首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Photosystem II (PS II) manganese stabilizing protein (MSP) possesses characteristics, including thermostability, ascribed to the natively unfolded class of proteins (Lydakis-Simantiris et al. (1999) Biochemistry 38: 404–414). A site-directed mutant of MSP, C28A, C51A, which lacks the -S–S- bridge, also binds to PS II at wild-type levels and reconstitutes oxygen evolution activity [Betts et al. (1996) Biochim Biophys Acta 1274: 135–142], although the mutant protein is even more disordered in solution. Both WT and C28A, C51A MSP aggregate upon heating, but an examination of the effects of protein concentration and pH on heat-induced aggregation showed that each MSP species exhibited greater resistance to aggregation at a pH near their pI (5.2) than do either bovine serum albumin (BSA) or carbonic anhydrase, which were used as model water soluble proteins. Increases in pH above the pI of the MSPs and BSA enhanced their aggregation resistance, a behavior which can be predicted from their charge (MSP) or a combination of charge and stabilization by -S–S- bonds (BSA). In the case of aggregation resistance by MSP, this is likely to be an important factor in its ability to avoid unproductive self-association reactions in favor of formation of the protein–protein interactions that lead to formation of the functional oxygen evolving complex.  相似文献   

2.
The sll1418 gene encodes a PsbP-like protein in Synechocystis sp. PCC 6803. Expression of sll1418 was similar in BG-11 and in Cl- or Ca2+-limiting media, and inactivation of sll1418 did not prevent photoautotrophic growth in normal or nutrient-limiting conditions. Also the wild-type and ΔPsbP strains exhibited similar oxygen evolution and assembly of Photosystem II (PS II) centers. Inactivation of sll1418 in the ΔPsbO: ΔPsbP, ΔPsbQ:ΔPsbP, ΔPsbU:ΔPsbP and ΔPsbV:ΔPsbP mutants did not prevent photoautotrophy or alter PS II assembly and oxygen evolution in these strains. Moreover, the absence of PsbP did not affect the ability of alkaline pH to restore photoautotrophic growth in the ΔPsbO:ΔPsbU strain. The PsbO, PsbU and PsbV proteins are required for thermostability of PS II and thermal acclimation in Synechocystis sp. PCC 6803 [Kimura et al. (2002) Plant Cell Physiol 43: 932–938]. However, thermostability and thermal acclimation in ΔPsbP cells were similar to wild type. These results are consistent with the conclusion that PsbP is associated with ∼3 of PS II centers, and may play a regulatory role in PS II [Thornton et al. (2004) Plant Cell 16: 2164–2175].  相似文献   

3.
We present a unifying mechanism for photoinhibition based on current obsevations from in vivo studies rather than from in vitro studies with isolated thylakoids or PS II membranes. In vitro studies have limited relevance for in vivo photoinhibition because very high light is used with photon exposures rarely encountered in nature, and most of the multiple, interacting, protective strategies of PS II regulation in living cells are not functional. It is now established that the photoinactivation of Photosystem II in vivo is a probability and light-dosage event which depends on the photons absorbed and not the irradiance per se. As the reciprocity law is obeyed and target theory analysis strongly suggests that only one photon is required, we propose that a single dominant molecular mechanism occurs in vivo with one photon inactivating PS II under limiting, saturating or sustained high light. Two mechanisms have been proposed for photoinhibition under high light, acceptor-side and donor-side photoinhibition [see Aro et al. (1994) Biochim Biophys Acta 1143: 113–134], and another mechanism for very low light, the low-light syndrome [Keren et al. (1995) J Biol Chem 270: 806–814]. Based on the exciton-radical pair equilibrium model of exciton dynamics, we propose a unifying mechanism for the photoinactivation of PS II in vivo under steady-state photosynthesis that depends on the generation and maintenance of increased concentrations of the primary radical pair, P680+Pheo, and the different ways charge recombination is regulated under varying environmental conditions [Anderson et al. (1997) Physiol Plant 100: 214–223]. We suggest that the primary cause of damage to D1 protein is P680+, rather than singlet O2 formed from triplet P680, or other reactive oxygen species.  相似文献   

