首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xanthomonas campestris pv. campestris, the causal agent of black rot disease, depends on its type III secretion system (TTSS) to infect cruciferous plants, including Brassica oleracea, B. napus and Arabidopsis. Previous studies on the Arabidopsis-Pseudomonas syringae model pathosystem have indicated that a major function of TTSS from virulent bacteria is to suppress host defences triggered by pathogen-associated molecular patterns. Similar analyses have not been made for the Arabidopsis-X. campestris pv. campestris pathosystem. In this study, we report that X. campestris pv. campestris strain 8004, which is modestly pathogenic on Arabidopsis, induces strong defence responses in Arabidopsis in a TTSS-dependent manner. Furthermore, the induction of defence responses and disease resistance to X. campestris pv. campestris strain 8004 requires NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE1), RAR1 (required for Mla12 resistance) and SGT1b (suppressor of G2 allele of skp1), suggesting that effector-triggered immunity plays a large role in resistance to this strain. Consistent with this notion, AvrXccC, an X. campestris pv. campestris TTSS effector protein, induces PR1 expression and confers resistance in Arabidopsis in a RAR1- and SGT1b-dependent manner. In rar1 and sgt1b mutants, AvrXccC acts as a virulence factor, presumably because of impaired resistance gene function.  相似文献   

2.
3.
A chemical mutagenized population of Arabidopsis Col-0-gl plants was screened for an altered hypersensitive response (HR) after spray inoculation with an HR-inducing isolate of Xanthomonas campestris pv. campestris (strain 147). Three classes of mutant were identified: those exhibiting an HR- phenotype or partial loss of HR; hyper-responsive mutants showing necrotic lesions rapidly leading to the collapse of leaves; and susceptible mutants. One mutant belonging to the susceptible class, hxc-2, was extensively characterized. The compatible phenotype observed several days after initiation of the interaction was confirmed by measurement of in planta bacterial growth and use of bacterial strains constitutively expressing the GUS reporter gene. In the same way, accumulation of autofluorescent compounds, salicylic acid production and defence gene expression in the mutant were found to be similar to that displayed by the susceptible ecotype. Inoculation of hxc-2 with different avirulent bacteria suggests that the mutation is specific for the interaction with the Xcc 147 strain, although the mutation has been shown to affect a single dominant locus, different from the resistance locus defined by genetic analysis of resistance to Xcc 147. Genetic mapping of the mutation indicated that it is located on chromosome III, defining a previously unknown resistance function in response to X. c. campestris.  相似文献   

4.
Black rot caused by the bacterium Xanthomonas campestris pv campestris is one of the most serious diseases of Brassica oleracea. Since sources of resistance to the disease within B. oleracea are insufficient and control means are limited, the development of resistant breeding lines is extremely desirable. Certain lines of B. napus contain very high resistance controlled by a dominant gene, but crossing the two species sexually is very difficult. Therefore, somatic hybrids were produced by protoplast fusion between rapid cycling B. oleracea and a B. napus line highly resistant to X. campestris pv campestris. Hybrid identity was confirmed by morphological studies, flow cytometric estimation of nuclear DNA content, and analysis of random amplified polymorphic DNA (RAPD). Inoculations with the pathogen identified four somatic hybrids with high resistance. The resistant hybrid plants were fertile and set seed when selfed or crossed reciprocally to the bridge line 15 (Quazi 1988). Direct crosses to B. oleracea were unsuccessful, but embryo rescue facilitated the production of a first-backcross generation. The BC1 plants were resistant to the pathogen. Progeny from the crosses to line 15 were all susceptible. Embryo rescue techniques were not obligatory for the development of a second-backcross generation, and several resistant BC2 plants were obtained.  相似文献   

