bone formation.  相似文献   

14.
Summary We studied the effects of lanthanum (La3+) on the release of 3H-norepinephrine(3H-NE), intracellular Ca2+ concentration, and voltage clamped Ca2+ and K+ currents in cultured sympathetic neurons. La3+ (0.1 to 10 m) produced concentration-dependent inhibition of depolarization induced Ca2+ influx and 3H-NE release. La3+ was more potent and more efficacious in blocking 3H-NE release than the Ca2+-channel blockers cadmium and verapamil, which never blocked more than 70% of the release. At 3 m, La3+ produced a complete block of the electrically stimulated rise in intracellular free Ca2+ ([Ca2+] i ) in the cell body and the growth cone. The stimulation-evoked release of 3H-NE was also completely blocked by 3 m La3+. However, 3 m La3+ produced only a partial block of voltage clamped Ca2+ current (I Ca). Following La3+ (10 m) treatment 3H-NE release could be evoked by high K+ stimulation of neurons which were refractory to electrical stimulation. La3+ (1 m) increased the hyperpolarization activated, 4-aminopyridine (4-AP) sensitive, transient K+ current (I A ) with little effect on the late outward current elicited from depolarized holding potentials. We conclude that the effective block of electrically stimulated 3H-NE release is a result of the unique ability of La3+ to activate a stabilizing, outward K+ current at the same concentration that it blocks inward Ca2+ current.  相似文献   

15.
The effect of the nucleoside-peptide antibiotics nikkomycin Z, nikkomycin X, and polyoxin A was tested on chitosomal chitin synthetase from yeast cells of the dimorphic fungus Mucor rouxii. The K i was 0.6 M for polyoxin A and 0.5 M for nikkomycin X; nikkomycin Z was slightly less inhibitory (K i=3.5M). Whereas the minimum inhibitory concentrations of the nikkomycins for growth and germination were quite low (about 1M, or lower), polyoxin A displayed no antifungal activity against yeast cells and sporangiospores of the test organism, even when present in high concentrations. These results are discussed with respect to structure/activity relationships.Abbreviations MIC minimum inhibitory concentration (i.e. concentration required to completely suppress growth: cf. Drews, 1979) - GlcNAc N-acetyl-d-glucosamine - UDP-GlcNAc uridine 5-diphospho-N-acetyl-d-glucosamine Metabolic products of microorganisms. 202. H. P. Kaiser and W. Keller-Schierlein: Strukturaufklärung von Elaiophylin: Spektroskopische Untersuchungen und Abbau. Helv. Chim. Acta 64: 407–424 (1981)  相似文献   

16.
Summary Delta endotoxin, a 68 kilodalton protein isolated fromBacillus thuringiensis spp.Kurstaki, is a potent entomocidal agent that alters a K+ current across midgut tissue of many phytophagous insects. This toxin completely inhibited the vanadate-sensitive86Rb+ uptake and mimicked the vanadate-induced decrease in cytosolic pH in a cell line (CHE) originating fromManduca sexta embryonic tissue. The toxin also inhibited a K+-sensitive-ATPase in the plasma membranes isolated from these cells. Using the K+-sensitive-ATPase substratp-nitrophenyl phosphate, delta endotoxin was found to have aK i of 0.4 m. These data suggest that the toxin inhibits a K+-ATPase responsible for86Pb+ uptake in the CHE cells. The relationship between the toxin inhibition of K+-ATPase and toxin-altered K+ current is discussed.  相似文献   

17.
Summary Marine mussels can accumulate amino acids from seawater into the epithelial cells of the gill against chemical gradients in excess of 5×106 to 1. Uptake of both alanine and taurine into gill tissue isolated fromMytilus californianus was found to be dependent upon Na+ in the external solution. Uptake of these amino acids was described by Michaelis-Menten kinetics, and a reduction in external [Na+] (from 425 to 213mm) increased the apparent Michaelis constants (alanine, from 8 to 17 m; taurine, from 4 to 39 m) without a significant influence on theJ max's of these processes. Fivemm harmaline, an inhibitor of Na-cotransport processes in many systems, reduced both alanine and taurine uptake by more than 95%; this inhibition appeared to be competitive in nature, with an apparentK i of 43 m for the interaction with alanine uptake. Increasing the external [Na+] from 0 to 510mm produced a sigmoid activation of alanine and taurine uptake withK Na's of approximately 325mm. The apparent Hill coefficients for this activation were 7.3 and 7.4 for alanine and taurine, respectively. These data are consistent with uptake mechanisms which require comparatively high concentrations of Na+ to activate transport, and which couple several Na+ ions to the transport of each amino acid. These characteristics, in conjunction with the previously demonstrated low passive permeability of the apical membrane to amino acids, result in systems capable of i) accumulating amino acids from seawater to help meet the nutritional needs of this animal, and ii) maintaining the high intracellular amino-acid concentrations associated with volume regulation in the gill.  相似文献   