4.
The PS II–LHC II supercomplex is a novel type of oxygen evolving Photosystem II (PS II) core particle that contains the light harvesting complex proteins Lhcb1/2/4/5 in addition to the PS II reaction centre, oxygen evolving complex (OEC) and inner antennae [Hankamer et al. (1997) Eur J Biochem 243: 422–429]. The 33 and 23 kDa extrinsic proteins in these particles have been localised by image analysis of electron micrographs and averaging techniques [Boekema et al. (1998) Eur J Biochem 252: 268–276]. To assay the functionality of the water splitting complex, we compared the single flash P680+ reduction kinetics in these supercomplexes with those of PS II-rich granal stack membranes (BBYs). We found that the P680+ reduction kinetics in PS II–LHC II supercomplexes were indistinguishable from those in BBYs. We also examined a number of PS II core particles lacking the Lhcb components. All of these had different P680+ reduction kinetics, which we attributed to partial loss of OEC function before and during the measurements.  相似文献   

5.
The O2-evolution deficient mutant (LF-1) of Scenedesmus obliquus inserts an unprocessed D1 protein into the thylakoid membrane and binds less than half the wild type (WT) level of Mn. LF-1 photosystem II (PS II) membrane fragments lack that part of the high-affinity Mn2+-binding site found in WT membranes which may be associated with histidine residues on the D1 protein (Seibert et al. 1989 Biochim Biophys Acta 974: 185–191). Hsu et al. (1987 Biochim Biophys Acta 890: 89–96) purport that the high-affinity site (characterized by competitive inhibition of DPC-supported DCIP photoreduction by M concentrations of Mn2+) in Mn-extracted PS II membranes is also the binding site for Mn functional in O2 evolution. Proteases (papain, subtilisin, and carboxypeptidase A) can be used to regenerate the high-affinity Mn2+-binding site in LF-1 PS II membranes but not in thylakoids. Experiments with the histidine modifier, DEPC, suggest that the regenerated high-affinity Mn2+-binding sites produced by either subtilisin or carboxypeptidase A treatments were the same sites observed in WT membranes. However, none of the protease treatments produced LF-1 PS II membranes that could be photoactivated. Reassessment of the processing studies of Taylor et al. (1988 FEBS Lett 237: 229–233) lead us to believe that their procedure also does not result in substantial photoactivation of LF-1 PS II membranes. We conclude that (1) the unprocessed carboxyl end of the D1 protein in LF-1 is located on the lumenal side of the PS II membrane, (2) the unprocessed fragment physically obstructs or perturbs that part of the high-affinity Mn2+-binding site undetectable in LF-1, and (3) the D1 protein must be processed at the time of insertion into the membrane for normal O2-evolution function to result.Abbreviations Chl chlorophyll - DCBQ 2,6-dichloro-1,4-benzoquinone - DCIP 2,6-dichlorophenol indophenol - DEPC diethylpryocarbonate - DPC 1,5-diphenylcarbazide - HEPES 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid - LDS-PAGE lithium dodecylsulfate polyacrylamide gel electrophoresis - LF-1 a low-fluorescent mutant of Scenedesmus obliquus - MES 4-morpholineethanesulfonic acid - PS II photosystem II - PMSF phenylmethylsulfonyl fluoride - RC photosystem II reaction center - Tris tris(hydroxymethyl)aminomethane - WT wild type Operated by the Midwest Research Institute for the U.S. Department of Energy under contract DE-AC-02-83CH10093.  相似文献   

