首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yeast extract agar, pork infusion agar, and modifications of these media were used to recover heated Clostridium botulinum spores. The D- and z-values were determined. Two type A strains and one type B strain of C. botulinum were studied. In all cases the D-values were largest when the spores were recovered in yeast extract agar, compared to the D-values for spores recovered in pork infusion agar. The z-values for strains 62A and A16037 were largest when the spores were recovered in pork infusion agar. The addition of sodium bicarbonate and sodium thioglycolate to pork infusion agar resulted in D-values for C. botulinum 62A spores similar to those for the same spores recovered in yeast extract agar. The results suggest that sodium bicarbonate and sodium thioglycolate should be added to recovery media for heated C. botulinum spores to obtain maximum plate counts.  相似文献   

2.
Yeast extract agar, pork infusion agar, and modifications of these media were used to recover heated Clostridium botulinum spores. The D- and z-values were determined. Two type A strains and one type B strain of C. botulinum were studied. In all cases the D-values were largest when the spores were recovered in yeast extract agar, compared to the D-values for spores recovered in pork infusion agar. The z-values for strains 62A and A16037 were largest when the spores were recovered in pork infusion agar. The addition of sodium bicarbonate and sodium thioglycolate to pork infusion agar resulted in D-values for C. botulinum 62A spores similar to those for the same spores recovered in yeast extract agar. The results suggest that sodium bicarbonate and sodium thioglycolate should be added to recovery media for heated C. botulinum spores to obtain maximum plate counts.  相似文献   

3.
In view of a possible application of the alpha-amylase from Bacillus licheniformis as a time-temperature integrator for evaluation of heat processes,(11) thermal inactivation kinetics of the dissolved and covalently immobilized enzyme were studied in the temperature range 90-108 degrees C. The D-values (95 degrees C) for inactivation of alpha-amylase, dissolved in tris-HCl buffer, ranged from 6 to 157 min, depending on pH, ionic strength, and Ca(2+) and enzyme concentration. The z-value fluctuated between 6.2 and 7.6 degrees C. On immobilization of the alpha-amylase by covalent coupling with glutaraldehyde to porous glass beads, the thermoinactivation kinetics became biphasic under certain circumstances. For immobilized enzyme, the D-values (95 degrees C) ranged between 17 and 620 min, depending largely on certain environmental conditions. The z-value fluctuated between 8.1 and 12.9 degrees C. In each case of biphasic inactivation, the z-value of the stable fraction (with the higher D-values) was lower than the z-value of the labile fraction. (c) 1992 John Wiley & Sons, Inc.  相似文献   

4.
Clostridium-botulinum type A and type B spores were stored in tomato juice (pH 4.2) and citric acid-phosphate buffer (pH 4.2) at 4, 22, and 32 degrees C for 180 days. The spore count was determined at different intervals over the 180-day storage period. There was no significant decrease in the number of type A spores in either the tomato juice or citric acid-phosphate buffer stored for 180 days at 4, 22, and 32 degrees C. The number of type B spores did not decrease when storage was at 4 degrees C, but there was an approximately 30% decrease in the number of spores after 180 days of storage at 22 and 32 degrees C.  相似文献   

5.
Clostridium-botulinum type A and type B spores were stored in tomato juice (pH 4.2) and citric acid-phosphate buffer (pH 4.2) at 4, 22, and 32 degrees C for 180 days. The spore count was determined at different intervals over the 180-day storage period. There was no significant decrease in the number of type A spores in either the tomato juice or citric acid-phosphate buffer stored for 180 days at 4, 22, and 32 degrees C. The number of type B spores did not decrease when storage was at 4 degrees C, but there was an approximately 30% decrease in the number of spores after 180 days of storage at 22 and 32 degrees C.  相似文献   

