首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One current theory of the Golgi apparatus views its organization as containing both a matrix fraction of structural proteins and a reservoir of cycling enzymes. During mitosis, the putative matrix protein GM130 is phosphorylated and relocalized to spindle poles. When the secretory pathway is inhibited during interphase, GM130 redistributes to regions adjacent to vesicle export sites on the endoplasmic reticulum (ER). Strikingly, meiotic maturation and fertilization in nonrodent mammalian eggs presents a unique experimental environment for the Golgi apparatus, because secretion is inhibited until after fertilization, and because the centrosome is absent until introduced by the sperm. Here, we test the hypothesis that phosphorylated GM130 associates not with meiotic spindle poles, but with ER clusters in the mature bovine oocyte. At the germinal vesicle stage, phosphorylated GM130 is observed as fragments dispersed throughout the cytoplasm. During meiotic maturation, GM130 reorganizes into punctate foci that associate near the ER-resident protein calreticulin and is notably absent from the meiotic spindle. GM130 colocalizes with Sec23, a marker for ER vesicle export sites, but not with Lens culinaris agglutinin, a marker for cortical granules. Because disruption of vesicle transport has been shown to block meiotic maturation and embryonic cleavage in some species, we also test the hypothesis that fertilization and cytokinesis are inhibited with membrane trafficking disruptor brefeldin A (BFA). Despite Golgi fragmentation after BFA treatment, pronuclei form and unite, and embryos cleave and develop through the eight-cell stage. We conclude that, while the meiotic phosphorylation cycle of GM130 mirrors that of mitosis, absence of a maternal centrosome precludes Golgi association with the meiotic spindle. Fertilization introduces the sperm centrosome that can reorganize Golgi proteins, but neither fertilization nor cytokinesis prior to compaction requires a functional Golgi apparatus.  相似文献   

2.
Numerous Golgi-resident enzymes implicated in glycosylation are regulated by the conserved intramembrane protease SPPL3. SPPL3-catalyzed endoproteolysis separates Golgi enzymes from their membrane anchors, enabling subsequent release from the Golgi and secretion. Experimentally altered SPPL3 expression changes glycosylation patterns, yet the regulation of SPPL3-mediated Golgi enzyme cleavage is not understood and conflicting results regarding the subcellular localization of SPPL3 have been reported. Here, we used precise genome editing to generate isogenic cell lines expressing N- or C-terminally tagged SPPL3 from its endogenous locus. Using these cells, we conducted co-localization analyses of tagged endogenous SPPL3 and Golgi markers under steady-state conditions and upon treatment with drugs disrupting Golgi organization. Our data demonstrate that endogenous SPPL3 is Golgi-resident and found predominantly in the mid-Golgi. We find that endogenous SPPL3 co-localizes with its substrates but similarly with non-substrate type II proteins, demonstrating that in addition to co-localization in the Golgi other substrate-intrinsic properties govern SPPL3-mediated intramembrane proteolysis. Given the prevalence of SPPL3-mediated cleavage among Golgi-resident proteins our results have important implications for the regulation of SPPL3 and its role in the organization of the Golgi glycosylation machinery.  相似文献   

3.
《The Journal of cell biology》1989,109(4):1439-1444
We have previously shown that Xenopus oocytes arrested at second meiotic metaphase lost their characteristic multicisternal Golgi apparati and cannot secrete proteins into the surrounding medium. In this paper, we extend these studies to ask whether intracellular transport events affecting the movement of secretory proteins from the endoplasmic reticulum to the Golgi apparatus are also similarly inhibited in such oocytes. Using the acquisition of resistance to endoglycosidase H (endo H) as an assay for movement to the Golgi, we find that within 6 h, up to 66% of the influenza virus membrane protein, hemagglutinin (HA), synthesized from injected synthetic RNA, can move to the Golgi apparati in nonmatured oocytes; indeed after longer periods some correctly folded HA can be detected at the cell surface where it distributes in a nonpolarized fashion. In matured oocytes, up to 49% of the HA becomes endo H resistant in the same 6-h period. We conclude that movement from the endoplasmic reticulum to the Golgi can occur in matured oocytes despite the dramatic fragmentation of the Golgi apparati that we observe to occur on maturation. This observation of residual protein movement during meiotic metaphase contrasts with the situation at mitotic metabphase in cultured mammalian cells where all movement ceases, but resembles that in the budding yeast Saccharomyces cerevisiae where transport is unaffected.  相似文献   