6.
Quantitative data on laser flash-induced variable fluorescence in the 100 ns to 1 ms time range (Belyaeva et al. in Photosynth Res 98:105–119, 2008) confirming those of others (Steffen et al. in Biochemistry 40:173–180, 2001, Biochemistry 44:3123–3132, 2005; Belyaeva et al. in Biophysics 51(6):976–990, 2006), need a substantial correction with respect to magnitude of the normalized variable fluorescence associated with single turnover-induced charge separation in RCs of PS II. Their data are conclusive with the involvement of donor side quenching, the release of which occurs with a rate constant in the range of tens of ms−1, and presumed to be associated with reduction of Y\textz + Y_{\text{z}}^{ + } by the OEC.  相似文献   

7.
Two cysteine residues of the extrinsic 33 kDa protein in the oxygen-evolving photosystemII (PS II) complexes were found to exist as cystine residues in situ. The 33 kDa protein, when reduced by 2-mercaptoethanol in either the presence or the absence of 6 M guanidine-HCl (Gdn-HCl), could not rebind with the CaCl2-treated PS II complexes, from which the 33 kDa protein was removed, and evolve any oxygen. Two sulfhydryl (SH) groups of the 33 kDa protein were easily reoxidized to a disulfide (S-S) bond by stirring under aerobic conditions with the concomitant regaining of both the binding ability to the CaCl2-treated PS II complexes and the oxygen-evolving activity.The molecular conformation of the 33 kDa protein was examined by circular dichroic (CD) spectrometry in the UV regions to reveal that the conformation in the reduced state was completely different from those of the untreated and reoxidized states. The disulfide (S-S) bond of the 33 kDa protein is thus essential to maintain the molecular conformation required to function.Abbreviations CD circular dichroism - Chl chlorophyll - DMQ 2,5-dimethyl-p-benzoquinone - DTNB 5,5-dithio-bis (2-nitrobenzoic acid) - EDTA ethylendiamine-tetraacetic acid - Gdn-HCl guanidine-hydrochloric acid - PS II photosystem II - SDS sodium dodecylsulfate This paper was presented at the U.S.-Japan Binational Seminar on Solar Energy Conversion, Okazaki, Japan, March 17–21, 1987  相似文献   

8.
β2-glycoprotein I (β2GPI) is an abundant multidomain plasma protein that plays various roles in the clotting and complement cascades. It is also the main target of antiphospholipid antibodies (aPL) in the acquired coagulopathy known as antiphospholipid syndrome (APS). Previous studies have shown that β2GPI adopts two interconvertible biochemical conformations, oxidized and reduced, depending on the integrity of the disulfide bonds. However, the precise contribution of the disulfide bonds to β2GPI structure and function is unknown. Here, we substituted cysteine residues with serine to investigate how the disulfide bonds C32-C60 in domain I (DI) and C288-C326 in domain V (DV) regulate β2GPI''s structure and function. Results of our biophysical and biochemical studies support the hypothesis that the C32-C60 disulfide bond plays a structural role, whereas the disulfide bond C288-C326 is allosteric. We demonstrate that absence of the C288-C326 bond, unlike absence of the C32-C60 bond, diminishes membrane binding without affecting the thermodynamic stability and overall structure of the protein, which remains elongated in solution. We also document that, while absence of the C32-C60 bond directly impairs recognition of β2GPI by pathogenic anti-DI antibodies, absence of the C288-C326 disulfide bond is sufficient to abolish complex formation in the presence of anionic phospholipids. We conclude that the disulfide bond C288-C326 operates as a molecular switch capable of regulating β2GPI''s physiological functions in a redox-dependent manner. We propose that in APS patients with anti-DI antibodies, selective rupture of the C288-C326 disulfide bond may be a valid strategy to lower the pathogenic potential of aPL.  相似文献   

