首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A singular feature of human neutrophils is that they constitutively express substantial amounts of NF-kappaB/Rel proteins and IkappaB-alpha in the nucleus. In this study, we show that in these cells, IkappaB kinase alpha (IKKalpha), IKKbeta, and IKKgamma also partially localize to the nucleus, whereas IKK-related kinases (IKKepsilon, TANK-binding kinase-1) are strictly cytoplasmic, and the NF-kappaB-inducing kinase is strictly nuclear. Following neutrophil activation, IKKbeta and IKKgamma become transiently phosphorylated in both the cytoplasm and nucleus, whereas IKKalpha transiently vanishes from both compartments in what appears to be an IKKbeta-dependent process. These responses are paralleled by the degradation of IkappaB-alpha, and by the phosphorylation of RelA on serine 536, in both compartments. Although both proteins can be IKK substrates, inhibition of IKK prevented IkappaB-alpha phosphorylation, while that of RelA was mostly unaffected. Finally, we provide evidence that the nuclear IKK isoforms (alpha, beta, gamma) associate with chromatin following neutrophil activation, which suggests a potential role in gene regulation. This is the first study to document IKK activation and the phosphorylation of NF-kappaB/Rel proteins in primary neutrophils. More importantly, our findings unveil a hitherto unsuspected mode of activation for the IKK/IkappaB signaling cascade within the cell nucleus.  相似文献   

2.
3.
The nuclear factor (NF)-kappaB pathway is a paradigm for gene expression control by ubiquitin-mediated protein degradation. In stimulated cells, phosphorylation by the IkappaB kinase (IKK) complex primes NF-kappaB-inhibiting IkappaB molecules for lysine (Lys)-48-linked polyubiquitination and subsequent destruction by the 26S proteasome. However, recent studies indicate that the ubiquitin (Ub) system controls NF-kappaB pathways at many levels. Ub ligases are activated by different upstream signalling pathways, and they function as central regulators of IKK and c-Jun amino-terminal kinase activation. The assembly of Lys 63 polyUb chains provides docking surfaces for the recruitment of IKK-activating complexes, a reaction that is counteracted by deubiquitinating enzymes. Furthermore, Ub conjugation targets upstream signalling mediators as well as nuclear NF-kappaB for post-inductive degradation to limit the duration of signalling.  相似文献   

4.
Recent investigations have elucidated the cytokine-induced NF-kappaB activation pathway. IkappaB kinase (IKK) phosphorylates inhibitors of NF-kappaB (IkappaBs). The phosphorylation targets them for rapid degradation through a ubiquitin-proteasome pathway, allowing the nuclear translocation of NF-kappaB. We have examined the possibility that IKK can phosphorylate the p65 NF-kappaB subunit as well as IkappaB in the cytokine-induced NF-kappaB activation. In the cytoplasm of HeLa cells, the p65 subunit was rapidly phosphorylated in response to TNF-alpha in a time dependent manner similar to IkappaB phosphorylation. In vitro phosphorylation with GST-fused p65 showed that a p65 phosphorylating activity was present in the cytoplasmic fraction and the target residue was Ser-536 in the carboxyl-terminal transactivation domain. The endogenous IKK complex, overexpressed IKKs, and recombinant IKKbeta efficiently phosphorylated the same Ser residue of p65 in vitro. The major phosphorylation site in vivo was also Ser-536. Furthermore, activation of IKKs by NF-kappaB-inducing kinase induced phosphorylation of p65 in vivo. Our finding, together with previous observations, suggests dual roles for IKK complex in the regulation of NF-kappaB.IkappaB complex.  相似文献   

5.
6.
7.
8.
Toll-like receptor-3 is critically involved in host defense against viruses through induction of type I interferons (IFNs). Recent studies suggest that a Toll/interleukin-1 receptor domain-containing adapter protein (TRIF) and two protein kinases (TANK-binding kinase-1 (TBK1) and IkappaB kinase (IKK)-epsilon) are critically involved in Toll-like receptor-3-mediated IFN-beta production through activation of IFN regulatory factor (IRF)-3 and IRF-7. In this study, we demonstrate that TRIF interacts with both IRF-7 and IRF-3. In addition to TBK1 and IKKepsilon, our results indicate that IKKbeta can also phosphorylate IRF-3 and activate the IFN-stimulated response element. TRIF-induced IRF-3 and IRF-7 activation was mediated by TBK1 and its downstream kinases IKKbeta and IKKepsilon. TRIF induced NF-kappaB activation through an IKKbeta- and tumor necrosis factor receptor-associated factor-6-dependent (but not TBK1- and IKKepsilon-dependent) pathway. In addition, TRIF also induced apoptosis through a RIP/FADD/caspase-8-dependent and mitochondrion-independent pathway. Furthermore, our results suggest that the TRIF-induced IFN-stimulated response element and NF-kappaB activation and apoptosis pathways are uncoupled and provide a molecular explanation for the divergent effects induced by the adapter protein TRIF.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
The IkappaB kinase (IKK)-related kinases, IKKepsilon and TBK1, participate in the induction of type I interferons (IFNs) during viral infections. Deregulated activation of IKKepsilon and TBK1 also contributes to the abnormal cell survival and transformation. However, how these kinases are negatively regulated remains unclear. We show here that the tumor suppressor CYLD has an essential role in preventing aberrant activation of IKKepsilon/TBK1. CYLD deficiency causes constitutive activation of IKKepsilon/TBK1, which is associated with hyper-induction of IFNs in virus-infected cells. We further show that CYLD targets a cytoplasmic RNA sensor, RIG-I, and inhibits the ubiquitination of this IKKepsilon/TBK1 stimulator. Consistent with the requirement of ubiquitination in RIG-I function, CYLD potently inhibits RIG-I-mediated activation of the IFN-beta promoter. These findings establish CYLD as a key negative regulator of IKKepsilon/TBK1 and suggest a role for CYLD in the control of RIG-I ubiquitination.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号