首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rat beige (bg) autosomal recessive gene, causing Chediak-Higashi Syndrome (CHS) in rat, was mapped on Chr 17 by using synteny of rat to mouse and humans. The linkage between the beige gene and PCR-amplified microsatellite markers in (DA-bg x BN)F1 x DA-bg backcross progeny was analysed. The recombination frequency was 9.5% between Prl and Acrm and 19.1% between Acrm and bg. The proposed order of three genes is Prl-Acrm-bg. This rat bg gene was confirmed to be homologus to the beige (bg) gene of mouse located on Chr 13 and the CHS (Lyst) gene of man located on Chr 1 (1q43).  相似文献   

2.
Comparative mapping between the human and the mouse genomes allows characterization of linkage groups that have been conserved over evolution. In this study, genes previously localized to adjacent regions of human chromosome 1 were mapped to discrete regions on distal mouse chromosomes 1 and 3 using an interspecific cross. Linkage analysis in mouse defined two groups in which the gene order appears to be the same as that in humans: 15 genes localized between human chromosome 1q21 and 1q32 were found to span 29.5 cM on distal mouse chromosome 1; 6 genes localized between human chromosome 1q21 and 1p22 spanned 15.6 cM on distal mouse chromosome 3. These data suggest that gene order within large chromosome segments may remain stable over long periods of evolution and that the position of the centromere may reflect a late event in the evolution of higher eukaryotic organisms. These studies provide a model for examination of specific evolutionary events.  相似文献   

3.
We have utilized a panel of Chinese hamster x mouse somatic cell hybrids segregating mouse chromosomes to assign a gene for arylsulfatase A (ARSA) to mouse chromosome 15. Considering our previous assignment of a gene for diaphorase-1 (DIA1) to the same mouse chromosome, we have evidence for another syntenic relationship that has been conserved, since the homologous loci for human ARSA and DIA1 are both located on human chromosome 22. Because MMU 15 and HSA 22 are quite dissimilar in size and banding patterns, we have attempted to identify the conserved portion by regional mapping of human DIA1 and ARSA using somatic cell hybrids segregating a human chromosome translocation t(15;22)(q14;q13.31). The results assign human DIA1 and ARSA to the distal sub-band of 22q13 (region 22q13.31 leads to qter). The locus for mitochondrial aconitase (ACO2) has been separated by the breakpoint from DIA1 and ARSA and is located more proximally.  相似文献   

4.
The Chediak-Higashi syndrome (CHS) is a severe autosomal recessive condition, features of which are partial oculocutaneous albinism, increased susceptibility to infections, deficient natural killer cell activity, and the presence of large intracytoplasmic granulations in various cell types. Similar genetic disorders have been described in other species, including the beige mouse. On the basis of the hypothesis that the murine chromosome 13 region containing the beige locus was homologous to human chromosome 1, we have mapped the CHS locus to a 5-cM interval in chromosome segment 1q42.1-q42.2. The highest LOD score was obtained with the marker D1S235 (Zmax = 5.38; theta = 0). Haplo-type analysis enabled us to establish D1S2680 and D1S163, respectively, as the telomeric and the centromeric flanking markers. Multipoint linkage analysis confirms the localization of the CHS locus in this interval. Three YAC clones were found to cover the entire region in a conting established by YAC end-sequence characterization and sequence-tagged site mapping. The YAC contig contains all genetic markers that are nonrecombinant for the disease in the nine CHS families studied. This mapping confirms the previous hypothesis that the same gene defect causes CHS in human and beige pheno-type in mice and provides a genetic framework for the identification of candidate genes.  相似文献   

5.
Chediak-Higashi Syndrome (CHS) is an autosomal recessive disorder that affects several species including mice, humans, and cattle. Evidence based on clinical characteristics and somatic cell genetics suggests that mutations in a common gene cause CHS in the three species. The CHS locus on human chromosome 1 and mouse chromosome 13 encodes a lysosomal trafficking regulator formerly known as LYST, now known as CHS1, and is defective in CHS patients and beige mice, respectively. We have mapped the CHS locus to the proximal region of bovine chromosome 28 by linkage analysis using microsatellite markers previously mapped to this chromosome. Furthermore, we have identified a missense A:T-->G:C mutation that results in replacement of a histidine with an arginine residue at codon 2015 of the CHS1 gene. This mutation is the most likely cause of CHS in Wagyu cattle. In addition, we describe quick, inexpensive, PCR based tests that will permit elimination of the CHS mutation from Wagyu breeding herds.  相似文献   