5.
Citrus is an economically important fruit crop that is severely afflicted by citrus canker, a disease caused by Xanthomonas citri ssp. citri (X. citri); thus, new sustainable strategies to manage this disease are needed. Although all Citrus spp. are susceptible to this pathogen, they are resistant to other Xanthomonas species, exhibiting non-host resistance (NHR), for example, to the brassica pathogen X. campestris pv. campestris (Xcc) and a gene-for-gene host defence response (HDR) to the canker-causing X. fuscans ssp. aurantifolii (Xfa) strain C. Here, we examine the plant factors associated with the NHR of C. limon to Xcc. We show that Xcc induced asymptomatic type I NHR, allowing the bacterium to survive in a stationary phase in the non-host tissue. In C. limon, this NHR shared some similarities with HDR; both defence responses interfered with biofilm formation, and were associated with callose deposition, induction of the salicylic acid (SA) signalling pathway and the repression of abscisic acid (ABA) signalling. However, greater stomatal closure was seen during NHR than during HDR, together with different patterns of accumulation of reactive oxygen species and phenolic compounds and the expression of secondary metabolites. Overall, these differences, independent of Xcc type III effector proteins, could contribute to the higher protection elicited against canker development. We propose that Xcc may have the potential to steadily activate inducible defence responses. An understanding of these plant responses (and their triggers) may allow the development of a sustained and sustainable resistance to citrus canker.  相似文献   

6.
7.
A region of Xanthomonas campestris pv. campestris DNA containing at least two pathogenicity genes was identified. Mutants in one gene were clearly reduced in pathogenicity while mutants in the other were only moderately reduced. Both classes of mutants were prototrophic and motile, and had wild-type levels of extracellular enzymes and extracellular polysaccharide. They also grew in vitro and in planta at the same rate as the wild type. Experiments involving one of the clear pathogenicity mutants indicated that the recovery of mutant cells from turnip seedlings 24 hr after inoculation was lower than for the wild type. This may be due to cell death as a result of action by some preformed or induced plant factor. From DNA sequencing an open reading frame was identified that encompassed the site of the mutations giving a clear reduction in pathogenicity. The predicted protein sequence had no homology with other proteins in the computer data base.  相似文献   

8.
Protein phosphatases (PPs) counteract kinases in reversible phosphorylation events during numerous signal transduction pathways in eukaryotes. PP2Cs, one of the four major classes of the serine/threonine‐specific PP family, are greatly expanded in plants. Thus, PP2Cs are thought to play a specific role in signal transduction pathways. Some rice PP2Cs classified in subgroup K are responsive to infection by the compatible Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight. In Arabidopsis thaliana, orthologous PP2C genes (AtPP2C62 and AtPP2C26) classified to subgroup K are also responsive to Xanthomonas campestris pv. campestris (Xcc, causal agent of black rot) infection. To elucidate the function of these subgroup K PP2Cs, atpp2c62‐ and atpp2c26‐deficient A. thaliana mutants were characterized. A double mutant plant which was inoculated with a compatible Xcc showed reduced lesion development, as well as the suppression of bacterial multiplication. AtPP2C62 and AtPP2C26 localized to the chloroplast. Furthermore, the photosynthesis‐related protein, chaperonin‐60, was indicated as the potential candidate for the dephosphorylated substrate catalysed by AtPP2C62 and AtPP2C26 using two‐dimensional isoelectric focusing sodium dodecylsulfate‐polyacrylamide gel electrophoresis (2D‐IDF‐SDS‐PAGE). Taken together, AtPP2C62 and AtPP2C26 are suggested to be involved in both photosynthesis and suppression of the plant immune system. These results imply the occurrence of crosstalk between photosynthesis and the plant defence system to control productivity under pathogen infection.  相似文献   

9.
A modified method is described for isolating high yields of plasmids without chromosome contamination from Xanthomonas campestris pv. vignicola (X. c. pv. vignicola), the causal agent of blight disease in Vigna species and also in Phaseolus vulgaris. Applying this method a plasmid of X, c. pv. vignicola was detected representing an estimated molecular weight of 95 megadaltons. Heat curing of the strain revealed that the detected plasmid had no effecton virulence but seemed to influence colony morphology.  相似文献   