18.
The kinetics of sodium dependency of GABA uptake by satellite glial cells was studied in bullfrog sympathetic ganglia. GABA uptake followed simple Michaelis-Menten kinetics at all sodium concentrations tested. Increasing external sodium concentration increased bothK m andV max for GABA uptake, with an increase in theV max/K m ratio. The initial rate of uptake as a function of the sodium concentration exhibited sigmoid shape at 100 M GABA. Hill number was estimated to be 2.0. Removal of external potassium ion or 10 M ouabain reduced GABA uptake time-dependently. The effect of ouabain was potentiated by 100 M veratrine. These results suggest that at least two sodium ions are involved with the transport of one GABA molecule and that sodium concentration gradient across the plasma membrane is the main driving force for the transport of GABA. The essential sodium gradient may be maintained by Na+, K+-ATPase acting as an ion pump.  相似文献   

19.
Summary In jejunal brush-border membrane vesicles, an outwardly directed OH gradient (in>out) stimulates DIDS-sensitive, saturable folate (F) uptake (Schron, C.M. 1985.J. Clin. Invest. 76:2030–2033), suggesting carrier-mediated folate: OH exchange (or phenomenologically indistinguishable H+: folate cotransport). In the present study, the precise role of pH in the transport process was elucidated by examining F uptake at varying pH. For pH gradients of identical magnitude, F uptake (0.1 M) was greater at lower (pHint/pHext: 5.5/4.5) compared with higher (6.5/5.5) pH ranges. In the absence of a pH gradient, internal Ftrans stimulated DIDS-sensitive3H-folate uptake only at pH6.0. Since stepwise increments ininternal pH (4.57.5; pHext=4.5) stimulated F uptake, an inhibitory effect of higherinternal pH was excluded. In contrast, with increasing external pH (4.356.5; pHint=7.8), a 50-fold decrement in F uptake was observed (H+ K m =12.8±1.2 M). Hill plots of these data suggest involvement of at least one H+ (OH) at low pH (monovalent F predominates) and at least 2 H+ (OH) at high pH (divalent F–2 predominates). Since an inside-negative electrical potential did not affect F uptake at either pHext 4.55 or 5.8, transport of F and F–2 is electroneutral. Kinetic parameters for F and F–2 were calculated from uptake data at pHext 4.55 and 5.0. Comparison of predictedvs. experimentally determined kinetic parameters at pHext5.8 (K m =1.33vs. 1.70 M;V max=123.8vs. 58.0 pmol/mg prot min) suggest that increasing external pH lowers theV max, but does not affect theK m for carrier-mediated F transport. These data are consistent with similarK i ' s for sulfasalazine (competitive inhibitor) at pHext 5.35 and 5.8 (64.7 and 58.5 M, respectively). In summary, the jejunal F carrier mediates electroneutral transport of mono- and divalent F and is sensitive to external pH with a H+ K m (or OH lC50) corresponding to pH 4.89. External pH effects theV max, but not theK m for carriermediated F uptake suggesting a reaction mechanism involving a ternary complex between the outward-facing conformation of the carrier and the transported ions (F and either OH or H+),rather than competitive binding that is mutually exclusive.  相似文献   

20.
Summary Cerebral capillaries from porcine brain were isolated. and endothelial cells were grown in primary culture. The whole-cell tight seal patch-clamp method was applied to freshly isolated single endothelial cells, and cells which were held in culture up to one week. With high K+ solution in the patch pipette and in the bath we observed inward-rectifying K+ currents, showing a time-dependent decay in part of the experiments. Ba2+ (1–10mm) in the bath blocked this current, whereas outside tetraethylammonium (10mm) decreased the peak current but increased the steady-state current. Addition of 1 m of angiotensin II or of arginine-vasopressin to the extracellular side caused a time-dependent inhibition of the inward-rectifying K+ current in part of the experiments. Addition of 100 m GTP[-S] to the patch pipette blocked the K+ inward rectifier. In cell-attached membrane patches two types of single inward-rectifying K+ channels were observed, with single channel conductances of 7 and 35 pS. Cell-attached patches were also obtained at the antiluminal membrane of intact isolated cerebral capillaries. Only one type of K+ channel withg=30 pS was recorded. In conclusion, inwardly rectifying K+ channels, which can be inhibited by extracellular angiotensin II and arginine-vasopressin, are present in cerebral capillary endothelial cells. The inhibition of this K+ conductance by GTP[-S] indicates that G-proteins are involved in channel regulation. It is suggested that angiotensin II and vasopressin regulate K+ transport across the blood-brain barrier, mediating their effects via G-proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号