6.
Expression specificity of the mouse exonuclease 1 (mExo1) gene.   总被引:1,自引:1,他引:1       下载免费PDF全文
B I Lee  M Shannon  L Stubbs    D M Wilson  rd 《Nucleic acids research》1999,27(20):4114-4120
Genetic recombination involves either the homo-logous exchange of nearly identical chromosome regions or the direct alignment, annealing and ligation of processed DNA ends. These mechanisms are involved in repairing potentially lethal or mutagenic DNA damage and generating genetic diversity within the meiotic cell population and antibody repertoire. We report here the identification of a mouse gene, termed mExo1 for mouse exonuclease 1, which encodes a approximately 92 kDa protein that shares homology to proteins of the RAD2 nuclease family, most notably human 5' to 3' exonuclease Hex1/hExo1, yeast exonuclease 1 (Exo1) proteins and Drosophila melanogaster Tosca. The mExo1 gene maps to distal chromosome 1, consistent with the recent mapping of the orthologous HEX1 / hEXO1 gene to chromosome 1q42-q43. mExo1 is expressed prominently in testis, an area of active homologous recombination, and spleen, a prominent lymphoid tissue. An increased level of mExo1 mRNA was observed during a stage of testis development where cells that are actively involved in meiotic recombination arise first and represent a significant proportion of the germ cell population. Comparative evaluation of the expression patterns of the human and mouse genes, combined with previous biochemical and yeast genetic studies, indicate that the Exo1-like proteins are important contributors to chromosome processing during mammalian DNA repair and recombination.  相似文献   

7.
The mouse gene coding for ribosomal protein L23 (Rpl23) has been fully sequenced, including 580 bp of the 5' upstream region. The 5-kb gene comprises 5 exons and contains an unusually long (3,153 bp) third intron. The gene was mapped to the distal region of mouse chromosome 11, homologous to human chromosome 17q21-->q22.  相似文献   

8.
LEF-1 is a 54-kDa nuclear protein that is expressed specifically in pre-B and T-cells. It binds to a functionally important site in the T-cell receptor alpha enhancer and contributes to maximal enhancer activity. LEF-1 is a member of a family of regulatory proteins that share homology with the high mobility group protein 1 (HMG1). The location of the LEF1 gene on human and mouse chromosomes was determined by Southern blot analysis of DNA from panels of interspecies somatic cell hybrids using a murine cDNA probe. Human-specific DNA fragments were detected in all somatic cell hybrids that retained the human chromosomal region 4cen-q31.2. Fluorescent in situ hybridization with two biotin-labeled overlapping human genomic cosmids revealed a specific hybridization signal at 4q23-q25. The homologous locus in the mouse was mapped to chromosome 3 by Southern analysis of rodent x mouse hybrid cell DNA. This chromosomal location was confirmed by the use of a restriction fragment length polymorphism (RFLP) in recombinant inbred mouse strains. The results of this RFLP analysis indicated that the mouse Lef-1 gene was closely linked to Pmv-39 and Egf and was likely placed between these loci, both of which were previously mapped to distal mouse chromosome 3. Our mapping results did not suggest involvement of this gene in previously mapped genetic disorders or in known neoplasia-associated translocation breakpoints.  相似文献   

9.
One of the larger contiguous blocks of mouse–human genomic homology includes the proximal portion of mouse chromosome 7 and the long arm of human chromosome 19. Previous studies have demonstrated the close relationship between the two regions, but have also indicated significant rearrangements in the relative orders of homologous mouse and human genes. Here we present the genetic locations of the homologs of 42 human chromosome 19q markers in the mouse, with an emphasis on genes also included in the human chromosome 19 physical map. Our results demonstrate that despite an overall inversion of sequences relative to the centromere, apparent “transpositions” of three gene-rich segments, and a local inversion of markers mapping near the 19q telomere, gene content, order, and spacing are remarkably well conserved throughout the lengths of these related mouse and human regions. Although most human 19q markers have remained genetically linked in mouse, one small human segment forms a separate region of homology between human chromosome 19q and mouse chromosome 17. Three of the four rearrangements of mouse versus human 19q sequences involve segments that are located directly adjacent to each other in 19q13.3–q13.4, suggesting either the coincident occurrence of these events or their common association with unstable DNA sequences. These data permit an unusually in-depth examination of this large region of mouse–human genomic homology and provide an important new tool to aid in the mapping of genes and associated phenotypes in both species.  相似文献   

