首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ferric uptake regulator (Fur) is a metal-dependent DNA-binding protein that acts as both a repressor and an activator of numerous genes involved in maintaining iron homeostasis in bacteria. It has also been demonstrated in Vibrio cholerae that Fur plays an additional role in pathogenesis, opening up the potential of Fur as a drug target for cholera. Here we present the crystal structure of V. cholerae Fur that reveals a very different orientation of the DNA-binding domains compared with that observed in Pseudomonas aeruginosa Fur . Each monomer of the dimeric Fur protein contains two metal binding sites occupied by zinc in the crystal structure. In the P. aeruginosa study these were designated as the regulatory site (Zn1) and structural site (Zn2). This V. cholerae Fur study, together with studies on Fur homologues and paralogues, suggests that in fact the Zn2 site is the regulatory iron binding site and the Zn1 site plays an auxiliary role. There is no evidence of metal binding to the cysteines that are conserved in many Fur homologues, including Escherichia coli Fur. An analysis of the metal binding properties shows that V. cholerae Fur can be activated by a range of divalent metals.  相似文献   

2.
Promoter regions of the mcy operon from Microcystis aeruginosa PCC7806, which is responsible for microcystin synthesis in this organism, exhibit sequences that are similar to the sequences recognized by Fur (ferric uptake regulator). This DNA-binding protein is a sensor of iron availability and oxidative stress. In the presence of Fe(2+), a dimer of Fur binds the iron-boxes in their target genes, repressing their expression. When iron is absent the expression of those gene products is allowed. Here, we show that Fur from M. aeruginosa binds in vitro promoter regions of several mcy genes, which suggests that Fur might regulate, among other factors, microcystin synthesis. The binding affinity is increased by the presence of metal and DTT, suggesting a response to iron availability and redox status of the cell.  相似文献   

3.
Pseudomonas aeruginosa is considered a strict aerobe that possesses several enzymes important in the disposal of toxic oxygen reduction products including iron- and manganese-cofactored superoxide dismutase and catalase. At present, the nature of the regulation of these enzymes in P. aeruginosa Is not understood. To address these issues, we used two mutants called A4 and C6 which express altered Fur (named for ferric uptake regulation) proteins and constitutively produce the siderophores pyochelin and pyoverdin. Both mutants required a significant lag phase prior to log-phase aerobic growth, but this lag was not as apparent when the organisms were grown under microaerobic conditions. The addition of iron salts to mutant A4 and, to a greater extent, C6 cultures allowed for an increased growth rate under both conditions relative to that of bacteria without added iron. Increased manganese superoxide dismutase (Mn-SOD) and decreased catalase activities were also apparent in the mutants, although the second catalase, KatB, was detected in cell extracts of each fur mutant. Iron deprivation by the addition of the iron chelator 2,2'-dipyridyl to wild-type bacteria produced an increase in Mn-SOD activity and a decrease in total catalase activity, similar to the fur mutant phenotype. Purified wild-type Fur bound more avidly than mutant Fur to a PCR product containing two palindromic 19-bp "iron box" regions controlling expression of an operon containing the sodA gene that encodes Mn-SOD. All mutants were defective in both ferripyochelin- and ferripyoverdin-mediated iron uptake. Two mutants of strain PAO1, defective in pyoverdin but not pyochelin biosynthesis, produced increased Mn-SOD activity. Sensitivity to both the redox-cycling agent paraquat and hydrogen peroxide was greater in each mutant than in the wild-type strain. In summary, the results indicate that mutations in the P. aeruginosa fur locus affect aerobic growth and SOD and catalase activities in P. aeruginosa. We postulate that reduced siderophore-mediated iron uptake, especially that by pyoverdin, may be one possible mechanism contributing to such effect.  相似文献   