6.
The ability of spores of one type A and one type B strain of Clostridium botulinum to grow and produce toxin in tomato juice was investigated. The type A strain grew at pH 4.9, but not at pH 4.8; the type B strain grew at pH 5.1, but not at pH 5.0. Aspergillus gracilis was inoculated along with C. botulinum spores into pH 4.2 tomato juice; in a nonhermetic unit, a pH gradient developed under the mycelial mat, resulting in C. botulinum growth and toxin production. In a hermetic unit, mold growth was reduced, and no pH gradient was detected; however, C. botulinum growth and low levels of toxin production (less than 10 50% lethal doses per ml) still occurred and were associated with the mycelial mat. The results of tests to find filterable or dialyzable growth factors were negative. It was demonstrated that for toxin production C. botulinum and the mold had to occupy the same environment.  相似文献   

7.
The ability of spores of one type A and one type B strain of Clostridium botulinum to grow and produce toxin in tomato juice was investigated. The type A strain grew at pH 4.9, but not at pH 4.8; the type B strain grew at pH 5.1, but not at pH 5.0. Aspergillus gracilis was inoculated along with C. botulinum spores into pH 4.2 tomato juice; in a nonhermetic unit, a pH gradient developed under the mycelial mat, resulting in C. botulinum growth and toxin production. In a hermetic unit, mold growth was reduced, and no pH gradient was detected; however, C. botulinum growth and low levels of toxin production (less than 10 50% lethal doses per ml) still occurred and were associated with the mycelial mat. The results of tests to find filterable or dialyzable growth factors were negative. It was demonstrated that for toxin production C. botulinum and the mold had to occupy the same environment.  相似文献   

8.
Unheated spores of nonproteolytic Clostridium botulinum were able to lead to growth in sterile deoxygenated turnip, spring green, helda bean, broccoli, or potato juice, although the probability of growth was low and the time to growth was longer than the time to growth in culture media. With all five vegetable juices tested, the probability of growth increased when spores were inoculated into the juice and then heated for 2 min in a water bath at 80 degrees C. The probability of growth was greater in bean or broccoli juice than in culture media following 10 min of heat treatment in these media. Growth was prevented by heat treatment of spores in vegetable juices or culture media at 80 degrees C for 100 min. We show for the first time that adding heat-treated vegetable juice to culture media can increase the number of heat-damaged spores of C. botulinum that can lead to colony formation.  相似文献   

9.
The effects of heat treatment on spores of the actinomycete Micromonospora echinospora were investigated. The percentage of culturable spores in untreated spore stocks was found to be approximately 20%. A 60 degrees C treatment of spores in phosphate buffer for 10 min led to an approximately five-fold increase in the number of culturable units. This indicated that a large proportion of the spores were constitutively dormant. Within 10 min and in the absence of an external energy-yielding substrate, the heat treatment was found to stimulate spore respiration suggesting that endogenous storage compounds were being utilized. Heating spores at 70 degrees C shortened the time period required for activation; holding times greater than 10 min, however, resulted in a reduction of culturable cells. Classic thermal death characteristics were seen at temperatures of 80 degrees C and above with D-values of 21.43, 2.67, 0.45 and 0.09 min being recorded at 70, 80, 90 and 100 degrees C, respectively. Spores of this organism, while being weakly heat resistant in comparison with bacterial endospores, are significantly more resistant than vegetative cells.  相似文献   

10.
Resistance to heat of spores of marine and terrestrial strains of Clostridium botulinum type C in 0.067 m phosphate buffer (pH 7.0) was determined. The marine strains were 6812, 6813, 6814, and 6816; the terrestrial strains were 468 and 571. The inoculum level equaled 10(6) spores/tube with 10 replicate tubes for each time-temperature variable. Heating times were run at three or more temperatures to permit survival of some fraction of the inoculum. Survivors were recovered at 85 F (30 C) in beef infusion broth containing 1% glucose, 0.10% l-cysteine hydrochloride, and 0.14% sodium bicarbonate. D values were calculated for each fractional survivor end point after 6 months of incubation. Thermal resistance curves were constructed from the D value data. D(220) (104 C) values for spores of 468 and 571 equaled 0.90 and 0.40 min, respectively. The corresponding values for spores of 6812, 6813, 6814, and 6816 were 0.12, 0.04, 0.02, and 0.08 min. The z values for the thermal resistance curves ranged from 9.0 to 11.5 F (5.0 to 6.2 C).  相似文献   