10.
L Stubbs  J Kraus  H Lehrach 《Genomics》1990,7(2):284-288
Murine genes homologous to those contributing to the Down syndrome (DS) phenotype in man are currently of interest because of their potential for providing animal models for the study of specific DS symptoms. Most of the genes mapping to human chromosome 21q22, where the DS genes are concentrated, are related to sequences located on mouse chromosome 16. Others, however, are known to map to mouse chromosome 10, and two genes, cystathionine beta-synthase (Cbs) and alpha-A-crystallin (Crya-1), have been localized to the proximal portion of mouse chromosome 17. In this paper, we show that the two genes mapping to human chromosome 21q22 and mouse chromosome 17 are very tightly linked in mouse, being separated by at least 70 kb, but not more than 130 kb. The very close physical linkage of mouse Cbs and Crya-1, combined with data that localize homologs of the closely flanking markers H2k and Pim-1 to human chromosome 6, suggests that the human 21q22/mouse chromosome 17 conserved segment is of a very limited total physical size and is likely to contain a relatively small number of genes.  相似文献   

11.
Cytochrome P450 17 alpha-hydroxylase/C17-20 lyase (P45017 alpha) catalyzes the conversion of C-21 steroids to C-19 steroids in gonads. A full-length mouse cDNA encoding P450 17 alpha was isolated from a mouse Leydig cell library and characterized by restriction mapping and sequencing. The predicted amino acid sequence has 83% homology to rat, 66% homology to human, and 62% homology to bovine P45017 alpha amino acid sequences. The protein is 507 amino acids in length, which is 1 amino acid shorter than the human protein and 2 amino acids shorter than the bovine protein. The structural gene encoding P450 17 alpha (Cyp17) was localized utilizing an interspecific testcross to mouse chromosome 19, distal to Got-1. Another cytochrome P450, P4502c (Cyp2c), also is located at the distal end of chromosome 19. CYP17, CYP2c, and GOT1 have been mapped to human chromosome 10, with CYP2C and GOT1 mapped to the distal region, q24.3 and q25.3, respectively. The data in the present study indicate conserved syntenic loci on mouse chromosome 19 and human chromosome 10 and predict that the structural gene encoding P45017 alpha will be found distal to GOT1 on human chromosome 10.  相似文献   

12.
Polydactyly is a common malformation of vertebrate limbs. In humans a major locus for nonsyndromic pre-axial polydactyly (PPD) has been mapped previously to 7q36. The mouse Hemimelic extra-toes (Hx) mutation maps to a homologous chromosome segment and has been proposed to affect a homologous gene. To understand the molecular changes underlying PPD, we used a positional cloning approach to identify the gene or genes disrupted by the Hx mutation and a closely linked limb mutation, Hammertoe (Hm). High resolution genetic mapping identified a small candidate interval for the mouse mutations located 1.2 cM distal to the Shh locus. The nonrecombinant interval was completely cloned in bacterial artificial chromosomes and searched for genes using a combination of exon trapping, sample sequencing, and mapping of known genes. Two novel genes, Lmbr1 and Lmbr2, are entirely within the candidate interval we defined genetically. The open reading frame of both genes is intact in mutant mice, but the expression of the Lmbr1 gene is dramatically altered in developing limbs of Hx mutant mice. The correspondence between the spatial and temporal changes in Lmbr1 expression and the embryonic onset of the Hx mutant phenotype suggests that the mouse Hx mutation may be a regulatory allele of Lmbr1. The human ortholog of Lmbr1 maps within the recently described interval for human PPD, strengthening the possibility that both mouse and human limb abnormalities are due to defects in the same highly conserved gene.  相似文献   