4.
铁是大多数生物必需的微量元素,在健康和疾病,尤其是宿主-病原菌互作过程中发挥着至关重要的作用.细菌胞内铁离子浓度的高低不仅是调节自身高亲和力铁运输系统表达的信号,更是病原菌产生毒素和其他必要毒力因子的关键调控因素.而另一方面,超负荷的铁也会导致致命的细胞毒性.因此,生物体内铁稳态的维持受到严格控制,其中以铁摄取调节蛋白(ferric uptake regulator,Fur)的作用最为显著,其调控网络涵盖了细菌生命活动的各个方面.本综述将基于Fur的生物学功能,围绕其家族分类、结构特点和差异、调控网络和调控机制等方面进行总结和分析,以期为Fur和铁稳态调节等研究提供参考.  相似文献   

5.
6.
The recent identification of the iron response regulator (Irr) in Bradyrhizobium japonicum raised the question of whether the global regulator Fur is present in that organism. A fur gene homolog was isolated by the functional complementation of an Escherichia coli fur mutant. The B. japonicum Fur bound to a Fur box DNA element in vitro, and a fur mutant grown in iron-replete medium was derepressed for iron uptake activity. Thus, B. japonicum expresses at least two regulators of iron metabolism.  相似文献   

7.
Iron homeostasis is, in many bacterial species, mediated by the ferric uptake regulator (Fur). A regulatory site able to bind iron to activate Fur for DNA binding has been described, and a structural zinc site essential for the dimerization has also been proposed. They have been localized and named site 1 and site 2, respectively, from the crystal structure of a zinc-substituted Pseudomonas aeruginosa Fur (PA-Fur). Notwithstanding the studies on Fur proteins from various species, both the precise site of iron binding and the effect on DNA binding affinity are still controversial. These issues were investigated here by molecular dynamics simulations and free energy calculations. Simulations were performed for eight molecular systems represented by the three forms of Fur, that is, apo Fur, metal-substituted Fur, and Fur complexed with DNA. Because of the lack of a Fur-DNA complex crystal structure, the recently published model based on mass spectrometry experiments on Escherichia coli Fur (EC-Fur), and the crystal structure of PA-Fur, was used, after adjustment to adopt a symmetric conformation. The simulation results suggest that the formerly proposed site 2 is, in fact, the regulatory iron-sensing site. The calculations also predict that Fe(2+) at site 2 is hexacoordinated having an octahedral environment with only nitrogen and oxygen atoms, which is in accordance with previous spectroscopic characterizations. Energy decomposition pinpoints H87 as an additional amino acid that defines the regulatory metal site. Finally, free energy decomposition analysis reveals a number of amino acids potentially important in dimerization and in DNA binding.  相似文献   

8.
9.
10.
C R Dean  S Neshat    K Poole 《Journal of bacteriology》1996,178(18):5361-5369
PfeR (Regulator) and PfeS (Sensor), members of the superfamily of so-called two-component regulatory protein pairs, are required for the enterobactin-inducible production of the ferric enterobactin receptor (PfeA) in Pseudomonas aeruginosa. A pfeR knockout mutant failed to demonstrate enterobactin-inducible expression of a pfeA-lacZ fusion, indicating that PfeR acts at the level of pfeA gene expression. Consistent with this, PfeR overexpressed in P. aeruginosa bound, in bandshift assays, the promoter region of pfeA. Such binding was enhanced when PfeR-containing extracts were prepared from cells cultured in the presence of enterobactin, consistent with a model of PfeR as an enterobactin-responsive activator of pfeA expression. A region showing homology to the consensus binding sequence for the global iron repressor Fur was identified upstream of pfeR, suggesting that the pfeRS operon is iron regulated. As expected, expression of a pfeR-lacZ fusion in P. aeruginosa was increased under conditions of iron limitation. Enterobactin failed, however, to provide any enhancement of pfeR-lacZ expression under iron-limiting conditions, indicating that PfeR does not positively regulate pfeRS expression. A pfeA knockout mutant demonstrated enterobactin-inducible expression of a pfeA-lacZ fusion, indicating that the receptor is not required for the enterobactin inducibility of pfeA gene expression. Such mutants show growth, albeit reduced, in enterobactin-supplemented iron-limiting minimal medium, indicating that a second route of uptake across the outer membrane exists for ferric enterobactin in P. aeruginosa and may be important for the initial induction of pfeA in response to enterobactin.  相似文献   