4.
Brefeldin A (BFA) is a lactone antibiotic synthesized from palmitic acid by several fungi that could block anterograde transport of proteins from endoplasmic reticulum to Golgi apparatus by reversible disruption of the Golgi complex. Previous investigations have shown that BFA induces the apoptosis of cancer cells in mitosis and impairs asymmetric spindle positioning in meiosis. Here, we document that exposure to BFA in porcine oocytes compromises the meiotic maturation via disrupting both nuclear and cytoplasmic maturation. We found that BFA exposure collapsed the cytoskeleton assembly by showing the aberrant spindle organization with misaligned chromosomes and defective actin dynamics. Furthermore, the distribution of both mitochondria and cortical granules (CGs), two important indexes of cytoplasmic maturation of oocytes, was disturbed following BFA exposure. We finally validated that the localization of ovastacin, a component of CGs that is essential for the postfertilization removal of sperm-binding sites in the zona pellucida, was also perturbed in BFA-exposed oocytes, which might weaken their fertilization capacity. Collectively, these findings indicate that Golgi-mediated protein transport is indispensable for the porcine oocyte meiotic maturation.  相似文献   

5.
Many proteins require N-linked glycosylation for conformational maturation and interaction with their molecular chaperones. In Drosophila, rhodopsin (Rh1), the most abundant rhodopsin, is glycosylated in the endoplasmic reticulum (ER) and requires its molecular chaperone, NinaA, for exit from the ER and transport through the secretory pathway. Studies of vertebrate rhodopsins have generated several conflicting proposals regarding the role of glycosylation in rhodopsin maturation. We investigated the role of Rh1 glycosylation and Rh1/NinaA interactions under in vivo conditions by analyzing transgenic flies expressing Rh1 with isoleucine substitutions at each of the two consensus sites for N-linked glycosylation (N20I and N196I). We show that Asn(20) is the sole site for glycosylation. The Rh1(N20I) protein is retained within the secretory pathway, causing an accumulation of ER cisternae and dilation of the Golgi complex. NinaA associates with nonglycosylated Rh1(N20I); therefore, retention of nonglycosylated rhodopsin within the ER is not due to the lack of Rh1(N20I)/NinaA interaction. We further show that Rh1(N20I) interferes with wild type Rh1 maturation and triggers a dominant form of retinal degeneration. We conclude that during maturation Rh1 is present in protein complexes containing NinaA and that Rh1 glycosylation is required for transport of the complexes through the secretory pathway. Failure of this transport process leads to retinal degeneration.  相似文献   

6.
We have studied the transport of the Uukuniemi virus membrane glycoproteins in baby hamster kidney and chick embryo cells by using a temperature-sensitive mutant (ts12). Uukuniemi virus assembles in the Golgi complex, where both glycoproteins G1 and G2 and nucleocapsid protein N accumulate (E. Kuismanen, B. B?ng, M. Hurme, and R. F. Pettersson, J. Virol. 51:137-146, 1984). At the restrictive temperature (39 degrees C), the glycoproteins of ts12 were transported to the Golgi complex as in wild-type, virus-infected cells, whereas the nucleocapsid protein failed to accumulate there. Pulse-chase labeling followed by immunoprecipitation and treatment with endo-beta-N-acetylglucosaminidase H showed that G1 synthesized at 39 degrees C in ts12-infected cells had an altered mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting a lack of terminal glycosylation. The typical Uukuniemi virus-induced vacuolization and expansion of the Golgi complex could be seen also in ts12-infected cells at 39 degrees C, although no virus particles were formed. This suggests that the morphological changes were induced by the Uukuniemi virus glycoproteins. In wild-type virus- or ts12-infected cells, G1 and G2 could not be chased out from the Golgi complex even after 6 h of treatment with cycloheximide. The glycoproteins were thus retained in the Golgi even under conditions when no virus maturation took place and when nucleocapsids did not accumulate in the Golgi region. Accordingly, the glycoproteins of Uukuniemi virus were found to have properties resembling those of Golgi-specific proteins. This virus model system may be useful in studying the synthesis and transport of membrane proteins that are transported to and retained in the Golgi.  相似文献   