11.
Spores of five type B, five type E, and two type F strains of nonproteolytic Clostridium botulinum were inoculated into tubes of an anaerobic meat medium plus lysozyme to give approximately 10(6) spores per tube. Sets of tubes were then subjected to a heat treatment, cooled, and incubated at 6, 8, 10, 12, and 25 degrees C for up to 60 days. Treatments equivalent to heating at 65 degrees C for 364 min, 70 degrees C for 8 min, and 75 degrees C for 27 min had little effect on growth and toxin formation. After a treatment equivalent to heating at 85 degrees C for 23 min, growth occurred at 6 and 8 degrees C within 28 to 40 days. After a treatment equivalent to heating at 80 degrees C for 19 min, growth occurred in some tubes at 6, 8, 10, or 12 degrees C within 28 to 53 days and at 25 degrees C in all tubes within 15 days. Following a treatment equivalent to heating at 95 degrees C for 15 mine, growth was detected in some tubes incubated at 25 degrees C for fewer than 60 days but not in tubes incubated at 6 to 12 degrees C. The results indicate that heat treatment of processed foods equivalent to maintenance at 85 degrees C for 19 min combined with storage below 12 degrees C and a shelf life of not more than 28 days would reduce the risk of growth from spores of nonproteolytic C. botulinum by a factor of 10(6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The heat resistance of Desulfotomaculum nigrificans spores was determined in soy protein infant formula preparations. Methods of sporulation were developed and evaluated. D. nigrificans spores of highest heat resistance were produced in a 40% infusion of spent mushroom compost. Fraction-negative D121 degrees C-values obtained in modified soy formula were 25.8 min for spores of ATCC 7946 produced at 55 degrees C and 54.4 min for an isolate designated RGI 1, which was sporulated at 66 degrees C. From the fraction-negative D-values, z-values were obtained of 6.7 degrees C for ATCC 7946 and 9.5 degrees C for RGI 1. Survivor-curve D121 degrees C-values were 5.6 min for ATCC 7946 and 2.7 min for RGI 1 sporulated at 55 degrees C and heated in modified soy formula. Corresponding D121 degrees C-values in Butterfield phosphate buffer (pH 7.2) were 3.3 min (ATCC 7946) and 1.1 min (RGI 1). The z-values generated from survivor-curve D-values were similar to those obtained by using fraction-negative procedures. In all instances the inactivation kinetics appeared to be linear. The isolate designated RGI 1, when sporulated at 66 degrees C and heated in a modified infant soy formula, exhibited an extraordinary heat resistance far in excess of previous reports.  相似文献   

13.
Effect of thermal treatments in oils on bacterial spore survival   总被引:1,自引:0,他引:1  
The heat resistance of Bacillus cereus F4165/75, Clostridium sporogenes PA 3679 and Cl. botulinum 62A spores suspended in buffer (pH 7.2), olive oil and a commercial oil (a mixture of rapeseed oil and soy oil) was investigated. Linear survivor curves were obtained with B. cereus spores in the three menstrua and with 62A and PA 3679 spores suspended in buffer. However, the inactivation kinetics of the clostridial spores suspended in oils were concave upward with a characteristic tailing-off for 62A spores suspended in olive oil. These deviations from the semi-log model could not be ascribed to a heterogeneity in heat resistance of the spore population or to the variation of aw during heating. Spore resistance to heat increased in the order: buffer much less than commercial oil less than olive oil. The greater heat resistance of oil-suspended spores was ascribed to the low aw (0.479 and 0.492 for commercial oil and olive oil, respectively) and to the composition of the oils. The difference in z values (ca 28 degrees C in oils and 10 degrees-12 degrees C in buffer) suggested that the mechanism of inactivation differs for spores suspended in lipids and in aqueous systems. The thermodynamic data were consistent with this hypothesis.  相似文献   