11.
12.
13.
The ferric uptake regulator, Fur, represses iron uptake and siderophore biosynthetic genes under iron-replete conditions. Here we report in vitro solution studies on Vibrio anguillarum Fur binding to the consensus 19-bp Escherichia coli iron box in the presence of several divalent metals. We found that V. anguillarum Fur binds the iron box in the presence of Mn(2+), Co(2+), Cd(2+), and to a lesser extent Ni(2+) but, unlike E. coli Fur, not in the presence of Zn(2+). We also found that V. anguillarum Fur contains a structural zinc ion that is necessary yet alone is insufficient for DNA binding.  相似文献   

14.
15.
16.
Oh M  Chai SH  Wee S 《Molecules and cells》1999,9(5):517-525
Fur (ferric uptake regulation) binding fragments were isolated by in vitro binding of purified Fur protein with Sau3AI-digested genomic DNA fragments. The Fur-bound DNA fragments were filtered on nitrocellulose paper, isolated, cloned, and sequenced. The protein binding was confirmed by gel retardation assay for five DNA fragments. The sequence data were used to identify the genes by comparison with the GenBank data. The proposed Fur binding regions lie on or near the putative promoter regions of marAB (multiple antibiotic resistance), pyrC (dihydroorotase), mreB (mecillinam resistance) and an unidentified gene (ecouw93) near argI and in the middle of the treBC (trehalose permease enzyme II) coding region. The proposed Fur binding sites of the known iron regulating operators including the genes of this work are AAT(pyrimidine) and A(purine)TT. The two conserved sequences are 10 bases apart and palindromic to each other, which might suggest the classical pattern of protein binding toward one side of the DNA in contrast to the concept of the Fur protein wrapping around the DNA.  相似文献   

17.
A 5.9-kb DNA fragment was cloned from Pseudomonas aeruginosa PA103 by its ability to functionally complement a fur mutation in Escherichia coli. A fur null mutant E. coli strain that contains multiple copies of the 5.9-kb DNA fragment produces a 15-kDa protein which cross-reacts with a polyclonal anti-E. coli Fur serum. Sequencing of a subclone of the 5.9-kb DNA fragment identified an open reading frame predicted to encode a protein 53% identical to E. coli Fur and 49% identical to Vibrio cholerae Fur and Yersinia pestis Fur. While there is extensive homology among these Fur proteins, Fur from P. aeruginosa differs markedly at its carboxy terminus from all of the other Fur proteins. It has been proposed that this region is a metal-binding domain in E. coli Fur. A positive selection procedure involving the isolation of manganese-resistant mutants was used to isolate mutants of strain PA103 that produce altered Fur proteins. These manganese-resistant Fur mutants constitutively produce siderophores and exotoxin A when grown in concentrations of iron that normally repress their production. A multicopy plasmid carrying the P. aeruginosa fur gene restores manganese susceptibility and wild-type regulation of exotoxin A and siderophore production in these Fur mutants.  相似文献   

18.
19.
20.
In Agrobacterium tumefaciens, the balance between acquiring enough iron and avoiding iron-induced toxicity is regulated in part by Fur (ferric uptake regulator). A fur mutant was constructed to address the physiological role of the regulator. Atypically, the mutant did not show alterations in the levels of siderophore biosynthesis and the expression of iron transport genes. However, the fur mutant was more sensitive than the wild type to an iron chelator, 2,2'-dipyridyl, and was also more resistant to an iron-activated antibiotic, streptonigrin, suggesting that Fur has a role in regulating iron concentrations. A. tumefaciens sitA, the periplasmic binding protein of a putative ABC-type iron and manganese transport system (sitABCD), was strongly repressed by Mn(2+) and, to a lesser extent, by Fe(2+), and this regulation was Fur dependent. Moreover, the fur mutant was more sensitive to manganese than the wild type. This was consistent with the fact that the fur mutant showed constitutive up-expression of the manganese uptake sit operon. Fur(At) showed a regulatory role under iron-limiting conditions. Furthermore, Fur has a role in determining oxidative resistance levels. The fur mutant was hypersensitive to hydrogen peroxide and had reduced catalase activity. The virulence assay showed that the fur mutant had a reduced ability to cause tumors on tobacco leaves compared to wild-type NTL4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号