9.
Duarte HM  Jakovljevic I  Kaiser F  Lüttge U 《Planta》2005,220(6):809-816
Dynamic patchiness of photosystem II (PSII) activity in leaves of the crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana Hamet et Perrier, which was independent of stomatal control and was observed during both the day/night cycle and circadian endogenous oscillations of CAM, was previously explained by lateral CO2 diffusion and CO2 signalling in the leaves [Rascher et al. (2001) Proc Natl Acad Sci USA 98:11801–11805; Rascher and Lüttge (2002) Plant Biol 4:671–681]. The aim here was to actually demonstrate the importance of lateral CO2 diffusion and its effects on localized PSII activity. Covering small sections of entire leaves with silicone grease was used for local exclusion of a contribution of atmospheric CO2 to internal CO2 via transport through stomata. A setup for combined measurement of gas exchange and chlorophyll fluorescence imaging was used for recording photosynthetic activity with a spatiotemporal resolution. When remobilization of malic acid from vacuolar storage and its decarboxylation in the CAM cycle caused increasing internal CO2 concentrations sustaining high PSII activity behind closed stomata, PSII activity was also increased in adjacent leaf sections where vacuolar malic acid accumulation was minimal as a result of preventing external CO2 supply due to leaf-surface greasing, and where therefore CO2 could only be supplied by diffusion from the neighbouring malic acid-remobilizing leaf tissue. This demonstrates lateral CO2 diffusion and its effect on local photosynthetic activity.  相似文献   

10.
Our previous results indicate that during protoplast isolation an oxidative burst occurs [A.K. Papadakis and KA Roubelakis-Angelakis (1999) Plant Physiol 127:197–205] and that suppression of totipotency is correlated with reduced antioxidant activity and low redox state [A.K. Papadakis et al. (2001b) Plant Physiol 126:434–444]. Polyamines are known to affect cell development and to act as antioxidants. Polyamines applied during isolation of tobacco (Nicotiana tabacum L.) protoplasts reduced the accumulation of O2· but not that of H2O2. This antioxidant effect is probably due to the inhibition of microsomal membrane NADPH oxidase, which occurred in a concentration-dependent manner, with spermine exerting the highest inhibitory effect. However, during protoplast culture, polyamine oxidase activity increased severalfold in spermidine- and spermine-treated protoplasts, concomitant with H2O2 titers. A cell death program was executed in untreated protoplasts, as documented by membrane malfunction, induced DNase activity, DNA fragmentation and a positive TUNEL reaction. Protoplast cell death was prevented in protoplasts treated with putrescine, but not by treatment with spermidine or spermine, which rather had the opposite effect. The data presented suggest that PAs may be implicated in the expression of plant protoplast totipotency.  相似文献   

11.
Exposure of Photosystem II (PS II) membrane particles from spinach to a temperature of 47 °C caused the rapid release of the 18 kDa protein in parallel to inactivation of oxygen evolution. Previously, it has been suggested that the first heat-jump response involves rapid Ca release from the Mn complex of O2-evolution, followed by the slower release of (2 + 2) MnII ions [Pospisil P et al. (2003) Biophys J 84: 1370–1386]. Here, the predicted biphasic MnII release to the bulk was verified by atomic absorption spectroscopy (AAS). Analysis of laser flash-induced delayed fluorescence transients suggests that the loss of the essential Ca ion from the Mn4Ca complex in the dark is due to the loss of the 18 kDa protein. The S2-state multiline EPR signal of the Mn complex was still generated in heat-treated PS II presumably lacking Ca, but retaining four Mn ions.Dedicated to Professor Norio Murata on the occasion of his retirement  相似文献   

12.
We have investigated the circular dichroism spectral transients associated with the light-induced reversible reorganizations in chirally organized macrodomains of pea thylakoid membranes and loosely stacked lamellar aggregates of the main chlorophyll a/b light harvesting complexes (LHCII) isolated from the same membranes. These reorganizations have earlier been assigned to originate from a thermo-optic effect. According to the thermo-optic mechanism, fast local thermal transients due to dissipation of the excess excitation energy induce elementary structural changes in the close vicinity of the dissipation [Cseh et al. (2000) Biochemistry 39: 15250–15257]. Here we show that despite the markedly different CD spectra in the dark, the transient (light-minus-dark) CD spectra associated with the structural changes induced by high light in thylakoids and LHCII are virtually indistinguishable. This, together with other close similarities between the two systems, strongly suggests that the gross short-term, thermo-optically induced structural reorganizations in the membranes occur mainly, albeit probably not exclusively, in the LHCII-only domains [Boekema et al. (2000) J Mol Biol 301: 1123–1133]. Hence, LHCII-only domains might play an important role in light adaptation and photoprotection of plants.  相似文献   

