首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
By using both experimental and theoretical means, we have addressed the progression of ectopic activity from individual cardiac cells to a multicellular two-dimensional network. Experimental conditions that favor ectopic activity have been created by local perfusion of a small area of cardiomyocyte network (I-zone) with an isoproterenol-heptanol containing solution. The application of this solution initially slowed down and then fully blocked wave propagation inside the I-zone. After a brief lag period, ectopically active cells appeared in the I-zone, followed by evolution of the ectopic clusters into slowly propagating waves. The changing pattern of colliding and expanding ectopic waves confined to the I-zone persisted for as long as the isoproterenol-heptanol environment was present. On restoration of the control environment, the ectopic waves from the I-zone broke out into the surrounding network causing arrhythmias. The observed sequence of events was also modeled by FitzHugh-Nagumo equations and included a cell's arrangement of two adjacent square regions of 20 x 20 cells. The control zone consisted of well-connected, excitable cells, and the I-zone was made of weakly coupled cells (heptanol effect), which became spontaneously active as time evolved (isoproterenol effect). The dynamic events in the system have been studied numerically with the use of a finite difference method. Together, our experimental and computational data have revealed that the combination of low coupling, increased excitability, and spatial heterogeneity can lead to the development of ectopic waves confined to the injured network. This transient condition appears to serve as an essential step for the ectopic activity to "mature" before escaping into the surrounding control network.  相似文献   

2.
Scroll waves are vortices that occur in three-dimensional excitable media. Scroll waves have been observed in a variety of systems including cardiac tissue, where they are associated with cardiac arrhythmias. The disorganization of scroll waves into chaotic behavior is thought to be the mechanism of ventricular fibrillation, whose lethality is widely known. One possible mechanism for this process of scroll wave instability is negative filament tension. It was discovered in 1987 in a simple two variables model of an excitable medium. Since that time, negative filament tension of scroll waves and the resulting complex, often turbulent dynamics was studied in many generic models of excitable media as well as in physiologically realistic models of cardiac tissue. In this article, we review the work in this area from the first simulations in FitzHugh–Nagumo type models to recent studies involving detailed ionic models of cardiac tissue. We discuss the relation of negative filament tension and tissue excitability and the effects of discreteness in the tissue on the filament tension. Finally, we consider the application of the negative tension mechanism to computational cardiology, where it may be regarded as a fundamental mechanism that explains differences in the onset of arrhythmias in thin and thick tissue.  相似文献   

3.
4.
Generation of wave break is a characteristic feature of cardiac fibrillation. In this study, we investigated how dynamic factors and fixed electrophysiological heterogeneity interact to promote wave break in simulated two-dimensional cardiac tissue, by using the Luo-Rudy (LR1) ventricular action potential model. The degree of dynamic instability of the action potential model was controlled by varying the maximal amplitude of the slow inward Ca(2+) current to produce spiral waves in homogeneous tissue that were either nearly stable, meandering, hypermeandering, or in breakup regimes. Fixed electrophysiological heterogeneity was modeled by randomly varying action potential duration over different spatial scales to create dispersion of refractoriness. We found that the degree of dispersion of refractoriness required to induce wave break decreased markedly as dynamic instability of the cardiac model increased. These findings suggest that reducing the dynamic instability of cardiac cells by interventions, such as decreasing the steepness of action potential duration restitution, may still have merit as an antifibrillatory strategy.  相似文献   

5.
Parallel numerical simulations of excitation and recovery in three-dimensional myocardial domains are presented. The simulations are based on the anisotropic Bidomain and Monodomain models, including intramural fiber rotation and orthotropic or axisymmetric anisotropy of the intra- and extra-cellular conductivity tensors. The Bidomain model consist of a system of two reaction-diffusion equations, while the Monodomain model consists of one reaction-diffusion equation. Both models are coupled with the phase I Luo-Rudy membrane model describing the ionic currents. Simulations of excitation and repolarization sequences on myocardial slabs of different sizes show how the distribution of the action potential durations (APD) is influenced by both the anisotropic electrical conduction and the fiber rotation. This influence occurs in spite of the homogeneous intrinsic properties of the cell membrane. The APD dispersion patterns are closely correlated to the anisotropic curvature of the excitation wavefront.  相似文献   