7.
The role of glycosylation in the function of the T2 family of RNases is not well understood. In this work, we examined how glycosylation affects the progression of the T2 RNase Rny1p through the secretory pathway in Saccharomyces cerevisiae. We found that Rny1p requires entering into the ER first to become active and uses the adaptor protein Erv29p for packaging into COPII vesicles and transport to the Golgi apparatus. While inside the ER, Rny1p undergoes initial N‐linked core glycosylation at four sites, N37, N70, N103 and N123. Rny1p transport to the Golgi results in the further attachment of high‐glycans. Whereas modifications with glycans are dispensable for the nucleolytic activity of Rny1p, Golgi‐mediated modifications are critical for its extracellular secretion. Failure of Golgi‐specific glycosylation appears to direct Rny1p to the vacuole as an alternative destination and/or site of terminal degradation. These data reveal a previously unknown function of Golgi glycosylation in a T2 RNase as a sorting and secretion signal .   相似文献   

8.
To elucidate intracellular maturation and secretion of acid phosphatase of Saccharomyces cerevisiae we prepared a monoclonal antibody that recognizes specifically the protein moiety of this cell surface glycoprotein. With this antibody membranes and soluble fractions of wild-type cells, grown in low-phosphate medium in the presence and absence of tunicamycin, were examined by the immunoblot technique. Similarly, secretory mutants, blocked at distinct steps in the secretory pathway at the restrictive temperature as well as a strain harboring several copies of the structural gene PHO5 for repressible acid phosphatase, were analyzed. The data suggest the following sequence of events in acid phosphatase maturation and secretion: three unglycosylated precursors with molecular masses of 60 kDa, 58 kDa and 56 kDa are synthesized into membranes of the endoplasmic reticulum, where these are core glycosylated in a membrane-bound form. They appear on sodium dodecyl sulfate gels as bands with molecular masses of 76 kDa and 80 kDa. Owing to a rate-limiting maturation step, occurring after core glycosylation, they can accumulate in a membrane-bound form. At the Golgi apparatus outer carbohydrate chains are attached to the core and the enzyme appears in a soluble form, indicating a release of acid phosphatase from the membrane between the endoplasmic reticulum and the Golgi. Pulse-chase experiments suggest that the time for acid phosphatase synthesis and its transport to the Golgi is about 5 min.  相似文献   

9.
O-linked N-acetylglucosamine (O-GlcNAc) glycosylation is a post-translational modification, which is believed antagonises phosphorylation. We have studied the O-GlcNAc level during Xenopus oocyte meiotic resumption, taking advantage of the high synchrony of this model which is dependent upon a burst of phosphorylation. Stimulation of immature stage VI oocytes using progesterone was followed by a 4.51 +/- 0.32 fold increase in the GlcNAc content, concomitantly to an increase in phosphorylation, notably on two cytoplasmic proteins of 66 and 97 kDa. The increase of O-GlcNAc for the 97 kDa protein, which we identified as beta-catenin was partly related to its accumulation during maturation, as was demonstrated by the use of the protein synthesis inhibitor--cycloheximide. Microinjection of free GlcNAc, which inhibits O-glycosylated proteins-lectins interactions, delayed the progesterone-induced maturation without affecting the O-GlcNAc content. Our results suggest that O-GlcNAc glycosylation could regulate protein-protein interactions required for the cell cycle kinetic.  相似文献   