13.
The 53-amino-acid trypsin inhibitor 1 from Nicotiana alata (T1) belongs to the potato type II family also known as the PinII family of proteinase inhibitors, one of the major families of canonical proteinase inhibitors. T1 contains four disulfide bonds, two of which (C4-C41 and C8-C37) stabilize the reactive-site loop. To investigate the influence of these two disulfide bonds on the structure and function of potato II inhibitors, we constructed two variants of T1, C4A/C41A-T1 and C8A/C37A-T1, in which these two disulfide bonds were individually removed and replaced by alanine residues. Trypsin inhibition assays show that wild-type T1 has a Ki of < 5 nM, C4A/C41A-T1 has a weaker Ki of ∼ 350 nM, and the potency of the C8A/C37A variant is further decreased to a Ki of ∼ 1.8 μM. To assess the influence of the disulfide bonds on the structure of T1, we determined the structure and dynamics of both disulfide variants by NMR spectroscopy. The structure of C4A/C41A-T1 and the amplitude of intrinsic flexibility in the reactive-site loop resemble that of the wild-type protein closely, despite the lack of the C4-C41 disulfide bond, whereas the timescale of motions is markedly decreased. The rescue of the structure despite loss of a disulfide bond is due to a previously unrecognized network of interactions, which stabilizes the structure of the reactive-site loop in the region of the missing disulfide bond, while allowing intrinsic motions on a fast (picosecond-nanosecond) timescale. In contrast, no comparable interactions are present around the C8-C37 disulfide bond. Consequently, the reactive-site loop becomes disordered and highly flexible in the structure of C8A/C37A-T1, making it unable to bind to trypsin. Thus, the reactive-site loop of T1 is stabilized differently by the C8-C37 and C4-C41 disulfide bonds. The C8-C37 disulfide bond is essential for the inhibitory activity of T1, whereas the C4-C41 disulfide bond is not as critical for maintaining the three-dimensional structure and function of the molecule but is responsible for maintaining flexibility of the reactive-site loop on a microsecond-nanosecond timescale.  相似文献   

14.
Photoinactivation of Photosystem (PS) II in vivo was investigated by cumulative exposure of pea, rice and spinach leaves to light pulses of variable duration from 2 to 100 s, separated by dark intervals of 30 min. During each light pulse, photosynthetic induction occurred to an extent depending on the time of illumination, but steady-state photosynthesis had not been achieved. During photosynthetic induction, it is clearly demonstrated that reciprocity of irradiance and duration of illumination did not hold: hence the same cumulative photon exposure (mol m–2) does not necessarily give the same extent of photoinactivation of PS II. This contrasts with the situation of steady-state photosynthesis where the photoinactivation of PS II exhibited reciprocity of irradiance and duration of illumination (Park et al. (1995) Planta 196: 401–411). We suggest that, for reciprocity to hold between irradiance and duration of illumination, there must be a balance between photochemical (qP) and non-photochemical (NPQ) quenching at all irradiances. The index of susceptibility to light stress, which represents an intrinsic ability of PS II to balance photochemical and non-photochemical quenching, is defined by the quotient (1-qP)/NPQ. Although constant in steady-state photosynthesis under a wide range of irradiance (Park et al. (1995). Plant Cell Physiol 36: 1163–1169), this index of susceptibility for spinach leaves declined extremely rapidly during photosynthetic induction at a given irradiance, and, at a given cumulative photon exposure, was dependent on irradiance. During photosynthetic induction, only limited photoprotective strategies are developed: while the transthylakoid pH gradient conferred some degree of photoprotection, neither D1 protein turnover nor the xanthophyll cycle was operative. Thus, PS II is more easily photoinactivated during photosynthetic induction, a phenomenon that may have relevance for understorey leaves experiencing infrequent, short sunflecks.Abbreviations D1 protein psbA gene product - DTT dithiothreitol - Fv, Fm, Fo variable, maximum, and initial (corresponding to open traps) chlorophyll fluorescence yield, respectively - NPQ non-photochemical quenching - PS Photosystem - QA primary quinone acceptor of PS II - qP photochemical quenching coefficient  相似文献   