6.
A phase-plane bifurcation analysis is a useful way to theoretically understand how various types of arrhythmias may arise from excitable tissues. In this paper, we have performed phase-plane bifurcation analysis to characterize arrhythmogenic states in excitable tissues. To achieve this, we have first formulated a model which is simple enough to be mathematically tractable, yet captures the non-linear features of cardiac excitation and conduction. In this model, single cells are connected in a circular fashion by gap conductances. Each cell carries the following two types of currents: a passive outward current and an inward "excitable" current which contains an activation and an inactivation gate. The activation gate is responsible for the upstroke of action potential and inactivation gate is responsible for the termination of the plateau potential. With this model, we have constructed bifurcation diagrams as a function of a bifurcation parameter. The parameter chosen as the bifurcation parameter has the property of raising maximum diastolic potential while shorting the refractory period. Our analysis revealed the existence of three distinct multi-stable phases in certain ranges of the bifurcation parameter: (1) bistability between a rotor and a quiescent state, (2) bistability between rotor and ectopic beats, and (3) three stable states co-existing among quiescent state, rotor, and ectopic beats. In these three regions, external impulses exert very distinct effects: In region 1, a brief current pulse can annihilate a re-entrant arrhythmia to quiescence. To initiate re-entry from a quiescent tissue, however, it takes two pulses (a primary pulse followed by a premature pulse at a site different from the "primary" site). In region 2, a brief pulse can convert a re-entrant arrhythmia to ectopic beats. To convert the ectopic beats back to circus movement, these beats have to be suppressed by a few brief current pulses to initiate one-way propagation. Depending on the frequency and strength of impulses in region 3, the tissue can switch back and forth among quiescence, circus movement, and ectopic beats. For comparison, we have also included a more complete Beeler-Reuter cardiac cell model in our analysis and obtained essentially the same results. From the behavioral similarities of these models, we conclude that re-entrant and ectopic arrhythmias must be intrinsic properties of excitable tissues and external stimuli can convert one mode of arrhythmia to another in the multistability regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
《Biophysical journal》2020,118(2):476-491
It is well known that heart failure (HF) typically coexists with atrial fibrillation (AF). However, until now, no clear mechanism has been established that relates HF to AF. In this study, we apply a multiscale computational framework to establish a mechanistic link between atrial myocyte structural remodeling in HF and AF. Using a spatially distributed model of calcium (Ca) signaling, we show that disruption of the spatial relationship between L-type Ca channels (LCCs) and ryanodine receptors results in markedly increased Ca content of the sarcoplasmic reticulum (SR). This increase in SR load is due to changes in the balance between Ca entry via LCCs and Ca extrusion due to the sodium-calcium exchanger after an altered spatial relationship between these signaling proteins. Next, we show that the increased SR load in atrial myocytes predisposes these cells to subcellular Ca waves that occur during the action potential (AP) and are triggered by LCC openings. These waves are common in atrial cells because of the absence of a well-developed t-tubule system in most of these cells. This distinct spatial architecture allows for the presence of a large pool of orphaned ryanodine receptors, which can fire and sustain Ca waves during the AP. Finally, we incorporate our atrial cell model in two-dimensional tissue simulations and demonstrate that triggered wave generation in cells leads to electrical waves in tissue that tend to fractionate to form wavelets of excitation. This fractionation is driven by the underlying stochasticity of subcellular Ca waves, which perturbs AP repolarization and consequently induces localized conduction block in tissue. We outline the mechanism for this effect and argue that it may explain the propensity for atrial arrhythmias in HF.  相似文献   

8.
《Biophysical journal》2021,120(23):5279-5294
Electrically excitable cells often spontaneously and synchronously depolarize in vitro and in vivo preparations. It remains unclear how cells entrain and autorhythmically activate above the intrinsic mean activation frequency of isolated cells with or without pacemaking mechanisms. Recent studies suggest that cyclic ion accumulation and depletion in diffusion-limited extracellular volumes modulate electrophysiology by ephaptic mechanisms (nongap junction or synaptic coupling). This report explores how potassium accumulation and depletion in a restricted extracellular domain induces spontaneous action potentials in two different computational models of excitable cells without gap junctional coupling: Hodgkin-Huxley and Luo-Rudy. Importantly, neither model will spontaneously activate on its own without external stimuli. Simulations demonstrate that cells sharing a diffusion-limited extracellular compartment can become autorhythmic and entrained despite intercellular electrical heterogeneity. Autorhythmic frequency is modulated by the cleft volume and potassium fluxes through the cleft. Additionally, inexcitable cells can suppress or induce autorhythmic activity in an excitable cell via a shared cleft. Diffusion-limited shared clefts can also entrain repolarization. Critically, this model predicts a mechanism by which diffusion-limited shared clefts can initiate, entrain, and modulate multicellular automaticity in the absence of gap junctions.  相似文献   