13.
Four human homeo box-containing cDNAs isolated from mRNA of an SV40-transformed human fibroblast cell line have been regionally localized on the human gene map. One cDNA clone, c10, was found to be nearly identical to the previously mapped Hox-2.1 gene at 17q21. A second cDNA clone, c1, which is 87% homologous to Hox-2.2 at the nucleotide level but is distinct from Hox-2.1 and Hox-2.2, also maps to this region of human chromosome 17 and is probably another member of the Hox-2 cluster of homeo box-containing genes. The third cDNA clone, c8, in which the homeo box is approximately 84% homologous to the mouse Hox-1.1 homeo box region on mouse chromosome 6, maps to chromosome region 12q12----12q13, a region that is involved in chromosome abnormalities in human seminomas and teratomas. The fourth cDNA clone, c13, whose homeo box is approximately 73% homologous to the Hox-2.2 homeo box sequence, is located at chromosome region 2q31----q37. The human homeo box-containing cluster of genes at chromosome region 17q21 is the human cognate of the mouse homeo box-containing gene cluster on mouse chromosome 11. Other mouse homeo box-containing genes of the Antennapedia class (class I) map to mouse chromosomes 6 (Hox-1, proximal to the IgK locus) and 15 (Hox-3). A mouse gene, En-1, with an engrailed-like homeo box (class II) and flanking region maps to mouse chromosome 1 (near the dominant hemimelia gene). Neither of the class I homeo box-containing genes--c8 and c13--maps to a region of obvious homology to chromosomal positions of the presently known mouse homeo box-containing genes.  相似文献   

14.
DNA from three 1q44-derived human telomeric yeast artificial chromosome clones was analyzed using physical mapping methods. The smallest clone, yRM2004 (65 kb), corresponded exactly to the distal end of the largest clone, yRM2123 (270 kb). The third clone, yRM2192, overlapped with the proximal end of yRM2123 but not the distal end, suggesting that it is most likely a deletion artifact of a clone originally derived from a 1q telomere fragment. Data from fluorescence in situ hybridization analysis, restriction mapping, and RecA-assisted restriction enzyme cleavage experiments indicate that the molecular clone yRM2123 contains a 260-kb DNA fragment colinear with a genomic telomere-terminal fragment from 1q. yRM2123 contains low-copy subtelomeric and subterminal repeats at its distal end, single-copy DNA more centromerically, and a CG-rich region with homology to mouse DNA. Markers derived from this clone will allow telomeric closure of the physical and genetic linkage maps of human chromosome 1q.  相似文献   

15.
Through a combination of radiation hybrid mapping and studies by FISH and zoo-FISH we have made a comparative investigation of the distal portion of rat chromosome 1 (RNO1) and the entire mouse chromosome 19 (MMU19). It was found that homologous segments of RNO1 and MMU19 are similar in banding morphology and in length as determined by several different methods, and that the gene order of the 46 genes studied appears to be conserved across the homologous segments in the two species. High-resolution zoo-FISH techniques showed that MMU19 probes highlight only a continuous segment on RNO1 (1q43-qter), with no detectable signals on other rat chromosomes. We conclude that these data suggest the evolutionary conservation of a chromosomal segment from a common rodent ancestor. This segment now constitutes the entire MMU19 and a large segment distally on RNO1q in the mouse and rat, respectively.  相似文献   

16.
A number of genetic markers, including ATP1A3, TGFB, CKMM, and PRKCG, define the genetic region on human chromosome 19 containing the myotonic dystrophy locus. These and a number of other DNA probes have been mapped to mouse chromosome 7 utilizing a mouse Mus domesticus/Mus spretus interspecific backcross segregating for the genetic markers pink-eye dilution (p) and chinchilla (cch). The establishment of a highly syntenic group conserved between mouse chromosome 7 and human chromosome 19q indicates the likely position of the homologous gene locus to the human myotonic dystrophy gene on proximal mouse chromosome 7. In addition, we have mapped the muscle ryanodine receptor gene (Ryr) to mouse chromosome 7 and demonstrated its close linkage to the Atpa-2, Tgfb-1, and Ckmm cluster of genes. In humans, the malignant hyperthermia susceptibility locus (MHS) also maps close to this gene cluster. The comparative mapping data support Ryr as a candidate gene for MHS.  相似文献   