10.
We characterized the copper resistance genes in strain XvP26 of Xanthomonas campestris pv. vesicatoria, which was originally isolated from a pepper plant in Taiwan. The copper resistance genes were localized to a 7,652-bp region which, based on pulsed-field gel electrophoresis and Southern hybridization, was determined to be located on the chromosome. These genes hybridized only weakly, as determined by Southern analysis, to other copper resistance genes in Xanthomonas and Pseudomonas strains. We identified five open reading frames (ORFs) whose products exhibited high levels of amino acid sequence identity to the products of previously reported copper genes. Mutations in ORF1, ORF3, and ORF4 removed copper resistance, whereas mutations in ORF5 resulted in an intermediate copper resistance phenotype and insertions in ORF2 had no effect on resistance conferred to a copper-sensitive recipient in transconjugant tests. Based on sequence analysis, ORF1 was determined to have high levels of identity with the CopR (66%) and PcoR (63%) genes in Pseudomonas syringae pv. tomato and Escherichia coli, respectively. ORF2 and ORF5 had high levels of identity with the PcoS gene in E. coli and the gene encoding a putative copper-containing oxidoreductase signal peptide protein in Sinorhizobium meliloti, respectively. ORF3 and ORF4 exhibited 23% identity to the gene encoding a cation efflux system membrane protein, CzcC, and 62% identity to the gene encoding a putative copper-containing oxidoreductase protein, respectively. The latter two ORFs were determined to be induced following exposure to low concentrations of copper, while addition of Co, Cd, or Zn resulted in no significant induction. PCR analysis of 51 pepper and 34 tomato copper-resistant X. campestris pv. vesicatoria strains collected from several regions in Taiwan between 1987 and 2000 and nine copper-resistant strains from the United States and South America showed that successful amplification of DNA was obtained only for strain XvP26. The organization of this set of copper resistance genes appears to be uncommon, and the set appears to occur rarely in X. campestris pv. vesicatoria.  相似文献   

11.
Chung WJ  Shu HY  Lu CY  Wu CY  Tseng YH  Tsai SF  Lin CH 《Proteomics》2007,7(12):2047-2058
The bacterium Xanthomonas campestris pathovar campestris (XCC) 17 is a local isolate that causes crucifer black rot disease in Taiwan. In this study, its proteome was separated using 2-DE and the well-resolved proteins were excised, trypsin digested, and analyzed by MS. Over 400 protein spots were analyzed and 281 proteins were identified by searching the MS or MS/MS spectra against the proteome database of the closely related XCC ATCC 33913. Functional categorization of the identified proteins matched 141 (50%) proteins to 81 metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In addition, we performed a comparative proteome analysis of the pathogenic strain 17 and an avirulent strain 11A to reveal the virulence-related proteins. We detected 22 up-regulated proteins in strain 17 including the degrading enzymes EngXCA, HtrA, and PepA, which had been shown to have a role in pathogenesis in other bacteria, and an anti-host defense protein, Ohr. Thus, further functional studies of these up-regulated proteins with respect to their roles in XCC pathogenicity are suggested.  相似文献   

12.
We isolated menadione-resistant mutants of Xanthomonas campestris pv. phaseoli oxyR (oxyR(Xp)). The oxyRR2(Xp) mutant was hyperresistant to the superoxide generators menadione and plumbagin and was moderately resistant to H(2)O(2) and tert-butyl hydroperoxide. Analysis of enzymes involved in oxidative-stress protection in the oxyRR2(Xp) mutant revealed a >10-fold increase in AhpC and AhpF levels, while the levels of superoxide dismutase (SOD), catalase, and the organic hydroperoxide resistance protein (Ohr) were not significantly altered. Inactivation of ahpC in the oxyRR2(Xp) mutant resulted in increased sensitivity to menadione killing. Moreover, high levels of expression of cloned ahpC and ahpF in the oxyR(Xp) mutant complemented the menadione hypersensitivity phenotype. High levels of other oxidant-scavenging enzymes such as catalase and SOD did not protect the cells from menadione toxicity. These data strongly suggest that the toxicity of superoxide generators could be mediated via organic peroxide production and that alkyl hydroperoxide reductase has an important novel function in the protection against the toxicity of these compounds in X. campestris.  相似文献   