9.
Computer simulation using Luo-Rudy I1 model of ventricular myocyte showed that intracellular calcium dynamics become irregular in case of high rate stimulation. This causes the transition from stationary to nonstationary spiral wave and its breakup in 2D model of cardiac tissue. Obtained results suggest how ventricular fibrillation may occur due to the abnormalities of intracellular calcium dynamics. The short review of existing cardiac cell models with calcium dynamics is presented.  相似文献   

10.
The objective of the present study was to directly visualize ectopic activity associated with ischemia-reperfusion and its progression to arrhythmia. To accomplish this goal, we employed a two-dimensional network of neonatal rat cardiomyocytes and a recently developed model of localized ischemia-reperfusion. Washout of the ischemia-like solution resulted in tachyarrhythmic episodes lasting 15-200 s. These episodes were preceded by the appearance of multiple ectopic sources and propagation of ectopic activity along the border of the former ischemic zone. The ectopic sources exhibited a slow rise in diastolic calcium, which disappeared upon return to the original pacing pattern. Border zone propagation of ectopic activity was followed by its escape into the surrounding control network, generating arrhythmias. Together, these observations suggest that upon reperfusion, a distinct layer, which consists of ectopically active, poorly coupled cells, is formed transiently over an injured area. Despite being neighbored by a conductive and excitable tissue, this transient functional layer is capable of sustaining autonomous waves and serving as a special conductive medium through which ectopic activity can propagate before spreading into the surrounding healthy tissue.  相似文献   

11.
We introduce the concept of a contracting excitable medium that is capable of conducting non-linear waves of excitation that in turn initiate contraction. Furthermore, these kinematic deformations have a feedback effect on the excitation properties of the medium. Electrical characteristics resemble basic models of cardiac excitation that have been used to successfully study mechanisms of reentrant cardiac arrhythmias in electrophysiology. We present a computational framework that employs electromechanical and mechanoelectric feedback to couple a three-variable FitzHugh–Nagumo-type excitation-tension model to the non-linear stress equilibrium equations, which govern large deformation hyperelasticity. Numerically, the coupled electromechanical model combines a finite difference method approach to integrate the excitation equations, with a Galerkin finite element method to solve the equations governing tissue mechanics. We present example computations demonstrating various effects of contraction on stationary rotating spiral waves and spiral wave break. We show that tissue mechanics significantly contributes to the dynamics of electrical propagation, and that a coupled electromechanical approach should be pursued in future electrophysiological modelling studies.  相似文献   

12.
Sudden cardiac arrest is a malfunction of the heart’s electrical system, typically caused by ventricular arrhythmias, that can lead to sudden cardiac death (SCD) within minutes. Epidemiological studies have shown that SCD and ventricular arrhythmias are more likely to occur in the morning than in the evening, and laboratory studies indicate that these daily rhythms in adverse cardiovascular events are at least partially under the control of the endogenous circadian timekeeping system. However, the biophysical mechanisms linking molecular circadian clocks to cardiac arrhythmogenesis are not fully understood. Recent experiments have shown that L-type calcium channels exhibit circadian rhythms in both expression and function in guinea pig ventricular cardiomyocytes. We developed an electrophysiological model of these cells to simulate the effect of circadian variation in L-type calcium conductance. In our simulations, we found that there is a circadian pattern in the occurrence of early afterdepolarizations (EADs), which are abnormal depolarizations during the repolarization phase of a cardiac action potential that can trigger fatal ventricular arrhythmias. Specifically, the model produces EADs in the morning, but not at other times of day. We show that the model exhibits a codimension-2 Takens-Bogdanov bifurcation that serves as an organizing center for different types of EAD dynamics. We also simulated a two-dimensional spatial version of this model across a circadian cycle. We found that there is a circadian pattern in the breakup of spiral waves, which represents ventricular fibrillation in cardiac tissue. Specifically, the model produces spiral wave breakup in the morning, but not in the evening. Our computational study is the first, to our knowledge, to propose a link between circadian rhythms and EAD formation and suggests that the efficacy of drugs targeting EAD-mediated arrhythmias may depend on the time of day that they are administered.  相似文献   