15.
The compactness of ribonuclease A with intact disulfide bonds and reduced ribonuclease A was investigated by synchrotron small-angle X-ray scattering. The Rg values and the Kratky plots showed that non-reduced ribonuclease A maintain a compact shape with a Rg value of about 17.3 Å in 8 M urea. The reduced ribonuclease A is more expanded, its Rg value is about 20 Å in 50 mM Tris-HCl buffer at pH 8.1 containing 20 mM DTT. Further expansions of reduced ribonuclease A were observed in the presence of high concentrations of denaturants, indicating that reduced ribonuclease A is more expanded and is in neither a random coil [A. Noppert et al., FEBS Lett. 380 (1996) 179–182] nor a compact denatured state [T.R. Sosnick and J. Trewhella, Biochemistry 31 (1992) 8329–8335]. The four disulfide bonds keep ribonuclease A in a compact state in the presence of high concentrations of urea.  相似文献   

16.
This short communication addresses three topics of photosynthetic water cleavage in Photosystem II (PS II): (a) effect of protonation in the acidic range on the extent of the ‘fast’ ns kinetics of P680 reduction by YZ, (b) mechanism of O–O bond formation and (c) role of protein flexibility in the functional integrity of PS II. Based on measurements of light-induced absorption changes and quasielastic neutron scattering in combination with mechanistic considerations, evidence is presented for the protein acting as a functionally active constituent of the water cleavage machinery, in particular, for directed local proton transfer. A specific flexibility emerging above a threshold of about 230 K is an indispensable prerequisite for oxygen evolution and plastoquinol formation.  相似文献   

17.
The psbO gene of cyanobacteria, green algae and higher plants encodes the precursor of the 33 kDa manganese-stabilizing protein (MSP), a water-soluble subunit of photosystem II (PSII). Using a pET-T7 cloning/expression system, we have expressed in Escherichia coli a full-length cDNA clone of psbO from Arabidopsis thaliana. Upon induction, high levels of the precursor protein accumulated in cells grown with vigorous aeration. In cells grown under weak aeration, the mature protein accumulated upon induction. In cells grown with moderate aeration, the ratio of precursor to mature MSP decreased as the optical density at induction increased. Both forms of the protein accumulated as inclusion bodies from which the mature protein could be released under mildly denaturing conditions that did not release the precursor. Renatured Arabidopsis MSP was 87% as effective as isolated spinach MSP in restoring O2 evolution activity to MSP-depleted PSII membranes from spinach; however, the heterologous protein binds to spinach PSIIs with about half the affinity of the native protein. We also report a correction to the previously published DNA sequence of Arabidopsis psbO (Ko et al., Plant Mol Biol 14 (1990) 217–227).  相似文献   

18.
The precursor to the nuclear-coded 17 kDa early light-inducible protein (ELIP) of pea has been transported into isolated intact chloroplasts. The location of the mature protein in the thylakoid membranes was investigated after using cleavable crosslinkers such as DSP and SAND in conjunction with immuno-fractionation methods and by application of mild detergent fractionation. We show that ELIP is integrated into the membranes via the unstacked stroma thylakoids. After isolation of protein complexes by solubilization of membranes with Triton X-100 and sucrose density-gradient centrifugation the crosslinked ELIP comigrates with the PS II core complex. Using SAND we identified ELIP as a 41–51 kDa crosslinked product while with DSP four products of 80 kDa, 70 kDa, 50–42 kDa and 23–21 kDa were found. The immunoprecipitation data suggested that the D1-protein of the PS II complex is one of the ELIP partners in crosslinked products.Abbreviations chl chlorophyll - D1 herbicide-binding protein - DSP dithiobis-(succinimidylpropionate) - ELIP early light-inducible protein - LHC I and LHC II light-harvesting chlorophyll a/b complex associated with photosystem I or II - PAGE polyacrylamide gel electrophoresis - poly(A)-rich RNA polyadenyd mRNA - PS I and PS II photosystems I and II - SAND sulfosuccinimidyl 2-(m-azido-o-nitro-benzamido)-ethyl-1,3-dithiopropionate - Triton X-100 octylphenoxypolyethoxyethanol  相似文献   