13.
We have isolated and characterized a lytic double-stranded DNA Xanthomonas campestris pv. campestris bacteriophage (XTP1) capable of mediating generalized transduction. The phage transduces chromosomal markers at frequencies of 10(-5) to 10(-6) transductants per PFU. We demonstrated its genetic utility by the isolation and cotransduction of linked transposon insertions to a nonselectable locus, xgl, required for the cleavage of 5-bromo-3-chloro-indoyl-beta-D-galactoside and showed that rif and str alleles in X. campestris are 75% linked. One-step growth experiments showed that the latent and rise periods were each 2 h and the average burst size was 35. The DNA genome is approximately 180 kb, presumably modified in a sequence-specific manner, and may be covalently attached to protein(s). Electron micrographs show the phage particle to have an icosahedral head and contractile tail with tail fibers uniquely attached to a location 40 nm proximal from the end of the tail.  相似文献   

14.
Wang L  Zheng Y  Zhang X 《IUBMB life》2002,54(1):13-18
Xanthomonas campestris pv. campestris, a plant-associated pathogenic bacterium, is the causal agent of foliar spots and blights in crucifers. The major outer membrane protein, Omp37, of 37 kDa, has been identified, purified to homogeneity, and its characterization has also been carried out. Native Omp37 behaved as a trimer, as revealed by gel filtration and SDS-PAGE. FTIR measurements revealed a high beta-structure content. The pore-forming ability of the purified Omp37 was studied by the liposome swelling assay. Omp37, to our knowledge, is the first porin that has been isolated from Xanthomonas. This study clearly demonstrates that Omp37 is related to the family of trimeric bacterial porins.  相似文献   

15.
16.
Bacterial flagellins have been portrayed as a relatively invariant pathogen-associated molecular pattern. We have found within-species, within-pathovar variation for defense-eliciting activity of flagellins among Xanthomonas campestris pv campestris (Xcc) strains. Arabidopsis thaliana FLAGELLIN SENSING2 (FLS2), a transmembrane leucine-rich repeat kinase, confers flagellin responsiveness. The flg22 region was the only Xcc flagellin region responsible for detectable elicitation of Arabidopsis defense responses. A Val-43/Asp polymorphism determined the eliciting/noneliciting nature of Xcc flagellins (structural gene fliC). Arabidopsis detected flagellins carrying Asp-43 or Asn-43 but not Val-43 or Ala-43, and it responded minimally for Glu-43. Wild-type Xcc strains carrying nonrecognized flagellin were more virulent than those carrying a recognized flagellin when infiltrated into Arabidopsis leaf mesophyll, but this correlation was misleading. Isogenic Xcc fliC gene replacement strains expressing eliciting or noneliciting flagellins grew similarly, both in leaf mesophyll and in hydathode/vascular colonization assays. The plant FLS2 genotype also had no detectable effect on disease outcome when previously untreated plants were infected by Xcc. However, resistance against Xcc was enhanced if FLS2-dependent responses were elicited 1 d before Xcc infection. Prior immunization was not required for FLS2-dependent restriction of Pseudomonas syringae pv tomato. We conclude that plant immune systems do not uniformly detect all flagellins of a particular pathogen species and that Xcc can evade Arabidopsis FLS2-mediated defenses unless the FLS2 system has been activated by previous infections.  相似文献   