10.
Protein transport in plant cells: in and out of the Golgi   总被引:7,自引:0,他引:7  
In plant cells, the Golgi apparatus is the key organelle for polysaccharide and glycolipid synthesis, protein glycosylation and protein sorting towards various cellular compartments. Protein import from the endoplasmic reticulum (ER) is a highly dynamic process, and new data suggest that transport, at least of soluble proteins, occurs via bulk flow. In this Botanical Briefing, we review the latest data on ER/Golgi inter-relations and the models for transport between the two organelles. Whether vesicles are involved in this transport event or if direct ER-Golgi connections exist are questions that are open to discussion. Whereas the majority of proteins pass through the Golgi on their way to other cell destinations, either by vesicular shuttles or through maturation of cisternae from the cis- to the trans-face, a number of membrane proteins reside in the different Golgi cisternae. Experimental evidence suggests that the length of the transmembrane domain is of crucial importance for the retention of proteins within the Golgi. In non-dividing cells, protein transport out of the Golgi is either directed towards the plasma membrane/cell wall (secretion) or to the vacuolar system. The latter comprises the lytic vacuole and protein storage vacuoles. In general, transport to either of these from the Golgi depends on different sorting signals and receptors and is mediated by clathrin-coated and dense vesicles, respectively. Being at the heart of the secretory pathway, the Golgi (transiently) accommodates regulatory proteins of secretion (e.g. SNAREs and small GTPases), of which many have been cloned in plants over the last decade. In this context, we present a list of regulatory proteins, along with structural and processing proteins, that have been located to the Golgi and the 'trans-Golgi network' by microscopy.  相似文献   

11.
Glucose concentration during cumulus-oocyte complex (COC) maturation influences several functions, including progression of oocyte meiosis, oocyte developmental competence, and cumulus mucification. Glucosamine (GlcN) is an alternative hexose substrate, specifically metabolized through the hexosamine biosynthesis pathway, which provides the intermediates for extracellular matrix formation during cumulus cell mucification. The aim of this study was to determine the influence of GlcN on meiotic progression and oocyte developmental competence following in vitro maturation (IVM). The presence of GlcN during bovine IVM did not affect the completion of nuclear maturation and early cleavage, but severely perturbed blastocyst development. This effect was subsequently shown to be dose-dependent and was also observed for porcine oocytes matured in vitro. Hexosamine biosynthesis upregulation using GlcN supplementation is well known to increase O-linked glycosylation of many intracellular signaling molecules, the best-characterized being the phosphoinositol-3-kinase (PI3K) signaling pathway. We observed extensive O-linked glycosylation in bovine cumulus cells, but not oocytes, following IVM in either the presence or the absence of GlcN. Inhibition of O-linked glycosylation significantly reversed the effect of GlcN-induced reduction in developmental competence, but inhibition of PI3K signaling had no effect. Our data are the first to link hexosamine biosynthesis, involved in cumulus cell mucification, to oocyte developmental competence during in vitro maturation.  相似文献   

12.
Amyloid beta-peptide is generated by two sequential proteolytic cleavages mediated by beta-secretase (BACE) and gamma-secretase. BACE was recently identified as a membrane-associated aspartyl protease. We have now analyzed the maturation and pro-peptide cleavage of BACE. Pulse-chase experiments revealed that BACE is post-translationally modified during transport to the cell surface, which can be monitored by a significant increase in the molecular mass. The increase in molecular mass is caused by complex N-glycosylation. Treatment with tunicamycin and N-glycosidase F led to a BACE derivative with a molecular weight corresponding to an unmodified version. In contrast, the mature form of BACE was resistant to endoglycosidase H treatment. The cytoplasmic tail of BACE was required for efficient maturation and trafficking through the Golgi; a BACE variant lacking the cytoplasmic tail undergoes inefficient maturation. In contrast a soluble BACE variant that does not contain a membrane anchor matured more rapidly than full-length BACE. Pro-BACE was predominantly located within the endoplasmic reticulum. Pro-peptide cleavage occurred immediately before full maturation and trafficking through the Golgi.  相似文献   

13.
Protein glycosylation is one of the major biosynthetic functions occurring in the endoplasmic reticulum and Golgi compartments. It requires an amazing number of enzymes, chaperones, lectins and transporters whose actions delicately secure the fidelity of glycan structures. Over the past 30 years, glycobiologists hammered that glycan structures are not mere decorative elements but serve crucial cellular functions. This becomes dramatically illustrated by a group of mostly severe, inherited human disorders named congenital disorders of glycosylation (CDG). To date, many types of CDG have been defined genetically and most of the time the defects impair the biosynthesis, transfer and remodeling of N-glycans. Recently, the identification of the several types of CDG caused by deficiencies in the conserved oligomeric Golgi (COG) complex, a complex involved in vesicular Golgi trafficking, expanded the field of CDG but also brought novel insights in glycosylation. The molecular mechanisms underlying the complex pathway of N-glycosylation in the Golgi are far from understood. The availability of COG-deficient CDG patients and patients' cells offered a new way to study how COG, and its different subunits, could influence the Golgi N-glycosylation machinery and localization. This review summarizes the recent findings on the implication of COG in Golgi glycosylation. It highlights the need for a dynamic, finely tuned balance between anterograde and retrograde trafficking for the correct localization of Golgi enzymes to assure the stepwise maturation of N-glycan chains.  相似文献   