19.
Thylakoids isolated from cells of the red alga Porphyridium cruentum exhibit an increased PS I activity on a chlorophyll basis with increasing growth irradiance, even though the stoichiometry of Photosystems I and II in such cells shows little change (Cunningham et al. (1989) Plant Physiol 91: 1179–1187). PS I activity was 26% greater in thylakoids of cells acclimated at 280 mol photons · m–2 · s–1 (VHL) than in cells acclimated at 10 mol photons · m–2 · s–1 (LL), indicating a change in the light absorbance capacity of PS I. Upon isolating PS I holocomplexes from VHL cells it was found that they contained 132±9 Chl/P700 while those obtained from LL cells had 165±4 Chl/P700. Examination of the polypeptide composition of PS I holocomplexes on SDS-PAGE showed a notable decrease of three polypeptides (19.5, 21.0 and 22 kDa) in VHL-complexes relative to LL-complexes. These polypeptides belong to a novel LHC I complex, recently discovered in red algae (Wolfe et al. (1994a) Nature 367: 566–568), that lacks Chl b and includes at least six different polypeptides. We suggest that the decrease in PS I Chl antenna size observed with increasing irradiance is attributable to changes occurring in the LHC I-antenna complex. Evidence for a Chl-binding antenna complex associated with PS II core complexes is lacking at this point. LHC II-type polypeptides were not observed in functionally active PS II preparations (Wolfe et al. (1994b) Biochimica Biophysica Acta 1188: 357–366), nor did we detect polypeptides that showed immunocross-reactivity with LHC II specific antisera (made to Chlamydomonas and Euglena LHC II).Abbreviations Bis-Tris bis(2-hydroxyethyl)imino-tris(hydroxymethyl)methane - DCPIP 2,6-dichlorophenol indophenol - -dm dodecyl--d-maltoside - HL high light of 150 mol photons · m–2 · s–1 - LGB lower green band - LHC I light-harvesting complex of PS I - LHC II light-harvesting complex of PS II - LL low light of 10 mol photons · m–2 · s–1 - ML medium light of 50 mol photons · m–2 · s–1 - MES 2-(N-morpholino) ethanesulfonic acid - P700 reaction center of PS I - PFD photon flux density - Trizma tris(hydroxymethyl)aminomethane - UGB upper green band - VHL very high light of 280 mol photons · m–2 · s–1  相似文献   

20.
It is shown that step-scan Fourier transform infrared spectroscopy can be applied to resolve the QA QB QAQB transition in Rhodobacter sphaeroides reaction centres with a 5 µs time resolution. In the mid-infrared region (1900 – 1200 cm–1), transient signals previously assigned to QA/B and QA/B vibrations, respectively (Brudler et al. 1994; Brudler et al. 1995; Breton and Nabedryk 1996), can be resolved with this new technique. In addition, the three small positive bands in the spectral region of the carboxylic C=O stretching modes of acidic amino acid side chains are also resolved at 1730, 1719 and 1704 cm–1. A global fit analysis yields two exponentials with half-times of 150 µs and 1.2 ms in agreement with IR spectroscopic studies at single wavenumbers (Hienerwadel et al. 1995), in the UV/VIS and near IR (Tiede et al. 1996, Li et al. 1996). The establishement of the step-scan technique enables a new approach to elucidate the molecular mechanism of this transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号