17.
The gram-negative bacterium Xanthomonas campestris pv. vesicatoria is the causal agent of spot disease in tomato and pepper. Plants of the tomato line Hawaii 7981 are resistant to race T3 of X. campestris pv. vesicatoria expressing the type III effector protein AvrXv3 and develop a typical hypersensitive response upon bacterial challenge. A combination of suppression subtractive hybridization and microarray analysis identified a large set of cDNAs that are induced or repressed during the resistance response of Hawaii 7981 plants to X. campestris pv. vesicatoria T3 bacteria. Sequence analysis of the isolated cDNAs revealed that they correspond to 426 nonredundant genes, which were designated as XRE (Xanthomonas-regulated) genes and were classified into more than 20 functional classes. The largest functional groups contain genes involved in defense, stress responses, protein synthesis, signaling, and photosynthesis. Analysis of XRE expression kinetics during the tomato resistance response to X. campestris pv. vesicatoria T3 revealed six clusters of genes with coordinate expression. In addition, by using isogenic X. campestris pv. vesicatoria T2 strains differing only by the avrXv3 avirulence gene, we found that 77% of the identified XRE genes were directly modulated by expression of the AvrXv3 effector protein. Interestingly, 64% of the XRE genes were also induced in tomato during an incompatible interaction with an avirulent strain of Pseudomonas syringae pv. tomato. The identification and expression analysis of X. campestris pv. vesicatoria T3-modulated genes, which may be involved in the control or in the execution of plant defense responses, set the stage for the dissection of signaling and cellular responses activated in tomato plants during the onset of spot disease resistance.  相似文献   

18.
Sugarcane plantlets were sectioned halfway between the base and the youngest ligule and then inoculated by soaking the wound in a suspension of Xanthomonas campestris pv. vasculorum. The infection caused rapid necrosis of the inoculated leaves, chlorosis of uninoculated leaves, or death of the inoculated plantlet. New tillers sometimes showed chlorosis or white streaks. The effects of the inoculum concentration, the cultivar, and the bacterial strain on symptom severity were determined. The ranking of cultivars depended on the inoculum concentration, and strains were found to differ with regard to aggressiveness. However, cultivars and strains were more effectively classified in greenhouse trials. The poor expression of leaf resistance appeared to limit the use of the in vitro test.  相似文献   

19.
Banana Xanthomonas wilt (BXW), caused by the bacterium Xanthomonas campestris pv. musacearum, is the most devastating disease of banana in the Great Lakes region of Africa. The pathogen's rapid spread has threatened the livelihood of millions of Africans who rely on banana fruit for food security and income. The disease is very destructive, infecting all banana varieties, including both East African Highland bananas and exotic types of banana. In the absence of natural host plant resistance among banana cultivars, the constitutive expression of the hypersensitivity response-assisting protein (Hrap) gene from sweet pepper (Capsicum annuum) was evaluated for its ability to confer resistance to BXW. Transgenic lines expressing the Hrap gene under the regulation of the constitutive CaMV35S promoter were generated using embryogenic cell suspensions of two banana cultivars: 'Sukali Ndiizi' and 'Mpologoma'. These lines were characterized by molecular analysis, and were challenged with Xanthomonas campestris pv. musacearum to analyse the efficacy of the Hrap gene against BXW. The majority of transgenic lines (six of eight) expressing Hrap did not show any symptoms of infection after artificial inoculation of potted plants in the screenhouse, whereas control nontransgenic plants showed severe symptoms resulting in complete wilting. This study demonstrates that the constitutive expression of the sweet pepper Hrap gene in banana results in enhanced resistance to BXW. We describe the development of transgenic banana varieties resistant to BXW, which will boost the arsenal available to fight this epidemic disease and save livelihoods in the Great Lakes region of East and Central Africa.  相似文献   

20.
The ability of glycinecin A, a bacteriocin derived from Xanthomonas campestris pv. glycines 8ra, to kill closely related bacteria has been demonstrated previously by our group. In the present study, we aimed at determining the glycinecin A-induced cause of death. Treatment with glycinecin A caused slow dissipation of membrane potential and rapid depletion of the pH gradient. Glycinecin A treatment also induced leakage of potassium ions from X. campestris pv. vesicatoria YK93-4 cells and killed sensitive bacterial cells in a dose-dependent manner. Sensitive cells were killed within 2 h of incubation, most likely due to the potassium ion efflux caused by glycinecin A. These results suggest that the bactericidal mechanism of action of glycinecin A is correlated with the permeability of membranes to hydroxyl and potassium ions, leading to the lethal activity of the bacteriocin on the target bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号