共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of walking speed on obstacle crossing in healthy young and healthy older adults 总被引:5,自引:0,他引:5
The effects of walking speed and age on the peak external moments generated about the joints of the trailing limb during stance just prior to stepping over an obstacle and on the kinematics of the trailing limb when crossing the obstacle were investigated in 10 healthy young adults (YA) and 10 healthy older adults (OA). The peak hip and knee adduction moments in OA were 21-43% greater than those in YA (p相似文献
2.
Limited plantar flexor strength and hip extension range of motion (ROM) in older adults are believed to underlie common age-related differences in gait. However, no studies of age-related differences in gait have quantified the percentage of strength and ROM used during gait. We examined peak hip angles, hip torques and plantar flexor torques, and corresponding estimates of functional capacity utilized (FCU), which we define as the percentage of available strength or joint ROM used, in 10 young and 10 older healthy adults walking under self-selected and controlled (slow and fast) conditions. Older adults walked with about 30% smaller hip extension angle, 28% larger hip flexion angle, 34% more hip extensor torque in the slow condition, and 12% less plantar flexor torque in the fast condition than young adults. Older adults had higher FCU than young adults for hip flexion angle (47% vs. 34%) and hip extensor torque (48% vs. 27%). FCUs for plantar flexor torque (both age groups) and hip extension angle (older adults in all conditions; young adults in self-selected gait) were not significantly <100%, and were higher than for other measures examined. Older adults lacked sufficient hip extension ROM to walk with a hip extension angle as large as that of young adults. Similarly, in the fast gait condition older adults lacked the strength to match the plantar flexor torque produced by young adults. This supports the hypothesis that hip extension ROM and plantar flexor strength are limiting factors in gait and contribute to age-related differences in gait. 相似文献
3.
To facilitate stable walking, humans must generate appropriate motor patterns and effective corrective responses to perturbations. Yet most EMG analyses do not address the continuous nature of muscle activation dynamics over multiple strides. We compared muscle activation dynamics in young and older adults by defining a multivariate state space for muscle activity. Eighteen healthy older and 17 younger adults walked on a treadmill for 2 trials of 5 min each at each of 5 controlled speeds (80–120% of preferred). EMG linear envelopes of v. lateralis, b. femoris, gastrocnemius, and t. anterior of the left leg were obtained. Interstride variability, local dynamic stability (divergence exponents), and orbital stability (maximum Floquet multipliers; FM) were calculated. Both age groups exhibited similar preferred walking speeds (p=0.86). Amplitudes and variability of individual EMG linear envelopes increased with speed (p<0.01) in all muscles but gastrocnemius. Older adults also exhibited greater variability in b. femoris and t. anterior (p<0.004). When comparing continuous multivariate EMG dynamics, older adults demonstrated greater local and orbital instability of their EMG patterns (p<0.01). We also compared how muscle activation dynamics were manifested in kinematics. Local divergence exponents were strongly correlated between kinematics and EMG, independent of age and walking speed, while variability and max FM were not. These changes in EMG dynamics may be related to increased neuromotor noise associated with aging and may indicate subtle deterioration of gait function that could lead to future functional declines. 相似文献
4.
Load carriage perturbs the neuromuscular system, which can be impaired due to ageing. The ability to counteract perturbations is an indicator of neuromuscular function but if the response is insufficient the risk of falls will increase. However, it is unknown how load carriage affects older adults. Fourteen older adults (65 ± 6 years) attended a single visit during which they performed 4 min of walking in 3 conditions, unloaded, stable backpack load and unstable backpack load. During each walking trial, 3-dimensional kinematics of the lower limb and trunk movements and electromyographic activity of 6 lower limb muscles were recorded. The local dynamic stability (local divergence exponents), joint angle variability and spatio-temporal variability were determined along with muscle activation magnitudes. Medio-lateral dynamic stability was lower (p = 0.018) and step width (p = 0.019) and step width variability (p = 0.015) were greater in unstable load walking and step width variability was greater in stable load walking (p = 0.009) compared to unloaded walking. However, there was no effect on joint angle variability. Unstable load carriage increased activity of the Rectus Femoris (p = 0.001) and Soleus (p = 0.043) and stable load carriage increased Rectus Femoris activity (p = 0.006). These results suggest that loaded walking alters the gait of older adults and that unstable load carriage reduces dynamic stability compared to unloaded walking. This can potentially increase the risk of falls, but also offers the potential to use unstable loads as part of fall prevention programmes. 相似文献
5.