14.
Pectinmethylesterase (PME) extracted from tomato fruit was purified by affinity chromatography. A single peak of PME activity was observed, presenting a molar mass of 33.6 kDa, an isoelectric point higher than 9.3, and an optimal temperature and pH for activity of 55 degrees C and 8.0, respectively. The processing stability of purified tomato PME in buffer solution was compared to PME stability in tomato juice. In both media, thermal inactivation of PME presented first-order inactivation kinetics, PME in tomato juice being more heat-labile than purified PME. Regarding high-pressure treatment, tomato PME showed to be very pressure-resistant, revealing an outspoken antagonistic effect of temperature and pressure. To avoid cloud loss in tomato juice, a time-temperature treatment of 1 min at 76.5 degrees C was calculated in order to have a residual PME activity of 1 x 10(-)(4) U/mL.  相似文献   

15.
The thermal resistance of Aeromonas hydrophila strain NCTC 8049 was determined within the range 48 degrees-65 degrees C with a thermoresistometer TR-SC and McIlvaine buffer. The effects of culture age, pre-incubation at 7 degrees C and the pH of the heating menstruum were evaluated. The pattern of thermal death was dependent on culture age. Cells heated in the late logarithmic growth phase (15 h at 30 degrees C) were twice as resistant as those in the early stage (5 h at 30 degrees C), and the maximum D-value was obtained after 72 h incubation (5.5 total increase). The age of the cells did not affect z-values significantly. The heat resistance of cells incubated for 48 h at 30 degrees C increased (twice) after holding at 7 degrees C for 72 h. Pre-incubation at low temperature of older cultures (72 h, 30 degrees C) did not influence their D-values. Maximum heat resistance was found at pH 6.0 and minimal at pH 4.0. Decreasing the pH from 6.0 to 4.0 reduced D-values by a factor of 5. Although the strain studied was heat-sensitive (D55 degrees C = 0.17 min; z = 5.11 degrees C), survivor curves of cultures older than 50 h showed a significant tailing. Organisms surviving in the tails were only slightly more resistant than were the original population.  相似文献   

16.
A rapid method for the determination of bacterial fatty acid composition   总被引:10,自引:1,他引:9  
Heat treatment of spores of non-proteolytic strains of Clostridium botulinum at 75–90°C, and enumeration of survivors on a nutrient medium containing lysozyme gave biphasic survival curves. A majority of spores were inactivated rapidly by heating, and the apparent heat-resistance of these spores was similar to that observed by enumeration on medium without lysozyme. A minority of spores showed much greater heat-resistance, due to the fact that the spore coat was permeable to lysozyme, which diffused into the spore from the medium and replaced the heat-inactivated germination system. The proportion of heated spores permeable to lysozyme was between 0.2 and 1.4% for spores of strains 17B (type B) and Beluga (type E), but was about 20% for spores of strain Foster B96 (type E). After treatment of heated spores with alkaline thioglycolate, all were permeable to lysozyme. D-values for heated spores that were permeable to lysozyme (naturally and after treatment with thioglycolate) were: for strain 17B, D85°C, 100 min; D90°C, 18.7 min; D95°C, 4.4 min; for strain Beluga, D85°C, 46 min; D90°C, 11.8 min; D95°C, 2.8 min. The z-values for these spores of strains 17B and Beluga were 7.6°C and 8.3°C.  相似文献   

17.
The times and temperatures required to inactivate staphylococcal enterotoxin B were studied by use of the double-gel-diffusion technique to assay enterotoxin. Enterotoxin B (99 +% pure) was suspended in 0.04 M Veronal buffer, dispensed into borosilicate vials, and the vials were sealed and heated in an oil bath. An amount of 30 mug/ml of this toxin was reduced to less than 0.7 mug/ml in 103.0, 87.1, 70.5, 57.2, 39.1, 27.6, 16.4, and 12.0 min, respectively, at temperatures of 96, 99, 101.7, 104.4, 110, 115.6, 121, and 126.7 C. The end point for enterotoxin inactivation by gel diffusion was identical to that by intravenous injection of cats. Limited studies with crude enterotoxin B showed that the crude preparation was slightly more thermostable. The respective D values of crude and purified enterotoxin B were 64.5 and 52.3, 40.5 and 34.4, 29.7 and 23.5, 18.8 and 16.6, and 11.4 and 9.9 min at temperatures of 99, 104.4, 110, 115.6, and 121 C. The z value for purified enterotoxin B was 32.4 C. The experimental activation energy was 20,700 cal/g mole, standard enthalpy of activation at 120 C was 19,900 cal/g mole, standard entropy of activation at 120 C was -21.4 cal/g mole K, and the standard free energy of activation at 120 C was 28,200 cal/g mole.  相似文献   