14.
We have investigated the effect of tunicamycin (TM), an inhibitor of protein glycosylation, on surface Na+ channels in cultured chick skeletal muscle cells. The expression of Na+ channels, estimated by the measurement of batrachotoxin (BTX)-activated 22Na+ uptake, was found to be significantly diminished after exposure of muscle cells to TM. This effect is partially reversed by the protease inhibitor leupeptin and is associated with a markedly enhanced rate of disappearance of Na+ channels from the surface of TM-treated cells. Our findings suggest that protein glycosylation contributes to the metabolic stability of voltage-sensitive Na+ channels.  相似文献   

15.
ObjectivesRAB14 is a member of small GTPase RAB family which localizes at the endoplasmic reticulum (ER), Golgi apparatus and endosomal compartments. RAB14 acts as molecular switches that shift between a GDP‐bound inactive state and a GTP‐bound active state and regulates circulation of vesicles between the Golgi and endosomal compartments. In present study, we investigated the roles of RAB14 during oocyte meiotic maturation.Materials and methodsMicroinjection with siRNA and exogenous mRNA for knock down and rescue, and immunofluorescence staining, Western blot and real‐time RT‐PCR were utilized for the study.ResultsOur results showed that RAB14 localized in the cytoplasm and accumulated at the cortex during mouse oocyte maturation, and it was also enriched at the spindle periphery. Depletion of RAB14 did not affect polar body extrusion but caused large polar bodies, indicating the failure of asymmetric division. We found that absence of RAB14 did not affect spindle organization but caused the spindle migration defects, and this might be due to the regulation on cytoplasmic actin assembly via the ROCK‐cofilin signalling pathway. We also found that RAB14 depletion led to aberrant Golgi apparatus distribution. Exogenous Myc‐Rab14 mRNA supplement could significantly rescue these defects caused by Rab14 siRNA injection.ConclusionsTaken together, our results suggest that RAB14 affects ROCK‐cofilin pathway for actin‐based spindle migration and Golgi apparatus distribution during mouse oocyte meiotic maturation.  相似文献   

16.
The objective was to determine whether N-glycosylation of zona pellucida (ZP) glycoproteins occurred during meiotic maturation of porcine oocytes, and whether this had a role in fertilization. In the first of three experiments, carbohydrate residues in the ZP of in vitro matured porcine oocytes were blocked with various lectins and the influence of such blocking on sperm-ZP interactions was studied. The second experiment used a lectin-binding assay to determine whether the number of GlcNAc residues in ZP was changed by N-glycosylation during in vitro maturation (IVM) of porcine oocytes. The last experiment determined the effects of tunicamycin, a specific N-glycosylation inhibitor, for various intervals during IVM, on sperm-ZP interactions in porcine oocytes. The primary findings were that: 1) N-glycosylation of GlcNAc residues in porcine ZP occurred during the first 24 h of IVM; and 2) such glycosylation was indispensible for sperm-ZP interactions, e.g., number of sperm bound to ZP, acrosome-reacted sperm, sperm penetration rate, and level of polyspermy (P < 0.05). However, blocking N-glycosylation by tunicamycin treatment during IVM did not adversely influence the progression of oocytes to meiotic metaphase II and male pronucleus formation, indicating that this glycosylation was involved only in the initial stages of fertilization. We inferred that the increase in terminal GlcNAc residues in ZP glycoprotein through new N-glycosylation during the first 24 h of meiotic maturation played a critical role in porcine ZP acquiring the capacity to accept sperm.  相似文献   