Treadmill has been broadly used in laboratory and rehabilitation settings for the purpose of facilitating human locomotion analysis and gait training. The objective of this study was to determine whether dynamic gait stability differs or resembles between the two walking conditions (overground vs. treadmill) among young adults. Fifty-four healthy young adults (age: 23.9 ± 4.7 years) participated in this study. Each participant completed five trials of overground walking followed by five trials of treadmill walking at a self-selected speed while their full body kinematics were gathered by a motion capture system. The spatiotemporal gait parameters and dynamic gait stability were compared between the two walking conditions. The results revealed that participants adopted a “cautious gait” on the treadmill compared with over ground in response to the possible inherent challenges to balance imposed by treadmill walking. The cautious gait, which was achieved by walking slower with a shorter step length, less backward leaning trunk, shortened single stance phase, prolonged double stance phase, and more flatfoot landing, ensures the comparable dynamic stability between the two walking conditions. This study could provide insightful information about dynamic gait stability control during treadmill ambulation in young adults. 相似文献
6.
《Journal of Biomedical Engineering》1985,7(4):282-288
Modern three-dimensional gait analysis systems give information on joint angles and moments in the sagittal and coronal planes, for which normal ranges may not be readily available in the literature. Since patients with joint disease tend to walk slowly and with a short stride, it is essential that normal ranges for gait parameters should be defined with reference to speed of walking. This we have done using a population of 10 normal male subjects agea from 18 to 63 years, walking at speeds which range from very slow to very fast. The ranges of knee angle and moment are given, together with the changes in these parameters with walking speed. Peak knee flexion moment is strongly related to walking speed, whereas coronal plane knee angle is virtually independent of it. The stride length is probably the best basis for deciding the normal range for a particular measurement. 相似文献
7.
Mohammad Al-Amri Hilal Al Balushi Abdulrhman Mashabi 《Computer methods in biomechanics and biomedical engineering》2017,20(16):1669-1677
Self-paced treadmill walking is becoming increasingly popular for the gait assessment and re-education, in both research and clinical settings. Its day-to-day repeatability is yet to be established. This study scrutinised the test-retest repeatability of key gait parameters, obtained from the Gait Real-time Analysis Interactive Lab (GRAIL) system. Twenty-three male able-bodied adults (age: 34.56 ± 5.12 years) completed two separate gait assessments on the GRAIL system, separated by 5 ± 3 days. Key gait kinematic, kinetic, and spatial-temporal parameters were analysed. The Intraclass-Correlation Coefficients (ICC), Standard Error Measurement (SEM), Minimum Detectable Change (MDC), and the 95% limits of agreements were calculated to evaluate the repeatability of these gait parameters. Day-to-day agreements were excellent (ICCs > 0.87) for spatial-temporal parameters with low MDC and SEM values, <0.153 and <0.055, respectively. The repeatability was higher for joint kinetic than kinematic parameters, as reflected in small values of SEM (<0.13 Nm/kg and <3.4°) and MDC (<0.335 Nm/kg and <9.44°). The obtained values of all parameters fell within the 95% limits of agreement. Our findings demonstrate the repeatability of the GRAIL system available in our laboratory. The SEM and MDC values can be used to assist researchers and clinicians to distinguish ‘real’ changes in gait performance over time. 相似文献
8.
Anne Schmitz Amy Silder Bryan Heiderscheit Jane Mahoney Darryl G. Thelen 《Journal of electromyography and kinesiology》2009,19(6):1085-1091
Previous studies have identified differences in gait kinetics between healthy older and young adults. However, the underlying factors that cause these changes are not well understood. The objective of this study was to assess the effects of age and speed on the activation of lower-extremity muscles during human walking. We recorded electromyography (EMG) signals of the soleus, gastrocnemius, biceps femoris, medial hamstrings, tibialis anterior, vastus lateralis, and rectus femoris as healthy young and older adults walked over ground at slow, preferred and fast walking speeds. Nineteen healthy older adults (age, 73 ± 5 years) and 18 healthy young adults (age, 26 ± 3 years) participated. Rectified EMG signals were normalized to mean activities over a gait cycle at the preferred speed, allowing for an assessment of how the activity was distributed over the gait cycle and modulated with speed. Compared to the young adults, the older adults exhibited greater activation of the tibialis anterior and soleus during mid-stance at all walking speeds and greater activation of the vastus lateralis and medial hamstrings during loading and mid-stance at the fast walking speed, suggesting increased coactivation across the ankle and knee. In addition, older adults depend less on soleus muscle activation to push off at faster walking speeds. We conclude that age-related changes in neuromuscular activity reflect a strategy of stiffening the limb during single support and likely contribute to reduced push off power at fast walking speeds. 相似文献
9.
