共查询到20条相似文献,搜索用时 0 毫秒
1.
R.MwoI is a Type II restriction endonucleases enzyme (REase), which specifically recognizes a palindromic interrupted DNA sequence 5'-GCNNNNNNNGC-3' (where N indicates any nucleotide), and hydrolyzes the phosphodiester bond in the DNA between the 7th and 8th base in both strands. R.MwoI exhibits remote sequence similarity to R.BglI, a REase with known structure, which recognizes an interrupted palindromic target 5'-GCCNNNNNGGC-3'. A homology model of R.MwoI in complex with DNA was constructed and used to predict functionally important amino acid residues that were subsequently targeted by mutagenesis. The model, together with the supporting experimental data, revealed regions important for recognition of the common bases in DNA sequences recognized by R.BglI and R.MwoI. Based on the bioinformatics analysis, we designed substitutions of the S310 residue in R.MwoI to arginine or glutamic acid, which led to enzyme variants with altered sequence selectivity compared with the wild-type enzyme. The S310R variant of R.MwoI preferred the 5'-GCCNNNNNGGC-3' sequence as a target, similarly to R.BglI, whereas the S310E variant preferentially cleaved a subset of the MwoI sites, depending on the identity of the 3rd and 9th nucleotide residues. Our results represent a case study of a REase sequence specificity alteration by a single amino acid substitution, based on a theoretical model in the absence of a crystal structure. 相似文献
2.
We have mutated the monomer-monomer interface of the restriction endonuclease EcoRI in order to destabilize the homodimer and to stabilize heterodimers. Mutations of Leu158 to charged amino acid residues result in strong destabilization of the dimer. The largest effect was detected for the L158D mutant which is monomeric even at higher concentrations. It unspecifically degrades DNA by cleaving both single strands independently every 15 nucleotides on the average. Although cleavage is reproducible, it is not determined by nucleotide sequence but by general properties like conformation or deformability as has been found for other unspecific nucleases. Mutations of Ile230, which is in direct contact with Leu158 of the other subunit, cause structural changes with the loss of about ten percent alpha-helix content, but interfere only marginally with homodimerization and double strand cleavage. Again the mutation to aspartate shows the strongest effects. Mixtures of single mutants, one containing aspartate at one of the two positions and the other lysine at the corresponding position, form heterodimers. These are mainly stabilized compared to the homodimers by re-establishment of the wild-type hydrophobic interaction at the not mutated residues while an interaction of aspartate and lysine seems energetically unfavorable in this structural context. 相似文献
3.
The recognition sequence and cleavage site C decreases TRYAG of a new restriction endonuclease SfeI have been determined. 相似文献
4.
S Kh Degtiarev V E Repin N I Rechkunova V E Chizhikov E G Malygin 《Bioorganicheskaia khimiia》1987,13(3):420-421
The recognition sequence and cleavage point of restriction endonuclease VspI have been determined as 5'-AT decreases TAAT. This enzyme is not isoschizomer of any known restriction endonucleases. DNA pBR322 contains a single VspI recognition sequence in position 3539. Therefore this enzyme may be used for cloning DNA in the VspI site in AmpR-gene of pBR322. 相似文献
5.
V Butkus R Kazlauskene R Gilvonauska?te M Piatrushite A Ianula?tis 《Bioorganicheskaia khimiia》1985,11(11):1572-1573
The recognition sequence and cleavage point of restriction endonuclease Eco781 have been determined as 5'-GGCGCC-. There are several known enzymes recognizing the same sequence, although the prototype NarI and isoschizomers NdaI and NunII cleave the substrate to produce 5'-protruding ends, whereas cleavage with isoschizomer BbeI results in 3'-protruding ends. Therefore, restrictase Eco78I, generating flush ends, may be regarded as an enzyme with new specificity among the restriction endonucleases recognizing the 5'-GGCGCC-sequence. 相似文献
6.
The specificity of the EcoRI restriction endonuclease 总被引:1,自引:0,他引:1
S E Halford 《Biochemical Society transactions》1980,8(3):399-400
7.
8.
Relaxed specificity of the EcoRV restriction endonuclease 总被引:6,自引:0,他引:6
The EcoRV restriction endonuclease normally shows a high specificity for its recognition site on DNA, GATATC. In standard reactions, it cleaves DNA at this site several orders of magnitude more readily than at any alternative sequence. But in the presence of dimethyl sulphoxide and at high pH, the EcoRV enzyme cleaves DNA at several sites that differ from its recognition site by one nucleotide. Of the 18 (3 X 6) possible sequences that differ from GATATC by one base, all were cleaved readily except for the following 4 sites: TATATC, CATATC, GATATA and GATATG. However, two of the sites that could be cleaved by EcoRV in the presence of dimethyl sulphoxide, GAGATC and GATCTC, were only cleaved on DNA that lacked dam methylation: both contain the sequence GATC, the recognition site for the dam methylase of Escherichia coli. 相似文献
9.