13.
High-frequency arrhythmias leading to fibrillation are often associated with the presence of inhomogeneities (obstacles) in cardiac tissue and reduced excitability of cardiac cells. Studies of antiarrhythmic drugs in patients surviving myocardial infarction revealed an increased rate of sudden cardiac death compared with untreated patients. These drugs block the cardiac sodium channel, thereby reducing excitability, which may alter wavefront-obstacle interactions. In diseased atrial tissue, excitability is reduced by diminished sodium channel availability secondary to depolarized rest potentials and cellular decoupling secondary to intercellular fibrosis. Excitability can also be reduced by incomplete recovery between successive excitations. In all of these cases, wavefront-obstacle interactions in a poorly excitable medium may reflect an arrhythmogenic process that permits formation of reentrant wavelets leading to flutter, fibrillation, and sudden cardiac death. To probe the relationship between excitability and arrhythmogenesis, we explored conditions for new wavelet formation after collision of a plane wave with an obstacle in an otherwise homogeneous excitable medium. Formulating our approach in terms of the balance between charge available in the wavefront and the excitation charge requirements of adjacent medium, we found analytically the critical medium parameters that defined conditions for wavefront-obstacle separation. Under these conditions, when a parent wavefront collided with a primitive obstacle, the resultant fragments separated from the obstacle boundaries, subsequently curled, and spawned new "daughter" wavelets. We identified spatial arrangements of obstacles such that wavefront-obstacle collisions leading to spawning of new wavelets could produce high-frequency wavelet trains similar to fibrillation-like arrhythmias.  相似文献   

14.
Sudden cardiac death is often caused by cardiac arrhythmias. Recently, special attention has been given to a certain arrhythmogenic condition, the long-QT syndrome, which occurs as a result of genetic mutations or drug toxicity. The underlying mechanisms of arrhythmias, caused by the long-QT syndrome, are not fully understood. However, arrhythmias are often connected to special excitations of cardiac cells, called early afterdepolarizations (EADs), which are depolarizations during the repolarizing phase of the action potential. So far, EADs have been studied mainly in isolated cardiac cells. However, the question on how EADs at the single-cell level can result in fibrillation at the tissue level, especially in human cell models, has not been widely studied yet. In this paper, we study wave patterns that result from single-cell EAD dynamics in a mathematical model for human ventricular cardiac tissue. We induce EADs by modeling experimental conditions which have been shown to evoke EADs at a single-cell level: by an increase of L-type Ca currents and a decrease of the delayed rectifier potassium currents. We show that, at the tissue level and depending on these parameters, three types of abnormal wave patterns emerge. We classify them into two types of spiral fibrillation and one type of oscillatory dynamics. Moreover, we find that the emergent wave patterns can be driven by calcium or sodium currents and we find phase waves in the oscillatory excitation regime. From our simulations we predict that arrhythmias caused by EADs can occur during normal wave propagation and do not require tissue heterogeneities. Experimental verification of our results is possible for experiments at the cell-culture level, where EADs can be induced by an increase of the L-type calcium conductance and by the application of I blockers, and the properties of the emergent patterns can be studied by optical mapping of the voltage and calcium.  相似文献   

15.
Many arrhythmias are believed to be triggered by ectopic sources arising from the border of the ischemic tissue. However, the development of ectopic activity from individual sources to a larger mass of cardiac tissue remains poorly understood. To address this critical issue, we used monolayers of neonatal rat cardiomyocytes to create conditions that promoted progression of ectopic activity from single cells to the network that consisted of hundreds of cells. To explain complex spatiotemporal patterns observed in these experiments we introduced a new theoretical framework. The framework's main feature is a parameter space diagram, which uses cell automaticity and coupling as two coordinates. The diagram allows one to depict network behavior, quantitatively address the heterogeneity factor, and evaluate transitions between different regimes. The well-organized wave trains were observed at moderate and high cell coupling values and network heterogeneity was found to be qualitatively unimportant for these regimes. In contrast, at lower values of coupling, spontaneous ectopic activity led to the appearance of fragmented ectopic waves. For these regimes, network heterogeneity played an essential role. The ectopic waves occasionally gave rise to spiral activity in two different regions within the parameter space via two distinct mechanisms. Together, our results suggest that localized ectopic waves represent an essential step in the progression of ectopic activity. These studies add to the understanding of initiation and progression of arrhythmias and can be applied to other phenomena that deal with assemblies of coupled oscillators.  相似文献   