One of the challenges in collecting ground reaction force (GRF) and moment data for gait analysis is to obtain “good hits” when the subject walks past the forceplates. We examined whether centerline-guided walking would significantly increase the chance of good hits and alter gait characteristics. Thirty-five healthy individuals (age: 37±13 yrs) walked on a walkway with five embedded forceplates at comfortable self-selected speeds under two conditions: (1) free walking and (2) walking along a centerline and avoiding stepping on it. Gait kinematics and GRF were collected using an 8-camera optoelectronic system and five forceplates, respectively. Surface electromyographic (EMG) activity of the rectus femoris, hamstring, gastrocnemius (GAS), and tibialis anterior (TA) were monitored bilaterally. The probability of good hits significantly increased with the centerline-guided walking (p=0.008). Repeated measures MANOVA and follow-up univariate tests revealed no significant differences between the two conditions in any of the spatiotemporal parameters except for a significant increase in step width with centerline walking (p<0.001). Centerline guiding significantly increased peak mediolateral GRF (p<0.001) and hip adduction/abduction and ankle internal/external rotation ranges of motion (p<0.01). In addition, the average EMG activity in GAS and TA during the stance phase significantly increased with the centerline walking (p<0.001). In general, the centerline walking tended to impact women more than men. Centerline-guided walking increases the chance of good hits but biomechanical characteristics of gait in the frontal and transverse planes and EMG activity should be interpreted with caution, especially in women. 相似文献
10.
Free vertical moment (FVM) of ground reaction is recognized to be a meaningful indicator of torsional stress on the lower limbs when walking. The purpose of this study was to examine whether and how gait speed influences the FVM when walking. Fourteen young healthy adults performed a series of overground walking trials at three different speeds: low, preferred and fast. FVM was measured during the stance phase of the dominant leg using a force platform embedded in a 10 m-long walkway. Transverse plane kinematic parameters of the foot and pelvis were measured using a motion capture system. Results showed a significant decrease in peak abduction FVM (i.e., resisting internal foot rotation) and an increase in peak adduction FVM (i.e., resisting external foot rotation), together with an increase in gait speed. Concomitantly, we observed a decrease in the foot progression angle and an increase in the peak pelvis rotation velocity in the transverse plane with an increase in gait speed. A significant positive correlation was found between the pelvis rotation velocity and the peak adduction moment, suggesting that pelvis rotation influences the magnitude of adduction FVM. Furthermore, we also found significant correlations between the peak adduction FVM and both the step length and frequency, indicating that the alterations in FVM may be ascribed to changes in these two key variables of gait speed. These speed-related changes in FVM should be considered when this parameter is used in gait assessment, particularly when used as an index for rehabilitation and injury prevention. 相似文献
11.
Rita M. Kiss 《Journal of electromyography and kinesiology》2010,20(6):1044-1051
Gait analysis in orthopaedic and neurological examinations is important; however, few studies assess gait variability at different walking speeds in patients with varying degrees of hip osteoarthritis. We aimed to clarify (1) how different controlled speeds and (2) various severities of hip osteoarthritis influence gait variability. Gait variability was described by the standard deviation (SD) of the spatial–temporal and mean standard deviation (MeanSD) of angular parameters. The spatial positions of the anatomical points for calculating gait parameters were determined in 20 healthy elderly controls and 20 patients with moderate and 20 patients with severe hip osteoarthritis with a zebris CMS-HS ultrasound-based motion analysis system at three walking speeds. The SD of the spatial–temporal and MeanSD of angular parameters of gait, which together describe gait variability, significantly depended on speed and osteoarthritis severity. The lowest variability in the gait was found near the self-selected walking speeds. Hip joint degeneration significantly worsened variability on the affected side, with non-affected joints and the pelvis compensating by increasing flexibility and adapting to step-by-step motions. Particular attention must be paid to improving gait stability and the reliability of limb movements in the presence of and increasing severity of osteoarthritis. 相似文献
12.