10.
We have analysed the kinetics of DNA cleavage in the reaction between the SalGI restriction endonuclease and plasmid pMB9. This reaction is subject to competitive inhibition by DNA sequences outside the SalGI recognition site; we have determined the Km and Vmax. for the reaction of this enzyme at its recognition site and the KI for its interaction at other DNA sequences. We conclude that the specificity of DNA cleavage by the enzyme is only partly determined by the discrimination it shows for binding at its recognition sequence compared with binding to other DNA sequences. 相似文献
11.
N V Tsvetkova M M Mile?kovskaia I M Gruber V M Poliachenko V V Butkus 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》1987,(4):19-22
A strain producing the new specific restriction endonuclease BcmI has been found in the Bacillus generum. The enzyme has been purified by chromatography on the blue sepharose, phosphocellulose PII, heparin sepharose. The analogous purification has been obtained when the blue sepharose has been substituted for the orange sepharose, the home produced sorbent. The BcmI enzyme has been shown by the substrate specificity definition to be an isoschizomer of the restriction endonuclease ClaI. 相似文献
12.
S Kh Degtiarev A A Kolykhalov N I Rechkunova V S Dedkov 《Bioorganicheskaia khimiia》1989,15(1):130-132
The recognition sequence and cleavage point of restriction endonuclease FauI have been determined as 5'-CCCGC(4/6). Not being isoschisomer of any known restriction endonuclease, this enzyme may be used in genetic engineering. 相似文献
13.
A second type II restriction endonuclease from Thermus aquaticus with an unusual sequence specificity. 总被引:1,自引:2,他引:1 下载免费PDF全文
A type II restriction endonuclease activity free of TaqI was prepared from Thermus Aquaticus YT. The fraction contains two endonucleolytic components with apparently different specificities, however the major activity is sufficiently dominant to allow partial digestion analysis of the position of recognition sites. A precise determination of the location of cleavage sites in pBR322 DNA and a computer-aided search for regions of homology in the vicinity of the cut sites indicate that this enzyme recognizes the nonpalindromic sequences GACCGA or CACCCA. Other related sequences are not cleaved, in particular, GACCCA and CACCGA, indicating that the enzyme requires the identity of nucleotides in the first and fifth positions, a type of specificity that has not been previously reported. The position of cleavage is located outside of the site and is represented as: (Formula: see text). 相似文献
14.
Joshi HK Etzkorn C Chatwell L Bitinaite J Horton NC 《The Journal of biological chemistry》2006,281(33):23852-23869
The functional and structural consequences of a mutation of the DNA intercalating residue of HincII, Q138F, are presented. Modeling has suggested that the DNA intercalation by Gln-138 results in DNA distortions potentially used by HincII in indirect readout of its cognate DNA, GTYRAC (Y = C or T, R = A or G) (Horton, N. C., Dorner, L. F., and Perona, J. J. (2002) Nat. Struct. Biol. 9, 42-47). Kinetic data presented here indicate that the mutation of glutamine 138 to phenylalanine (Q138F) results in a change in sequence specificity at the center two base pairs of the cognate recognition site. We show that the preference of HincII for cutting, but not binding, the three cognate sites differing in the center two base pairs has been altered by the mutation Q138F. Five new crystal structures are presented including Q138F HincII bound to GTTAAC and GTCGAC both with and without Ca2+ as well as the structure of wild type HincII bound to GTTAAC. The Q138F HincII/DNA structures show conformational changes in the protein, bound DNA, and at the protein-DNA interface, consistent with the formation of adaptive complexes. Analysis of these structures and the effect of Ca2+ binding on the protein-DNA interface illuminates the origin of the altered specificity by the mutation Q138F in the HincII enzyme. 相似文献
15.
The MvaI restriction endonuclease cuts 5′-CC↓AGG-3′/5′-CC↑TGG-3′ sites as indicated by the arrows. N4-methylation of the inner cytosines (Cm4CAGG/Cm4CTGG) protects the site against MvaI cleavage. Here, we show that MvaI nicks the G-strand of the related sequence (CCGGG/CCCGG, BcnI site) if the inner cytosines are C5-methylated: Cm5C↓GGG/CCm5CGG. At M.SssI-methylated SmaI sites, where two oppositely oriented methylated BcnI sites partially overlap, double-nicking leads to double-strand cleavage (CCm5C↓GGG/CCm5C↑GGG) generating fragments with blunt ends. The double-strand cleavage rate and the stringency of substrate site recognition is lower at the methylation-dependent site than at the canonical target site. MvaI is the first restriction endonuclease shown to possess, besides the ‘normal’ activity on its unmethylated recognition site, also a methylation-directed activity on a different sequence. 相似文献
16.