17.
The Golgi plays a fundamental role in posttranslational glycosylation, transport, and sorting of proteins. The mechanism of protein transport through the Golgi has been seen as controversial in recent years. During the characterization of N-glycosylation-defective mutants (ngd) previously isolated by this laboratory, it was found that ngd20 is allelic to sec20. SEC20 was reported to be required for transport from endoplasmic reticulum to Golgi, but its precise function remains to be determined. We show now that SEC20 is also required for N- and O-glycosylation in the Golgi but not in the ER, in a cargo-specific manner, and that the glycosylation defect does not correlate with the secretory defect. By pulse-chase labeling experiments in combination with mannose linkage-specific antibodies, invertase and carboxypeptidase were found to be efficiently secreted to their final compartment, even upon shift to the nonpermissive temperature, while glycosylation in the Golgi was severely impaired. Using microsomal membranes isolated from ngd20, we found that mannosyl transfer from GDP-Man to various mannose-oligosaccharides, indicative for Golgi mannosylation, was strongly diminished. Analysis of the carbohydrate component of chitinase, an exclusively O-mannosylated protein, or of the bulk mannoprotein indicates that O-mannosylation is also reduced. The results demonstrate that in addition to secretion SEC20 also affects glycosylation in the Golgi, presumably because it exerts a more general role in maintenance and function of the Golgi compartments.  相似文献   

18.
Toxoplasma gondii relies on protein secretion from specialized organelles for invasion of host cells and establishment of a parasitophorous vacuole. We identify T. gondii Rab6 as a regulator of protein transport between post-Golgi dense granule organelles and the Golgi. Toxoplasma Rab6 was localized to cisternal rims of the late Golgi and trans-Golgi network, associated transport vesicles, and microdomains of dense granule and endosomal membranes. Overexpression of wild-type Rab6 or GTP-activated Rab6(Q70L) rerouted soluble dense granule secretory proteins to the Golgi and endoplasmic reticulum and augmented the effect of brefeldin A on Golgi resorption to the endoplasmic reticulum. Parasites expressing a nucleotide-free (Rab6(N124I)) or a GDP-bound (Rab6(T25N)) mutant accumulated dense granule proteins in the Golgi and associated transport vesicles and displayed reduced secretion of GRA4 and a delay in glycosylation of GRA2. Activated Rab6 on Golgi membranes colocalized with centrin during mitosis, and parasite clones expressing Rab6 mutants displayed a partial shift in cytokinesis from endodyogeny (formation of two daughter cells) to endopolygeny (multiple daughter cells). We propose that Toxoplasma Rab6 regulates retrograde transport from post-Golgi secretory granules to the parasite Golgi.  相似文献   

19.
Embryonic chick frontal bones were cultured in the presence of colchicine or vinblastine and subsequently examined by tranmission electron microscopy. In control cultures the osteoblasts showed a large Golgi complex consisting of dictyosomes arranged in a well-defined juxtanuclear area. Microtubules were particularly numerous within this Golgi area although they could be observed throughout the cytoplasm. Colchicine and vinblastine caused the disappearance of cytoplasmic microtubules, while bundles of 10 nm diameter filaments appeared more frequently. In addition, cell polarity was lost and the Golgi complex became disorganized, with the dictyosomes randomly dispersed in the cytoplasm and showing a decreased number of cisternae and an increased number of vacuoles, the latter generally lacking stainable material. Increased number of autophagosomes were also noted. These findings indicate that microtubules function in the organization of the Golgi complex in osteoblasts. In view of the well documented role of this organelle system in collagen secretion it is suggested that previously observed secretory disturbances produced by antimicrotubular drugs may be due to a defective transfer of material to the dictyosomes and/or a defect in the packaging and transport of such material away from them.  相似文献   

20.
Using rat or chick hepatocyte monolayers, we have studied the effect of tunicamycin, a specific inhibitor of protein glycosylation, on the synthesis and secretion of serum proteins. Tunicamycin inhibited glucosamine incorporation into rat liver transferrin and the apoprotein B chain of chick liver very low density lipoprotein (VLDL) by 75 to 90%. In contrasts, amino acid incorporation into these two glycoproteins, as well as into the normally unglycosylated proteins, rat serum albumin and apoprotein A of chick liver VLDL, was decreased by only 10 to 25% in the presence of the antibiotic. Despite the inhibitory effect of tunicamycin on glycosylation, secretion of all four proteins was virtually unimpaired. Thus, the carbohydrate moieties of rat liver transferrin or apoprotein B of chick liver VLDL do not appear to play an essential role in the secretion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号