18.
Thermal inactivation of nonproteolytic Clostridium botulinum type E spores was investigated in rainbow trout and whitefish media at 75 to 93 degrees C. Lysozyme was applied in the recovery of spores, yielding biphasic thermal destruction curves. Approximately 0.1% of the spores were permeable to lysozyme, showing an increased measured heat resistance. Decimal reduction times for the heat-resistant spore fraction in rainbow trout medium were 255, 98, and 4.2 min at 75, 85, and 93 degrees C, respectively, and those in whitefish medium were 55 and 7.1 min at 81 and 90 degrees C, respectively. The z values were 10.4 degrees C in trout medium and 10.1 degrees C in whitefish medium. Commercial hot-smoking processes employed in five Finnish fish-smoking companies provided reduction in the numbers of spores of nonproteolytic C. botulinum of less than 10(3). An inoculated-pack study revealed that a time-temperature combination of 42 min at 85 degrees C (fish surface temperature) with >70% relative humidity (RH) prevented growth from 10(6) spores in vacuum-packaged hot-smoked rainbow trout fillets and whole whitefish stored for 5 weeks at 8 degrees C. In Finland it is recommended that hot-smoked fish be stored at or below 3 degrees C, further extending product safety. However, heating whitefish for 44 min at 85 degrees C with 10% RH resulted in growth and toxicity in 5 weeks at 8 degrees C. Moist heat thus enhanced spore thermal inactivation and is essential to an effective process. The sensory qualities of safely processed and more lightly processed whitefish were similar, while differences between the sensory qualities of safely processed and lightly processed rainbow trout were observed.  相似文献   

19.
The thermal resistance of spore crops produced from each of two ileal loop-reactive strains of Clostridium perfringens type A was determined in two suspending vehicles consisting of 0.067 M (pH 7.0) phosphate buffer and a commercial beef gravy. D115.6 values obtained in buffer and enumerated after pretreatment with sodium ethylenediaminetetraacetate and recovery in plating medium containing lysozyme were two- to threefold greater than those obtained without this treatment. D115.6 values obtained with beef gravy were less than those obtained in buffer with or without lysozyme; however, the D98.9 and D104.4 values were 1.3 to 2 times greater than those obtained in buffer with lysozyme. The z values were within the ranges reported by previous investigators.  相似文献   

20.
Effect of thermal treatments in oils on bacterial spore survival   总被引:2,自引:2,他引:0  
The heat resistance of Bacillus cereus F4165/75, Clostridium sporogenes PA 3679 and Cl. botulinum 62A spores suspended in buffer (pH 7˙2), olive oil and a commercial oil (a mixture of rapeseed oil and soy oil) was investigated. Linear survivor curves were obtained with B. cereus spores in the three menstrua and with 62A and PA 3679 spores suspended in buffer. However, the inactivation kinetics of the clostridial spores suspended in oils were concave upward with a characteristic tailing-off for 62A spores suspended in olive oil. These deviations from the semi-log model could not be ascribed to a heterogeneity in heat resistance of the spore population or to the variation of aw during heating. Spore resistance to heat increased in the order: buffer ⋖ commercial oil < olive oil. The greater heat resistance of oil-suspended spores was ascribed to the low aw (0˙479 and 0˙492 for commercial oil and olive oil, respectively) and to the composition of the oils. The difference in z values ( ca 28°C in oils and 10°-12°C in buffer) suggested that the mechanism of inactivation differs for spores suspended in lipids and in aqueous systems. The thermodynamic data were consistent with this hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号