13.
14.
15.
C A Byrne D T O'Keeffe A E Donnelly G M Lyons 《Journal of electromyography and kinesiology》2007,17(5):605-616
Functional electrical stimulation may be used to correct hemiplegic drop foot. An optimised stimulation envelope to reproduce the EMG pattern observed in the tibialis anterior (TA) during healthy gait has been proposed by O'Keeffe et al. [O'Keeffe, D.T., Donnelly, A.E., Lyons, G.M., 2003. The development of a potential optimised stimulation intensity envelope for drop foot applications. IEEE Transactions on Neural Systems and Rehabilitation Engineering]. However this envelope did not attempt to account for changes in TA activity with walking speed. The objective of this paper was to provide data to enable the specification of an algorithm to control the adaptation of an envelope with walking speed. Ten young healthy subjects walked on a treadmill at 11 different walking speeds while TA EMG was recorded. The results showed that TA EMG recorded around initial contact and at toe off changed with walking speed. At the slowest velocities, equivalent to hemiplegic walking, the toe-off burst (TOB) of EMG activity had larger peak amplitude than that of the heel-strike burst (HSB). The peak amplitude ratio of TOB:HSB was 1:0.69 at the slowest speed compared to, 1:1.18 and 1:1.5 for the self-selected and fastest speed, respectively. These results suggest that an FES envelope, which produces larger EMG amplitude for the TOB than the HSB, would be more appropriate at walking speeds typical of hemiplegic patients. 相似文献
16.
This study investigated the influence of gait speed on the control of mediolateral dynamic stability during gait initiation. Thirteen healthy young adults initiated gait at three self-selected speeds: Slow, Normal and Fast. The results indicated that the duration of anticipatory postural adjustments (APA) decreased from Slow to Fast, i.e. the time allocated to propel the centre of mass (COM) towards the stance-leg side was shortened. Likely as an attempt at compensation, the peak of the anticipatory centre of pressure (COP) shift increased. However, COP compensation was not fully efficient since the results indicated that the mediolateral COM shift towards the stance-leg side at swing foot-off decreased with gait speed. Consequently, the COM shift towards the swing-leg side at swing heel-contact increased from Slow to Fast, indicating that the mediolateral COM fall during step execution increased as gait speed rose. However, this increased COM fall was compensated by greater step width so that the margin of stability (the distance between the base-of-support boundary and the mediolateral component of the “extrapolated centre of mass”) at heel-contact remained unchanged across the speed conditions. Furthermore, a positive correlation between the mediolateral extrapolated COM position at heel-contact and step width was found, indicating that the greater the mediolateral COM fall, the greater the step width. Globally, these results suggest that mediolateral APA and step width are modulated with gait speed so as to maintain equivalent mediolateral dynamical stability at the time of swing heel-contact. 相似文献
17.
Xiaojuan Liu Stephanie Pan Vanessa Xanthakis Ramachandran S. Vasan Bruce M. Psaty Thomas R. Austin Anne B. Newman Jason L. Sanders Chenkai Wu Russell P. Tracy Robert E. Gerszten Michelle C. Odden 《Aging cell》2022,21(12)
The biological mechanisms underlying decline in physical function with age remain unclear. We examined the plasma proteomic profile associated with longitudinal changes in physical function measured by gait speed and grip strength in community‐dwelling adults. We applied an aptamer‐based platform to assay 1154 plasma proteins on 2854 participants (60% women, aged 76 years) in the Cardiovascular Health Study (CHS) in 1992–1993 and 1130 participants (55% women, aged 54 years) in the Framingham Offspring Study (FOS) in 1991–1995. Gait speed and grip strength were measured annually for 7 years in CHS and at cycles 7 (1998–2001) and 8 (2005–2008) in FOS. The associations of individual protein levels (log‐transformed and standardized) with longitudinal changes in gait speed and grip strength in two populations were examined separately by linear mixed‐effects models. Meta‐analyses were implemented using random‐effects models and corrected for multiple testing. We found that plasma levels of 14 and 18 proteins were associated with changes in gait speed and grip strength, respectively (corrected p < 0.05). The proteins most strongly associated with gait speed decline were GDF‐15 (Meta‐analytic p = 1.58 × 10−15), pleiotrophin (1.23 × 10−9), and TIMP‐1 (5.97 × 10−8). For grip strength decline, the strongest associations were for carbonic anhydrase III (1.09 × 10−7), CDON (2.38 × 10−7), and SMOC1 (7.47 × 10−7). Several statistically significant proteins are involved in the inflammatory responses or antagonism of activin by follistatin pathway. These novel proteomic biomarkers and pathways should be further explored as future mechanisms and targets for age‐related functional decline. 相似文献
18.