The restriction endonuclease PvuII which cleaves the sequence CAGCTG, at the position indicated by the arrow, was found to decrease its substrate specificity in the presence of organic solvents. Thirty-three sites, that we have named PvuII sites, were identified on the nucleotide sequence of pBR322 DNA. The new recognition sequences cleaved in pBR322 DNA, at the positions indicated by the arrows, were shown to be AAGCTG, GAGCTG, CNGCTG, CANCTG, CAGNTG, CAGCNG, CAGCTC and CAGCTT. (TAGCTG and the complementary sequence CAGCTA are not present in pBR322 DNA). From these recognition sequences, we deduced that PvuII activity recognizes and cleaves degenerate sequences which differ from the standard PvuII sequence CAGCTG at only one of the recognition site. Any substitution can occur at any one of the six positions in the hexanucleotide sequence. The optimum incubation medium for PvuII activity was found to be: 10-50 mM Tris-HCl, pH 8.5, 12-15 mM MgCl2, 50 mM NaCl, 10% ethanol + 10% dimethylsulfoxide (DMSO). 相似文献
17.
Kommireddy Vasu Easa Nagamalleswari Mai Zahran Petra Imhof Shuang-yong Xu Zhenyu Zhu Siu-Hong Chan Valakunja Nagaraja 《Nucleic acids research》2013,41(21):9812-9824
Restriction enzyme KpnI is a HNH superfamily endonuclease requiring divalent metal ions for DNA cleavage but not for binding. The active site of KpnI can accommodate metal ions of different atomic radii for DNA cleavage. Although Mg2+ ion higher than 500 μM mediates promiscuous activity, Ca2+ suppresses the promiscuity and induces high cleavage fidelity. Here, we report that a conservative mutation of the metal-coordinating residue D148 to Glu results in the elimination of the Ca2+-mediated cleavage but imparting high cleavage fidelity with Mg2+. High cleavage fidelity of the mutant D148E is achieved through better discrimination of the target site at the binding and cleavage steps. Biochemical experiments and molecular dynamics simulations suggest that the mutation inhibits Ca2+-mediated cleavage activity by altering the geometry of the Ca2+-bound HNH active site. Although the D148E mutant reduces the specific activity of the enzyme, we identified a suppressor mutation that increases the turnover rate to restore the specific activity of the high fidelity mutant to the wild-type level. Our results show that active site plasticity in coordinating different metal ions is related to KpnI promiscuous activity, and tinkering the metal ion coordination is a plausible way to reduce promiscuous activity of metalloenzymes. 相似文献
18.
Nucleotide sequence of the EcoRII restriction endonuclease gene 总被引:3,自引:0,他引:3
The nucleotide sequence of a 1394 basepair (bp) DNA fragment containing the EcoRII restriction endonuclease (R.EcoRII) gene was determined. The endonuclease gene is 1206 bp in length (predicted 402 amino acids (aa) and Mr = 45 178) and is separated by 33 bp from the EcoRII modification methylase (M.EcoRII) gene. The EcoRII restriction-modification system has a tail-to-tail organization of the two genes. 相似文献
19.
An improved method for estimating sequence divergence of DNA using restriction endonuclease mappings
Summary The method proposed by Kaplan and Langley for estimating the extent of sequence divergence between related DNA's using restriction endonuclease maps is modified so that the estimates are easier to compute. In the two-species case, these modifications lead via a maximum likelihood approach to an estimate which is closely related to one recently suggested by Nei and Li (1979) and Gotoh et al. (1979). Simulation studies show that the modified estimates are comparable to those of Kaplan and Langley, providing that there is sufficient homology in the DNA segments of the related species. The M-species case, M 3, is also discussed. 相似文献
20.
BsoBI is a thermophilic restriction endonuclease that cleaves the degenerate DNA sequence C/PyCGPuG (where/=the cleavage site and Py=C or T, Pu=A or G). In the BsoBI-DNA co-crystal structure the D246 residue makes a water-mediated hydrogen bond to N6 of the degenerate base adenine and was proposed to make a complementary bond to O6 of the alternative guanine residue. To investigate the substrate specificity conferred by D246 and to potentially alter BsoBI specificity, the D246 residue was changed to the other 19 amino acids. Variants D246A, D246C, D246E, D246R, D246S, D246T, and D246Y were purified and their cleavage activity determined. Variants D246A, D246S, and D246T display 0.2% to 0.7% of the wild-type cleavage activity. However, the substrate specificity of the three variants is altered significantly. D246A, D246S, and D246T cleave CTCGAG sites poorly. In filter binding assays using oligonucleotides, wild-type BsoBI shows almost equal affinity for CTCGAG and CCCGGG sites. In contrast, the D246A variant shows 70-fold greater binding affinity for the CCCGGG substrate. Recycled mutagenesis was carried out on the D246A variant, and revertants with enhanced activity were isolated by their dark blue phenotype on a dinD Colon, two colons lacZ DNA damage indicator strain. Most of the amino acid substitutions present within the revertants were located outside the DNA-protein interface. This study demonstrates that endonuclease mutants with altered specificity and non-lethal activity can be evolved towards more active variants using a laboratory evolution strategy. 相似文献