首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Even though cell wall proteins of Bacillus subtilis are characterized by specific cell wall retention signals, some of these are also components of the extracellular proteome. In contrast to the majority of extracellular proteins, wall binding proteins disappeared from the extracellular proteome during the stationary phase and are subjected to proteolysis. Thus, the extracellular proteome of the multiple protease-deficient strain WB700 was analyzed which showed an increased stability of secreted WapA processing products during the stationary phase. In addition, stabilization of the WapA processing products was observed also in a sigD mutant strain which is impaired in motility and cell wall turnover. Next, we analyzed if proteins that can be extracted from B. subtilis cell walls are stabilized in the WB700 strain as well as in the sigD mutant. Thus, the cell wall proteome of B. subtilis wild type was defined showing most abundantly cell wall binding proteins (CWBPs) resulting from the WapA and WprA precursor processing. The inactivation of extracellular proteases as well as SigmaD caused an increase of CWBP105 and a decrease of CWBP62 in the cell wall proteome. We conclude that WapA processing products are substrates for the extracellular proteases which are stabilized in the absence of sigD due to an impaired cell wall turnover.  相似文献   

2.
3.
Cells of multicellular organisms are surrounded by and attached to a matrix of fibrous polysaccharides and proteins known as the extracellular matrix. This fibrous network not only serves as a structural support to cells and tissues but also plays an integral part in the process as important as proliferation, differentiation, or defense. While at first sight, the extracellular matrices of plant and animals do not have much in common, a closer look reveals remarkable similarities. In particular, the proteins involved in the adhesion of the cell to the extracellular matrix share many functional properties. At the sequence level, however, a surprising lack of homology is found between adhesion-related proteins of plants and animals. Both protein machineries only reveal similarities between small subdomains and motifs, which further underlines their functional relationship. In this review, we provide an overview on the similarities between motifs in proteins known to be located at the plant cell wall—plasma membrane—cytoskeleton interface to proteins of the animal adhesome. We also show that by comparing the proteome of both adhesion machineries at the level of motifs, we are also able to identify potentially new candidate proteins that functionally contribute to the adhesion of the plant plasma membrane to the cell wall.  相似文献   

4.
The extracellular matrix (ECM) or cell wall is a dynamic system and serves as the first line mediator in cell signaling to perceive and transmit extra- and intercellular signals in many pathways. Although ECM is a conserved compartment ubiquitously present throughout evolution, a compositional variation does exist among different organisms. ECM proteins account for 10% of the ECM mass, however, comprise several hundreds of different molecules with diverse functions. To understand the function of ECM proteins, we have developed the cell wall proteome of a crop legume, chickpea (Cicer arietinum). This comprehensive overview of the proteome would provide a basis for future comparative proteomic efforts for this important crop. Proteomic analyses revealed new ECM proteins of unknown functions vis-à-vis the presence of many known cell wall proteins. In addition, we report here evidence for the presence of unexpected proteins with known biochemical activities, which have never been associated with ECM.  相似文献   

5.
The plant cell wall is a dynamic cellular compartment consisting of a complex matrix of components that can change dramatically in response to environmental stresses. During pathogen attack, for instance, a wide spectrum of proteins that participate in various sequential processes involved in plant defense is secreted into the cell wall. In this study, a mass spectrometry, data-independent acquisition approach known as LC/MS (E) was used to assess temporal changes in the cell wall proteome in response to different levels of an endogenous inducer of plant disease defense responses, salicylic acid (SA). LC/MS (E) was used as a label-free method that enabled simultaneous protein identification and absolute femtomole quantification of each protein secreted into the extracellular matrix. A total of 74 secreted proteins were identified, 63 of which showed increased specific secretion in response to SA. A majority of this induced secretion occurred within 2 h of treatment, indicating that many proteins are involved in the early stages of plant defenses. We also identified a number of apparently nonclassically secreted proteins, suggesting that, as in many nonplant systems, Golgi/ER-independent mechanisms exist for plant protein secretion. These results provide new insight into plant apoplastic defense mechanisms and demonstrate that LC/MS (E) is a powerful tool for obtaining both relative and absolute proteome-scale quantification that can be applied to complex, time- and dose-dependent experimental designs.  相似文献   