16.
Qu Z  Kil J  Xie F  Garfinkel A  Weiss JN 《Biophysical journal》2000,78(6):2761-2775
Scroll wave (vortex) breakup is hypothesized to underlie ventricular fibrillation, the leading cause of sudden cardiac death. We simulated scroll wave behaviors in a three-dimensional cardiac tissue model, using phase I of the Luo-Rudy (LR1) action potential model. The effects of action potential duration (APD) restitution, tissue thickness, filament twist, and fiber rotation were studied. We found that APD restitution is the major determinant of scroll wave behavior and that instabilities arising from APD restitution are the main determinants of scroll wave breakup in this cardiac model. We did not see a "thickness-induced instability" in the LR1 model, but a minimum thickness is required for scroll breakup in the presence of fiber rotation. The major effect of fiber rotation is to maintain twist in a scroll wave, promoting filament bending and thus scroll breakup. In addition, fiber rotation induces curvature in the scroll wave, which weakens conduction and further facilitates wave break.  相似文献   

17.
《Biophysical journal》2020,118(7):1721-1732
Many multicellular communities propagate signals in a directed manner via excitable waves. Cell-to-cell heterogeneity is a ubiquitous feature of multicellular communities, but the effects of heterogeneity on wave propagation are still unclear. Here, we use a minimal FitzHugh-Nagumo-type model to investigate excitable wave propagation in a two-dimensional heterogeneous community. The model shows three dynamic regimes in which waves either propagate directionally, die out, or spiral indefinitely, and we characterize how these regimes depend on the heterogeneity parameters. We find that in some parameter regimes, spatial correlations in the heterogeneity enhance directional propagation and suppress spiraling. However, in other regimes, spatial correlations promote spiraling, a surprising feature that we explain by demonstrating that these spirals form by a second, distinct mechanism. Finally, we characterize the dynamics using techniques from percolation theory. Despite the fact that percolation theory does not completely describe the dynamics quantitatively because it neglects the details of the excitable propagation, we find that it accounts for the transitions between the dynamic regimes and the general dependency of the spiral period on the heterogeneity and thus provides important insights. Our results reveal that the spatial structure of cell-to-cell heterogeneity can have important consequences for signal propagation in cellular communities.  相似文献   

18.
19.
The response of an excitable biological medium to a double local stimulus is considered within the context of a mathematical model for a layer of starving cells of Dictyostelium discoideum, with both spatially one- and two-dimensional (1D and 2D) system being investigated. In contrast to the response usually seen in excitable media, whereby each superthreshold stimulus delivered to the relaxed medium results in the initiation of just one travelling wave, a source emitting a sequence of waves can develop in the present excitable medium after the second stimulus. In a 1D system, only transient wave sources forming a limited number of waves are found. In 2D systems, a permanent wave sources consisting in a pair of spirals are observed as well as the transient wave sources forming circular wave patterns. The general features of the medium dynamics that underlie the observed responses to the double stimulus are discussed.  相似文献   

20.
《Biophysical journal》2021,120(19):4287-4297
Erk signaling regulates cellular decisions in many biological contexts. Recently, we have reported a series of Erk activity traveling waves that coordinate regeneration of osteoblast tissue in zebrafish scales. These waves originate from a central source region, propagate as expanding rings, and impart cell growth, thus controlling tissue morphogenesis. Here, we present a minimal reaction-diffusion model for Erk activity waves. The model considers three components: Erk, a diffusible Erk activator, and an Erk inhibitor. Erk stimulates both its activator and inhibitor, forming a positive and negative feedback loop, respectively. Our model shows that this system can be excitable and propagate Erk activity waves. Waves originate from a pulsatile source that is modeled by adding a localized basal production of the activator, which turns the source region from an excitable to an oscillatory state. As Erk activity periodically rises in the source, it can trigger an excitable wave that travels across the entire tissue. Analysis of the model finds that positive feedback controls the properties of the traveling wavefront and that negative feedback controls the duration of Erk activity peak and the period of Erk activity waves. The geometrical properties of the waves facilitate constraints on the effective diffusivity of the activator, indicating that waves are an efficient mechanism to transfer growth factor signaling rapidly across a large tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号