17.
A Pilz  H Moseley  J Peters  C Abbott 《Genomics》1992,12(4):715-719
The mapping of human chromosome 9 (HSA9) and mouse chromosome 2 (MMU2) has revealed a conserved syntenic region between the distal end of the long arm of chromosome 9 and proximal mouse chromosome 2. Two genes that map to human chromosome 9q34, gelsolin (GSN) and dopamine beta-hydroxylase (DBH), have not previously been located in the mouse. We have used an interspecific backcross to map each of these genes, by Southern blot analysis, to mouse chromosome 2. Gelsolin (Gsn) is tightly linked to the gene for complement component C5 (Hc), and dopamine beta-hydroxylase (Dbh) is just proximal to the Abelson leukemia virus oncogene (Abl) and alpha-spectrin 2 (Spna-2). The loci for gelsolin and dopamine beta-hydroxylase therefore form part of the conserved synteny between HSA9q and MMU2.  相似文献   

18.
Cat eye syndrome (CES) is associated with a duplication of a segment of human chromosome 22q11.2. Only one gene,ATP6E, has been previously mapped to this duplicated region. We now report the mapping of the human homologue of the apoptotic agonistBidto human chromosome 22 near locus D22S57 in the CES region. Dosage analysis demonstrated thatBIDis located just distal to the CES region critical for the majority of malformations associated with the syndrome (CESCR), as previously defined by a single patient with an unusual supernumerary chromosome. However,BIDremains a good candidate for involvement in CES-related mental impairment, and its overexpression may subtly add to the phenotype of CES patients. Our mapping of murineBidconfirms that the synteny of the CESCR and the 22q11 deletion syndrome critical region immediately telomeric on human chromosome 22 is not conserved in mice.Bidand adjacent geneAtp6ewere found to map to mousechromosome 6, while the region homologous to the DGSCR is known to map to mouse chromosome 16.  相似文献   

19.
Spinal muscular atrophy (SMA) is a relatively common, autosomal recessively inherited neurodegenerative disorder that maps to human chromosome 5q13. This region of the human genome has an intricate genomic structure that has complicated the evaluation of SMA candidate genes. We have chosen to study the mouse region syntenic for human SMA in the hope that the homologous mouse interval would contain the same genes as human 5q13 on a simpler genomic background. Here, we report the mapping of such a region to mouse chromosome 13 and to the critical interval forLgn1,a mouse locus responsible for modulating the intracellular replication and pathogenicity of the bacteriumLegionella pneumophila.We have generated a mouse YAC contig across theLgn1/Smainterval and have mapped the two flanking gene markers for the human SMA locus, MAP1B and CCNB1, onto this contig. In addition, we have localized the two SMA candidate genes, SMN and NAIP, to theLgn1critical region, making these two genes candidates for theLgn1phenotype. Upon subcloning of the YAC contig into P1s and BACs, we have detected a large, low copy number repeat that contains at least one copy ofNaipexon 5. Identification of theLgn1gene will either provide a novel function for SMN or NAIP or reveal the existence of another, yet uncharacterized gene in the SMA critical region. Mutations in such a gene might help to explain some of the phenotypic variability among the human SMAs.  相似文献   

20.
Chromosomal locations of theAtm(ataxia–telangiectasia (AT)-mutated) andAcat1(mitochondrial acetoacetyl-CoA thiolase) genes in mouse, rat, and Syrian hamster were determined by direct R-banding FISH. Both genes were colocalized to the C-D band of mouse chromosome 9, the proximal end of q24.1 of rat chromosome 8, and qa4–qa5 of Syrian hamster chromosome 12. The regions in the mouse and rat were homologous to human chromosome 11q. Fine genetic linkage mapping of the mouse AT region was performed using the interspecific backcross mice.Atm, Acat1,andNpat,which is a new gene isolated from the AT region, and 12 flanking microsatellite DNA markers were examined. No recombinations were found among theAtm, Npat, Acat1,andD9Mit6loci, and these loci were mapped 2.0 cM distal toD9Mit99and 1.3 cM proximal toD9Mit102.Comparison of the linkage map of mouse chromosome 9 (MMU9) and that of human chromosome 11 (HSA11) indicates that there is a chromosomal rearrangement due to an inversion betweenEts1andAtm–Npat–Acat1and that the inversion of MMU9 originated from the chromosomal breakage at the boundary betweenGria4andAtm–Npat–Acat1on HSA11. This type of inversion appeared to be conserved in the three rodent species, mouse, rat, and Syrian hamster, using additional comparative mapping data with theRckgene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号