Pinto RS Gomes N Radaelli R Botton CE Brown LE Bottaro M 《Journal of strength and conditioning research / National Strength & Conditioning Association》2012,26(8):2140-2145
The purpose of this investigation was to compare partial range-of-motion vs. full range-of-motion upper-body resistance training on strength and muscle thickness (MT) in young men. Volunteers were randomly assigned to 3 groups: (a) full range of motion (FULL; n = 15), (b) partial range of motion (PART; n = 15), or (c) control (CON; n = 10). The subjects trained 2 d · wk(-1) for 10 weeks in a periodized program. Primary outcome measures included elbow flexion maximal strength measured by 1 repetition maximum (1RM) and elbow flexors MT measured by ultrasound. The results indicated that elbow flexion 1RM significantly increased (p < 0.05) for the FULL (25.7 ± 9.6%) and PART groups (16.0 ± 6.7%) but not for the CON group (1.7 ± 5.5%). Also, FULL 1RM strength was significantly greater than the PART 1RM after the training period. Average elbow flexor MT significantly increased for both training groups (9.65 ± 4.4% for FULL and 7.83 ± 4.9 for PART). These data suggest that muscle strength and MT can be improved with both FULL and PART resistance training, but FULL may lead to greater strength gains. 相似文献
19.
Aging-associated fall-risk assessment is crucial for fall prevention. Thus, this study aimed to develop a prognostic model to predict fall-risk following an unexpected over-ground slip perturbation based on normal gait pattern in healthy older adults. 112 healthy older adults who experienced a novel slip in a safe laboratory environment were included. Their slip trial and natural walking trial immediately prior to it were analyzed. To identify the best fall-risk predictive model, gait related variables including step length, segment angles, center of mass state, and ground reaction force (GRF) were determined and inputted into a stepwise logistic regression. The optimal slip-induced fall prediction model was based on the right thigh angle at slipping foot touchdown (TD), the maximum GRF of the slipping limb after TD, and the momentum change from TD to recovery foot liftoff (LO), with an overall prediction accuracy of 75.9%, predicting 74.5% of falls (sensitivity) and 77.2% of recoveries (specificity). Conversely, a model based on clinical and demographic measures predicted 78.2% of falls and 47.4% of recoveries, resulting in a much lower overall accuracy of 62.5%. The fall-risk model based on normal gait pattern which was developed for slip-induced perturbations in healthy older adults was able to provide a high predictive accuracy. This information could provide insight about the ideal normal gait measures which could be used to contribute towards development of therapeutic strategies related to dynamic balance and fall prevention to enhance preventive interventions in populations with high-risk for slip-induced falls. 相似文献
20.
Peripheral sensory feedback is believed to contribute significantly to maintaining walking stability. Patients with diabetic peripheral neuropathy have a greatly increased risk of falling. Previously, we demonstrated that slower walking speeds in neuropathic patients lead to improved local dynamic stability. However, all subjects exhibited significant local instability during walking, even though no subject fell or stumbled during testing. The present study was conducted to determine if and how significant changes in peripheral sensation and walking speed affect orbital stability during walking. Trunk and lower extremity kinematics were examined from two prior experiments that compared patients with significant neuropathy to healthy controls and walking at multiple different speeds in young healthy subjects. Maximum Floquet multipliers were computed for each time series to quantify the orbital stability of these movements. All subjects exhibited orbitally stable walking kinematics, even though these same kinematics were previously shown to be locally unstable. Differences in orbital stability between neuropathic and control subjects were small and, with the exception of knee joint movements (p=0.001), not statistically significant (0.380p0.946). Differences in knee orbital stability were not mediated by differences in walking speed. This was supported by our finding that although orbital stability improved slightly with slower walking speeds, the correlations between walking speed and orbital stability were generally weak (r(2)16.7%). Thus, neuropathic patients do not gain improved orbital stability as a result of slowing down and do not experience any loss of orbital stability because of their sensory deficits. 相似文献