6.
The genome of several species has now been elucidated; these genomes indicate the proteomic potential of the cell. While identification of genomes has been, and continues to be, a technically and intellectually demanding process, the identification of the proteome contains inherently greater difficulties. The proteome of each living cell is dynamic, altering in response to the individual cell's metabolic state and reception of intracellular and extracellular signal molecules, and many of the proteins which are expressed will be post-translationally altered. Thus if the purpose of the proteome analysis is to aid the understanding of protein function and interaction, then it is identification of the proteins in their final state which is required: for this mass spectrometric identification of individual proteins, indicating site and nature of modifications, is essential. Here we review the principles of the methodologies involved in such analyses, give some indication of current achievements in plant proteomics, and indicate imminent and prospective technical developments.  相似文献   

7.
Dehydration is the most crucial environmental factor that limits plant growth, development, and productivity affecting agriculture throughout the world. Studies on genetic variations for dehydration tolerance in plants is crucial because divergent cultivars with contrasting traits aid the identification of key cellular components that confer better adaptability. The extracellular matrix (ECM) is a dynamic structure that serves as the repository for important signaling components and acts as a front-line defense. To better understand dehydration adaptation, a proteomic study was performed on the extracellular matrix of ICCV-2, a dehydration-susceptible genotype of chickpea. The proteome was generated with ECM-enriched fractions using two-dimensional gel electrophoresis. The LC-ESI-MS/MS analysis led to the identification of 81 dehydration-responsive proteins. The proteome was then compared with that of JG-62, a tolerant genotype. Comparative proteomics revealed genotype-specific expression of many proteins involved in a variety of cellular functions. Further, the reversible and irreversible changes in the proteomes revealed their differing ability to recover from dehydration-induced damage. We propose that cell wall restructuring and superior homeostasis, particularly the management of reactive oxygen species, may render better dehydration-adaptation. To our knowledge, this is the first report on the comprehensive comparison of dehydration-responsive organellar proteome of two genotypes with contrasting tolerance.  相似文献   

8.
The plant cell wall is the first barrier in response to external stimuli and cell wall proteins (CWPs) can play an important role in the modulation of plant growth and development. In the past 10 years, the plant cell wall proteomics has increasingly become a very active research filed, which provides a broader understanding of CWPs for people. The cell wall proteome of Arabidopsis, rice, and other model plants has begun to take shape, and proteomic technology has become an effective way to identify the candidate functional CWPs in large scale. The challenging work of Francin‐Allami et al. (Proteomics 2015, 15, 2296–2306) is a vital step toward building the most extensive cell wall proteome of a monocot species. They identified 299 cell wall proteins in Brachypodium distachyon grains, and also compared the grain cell wall proteome with those of B. distachyon culms and leaves, which provides a new perspective for further explaining the plant cell wall structures and remodeling mechanism.  相似文献   

9.
Kota U  Goshe MB 《Phytochemistry》2011,72(10):1040-1060
The membrane proteome consists of integral and membrane-associated proteins that are involved in various physiological and biochemical functions critical for cellular function. It is also dynamic in nature, where many proteins are only expressed during certain developmental stages or in response to environmental stress. These proteins can undergo post-translational modifications in response to these different conditions, allowing them to transiently associate with the membrane or other membrane proteins. Along with their increased size, hydrophobicity, and the additional organelle and cellular features of plant cells relative to mammalian systems, the characterization of the plant membrane proteome presents unique challenges for effective qualitative and quantitative analysis using mass spectrometry (MS) analysis. Here, we present the latest advancements developed for the isolation and fractionation of plant organelles and their membrane components amenable to MS analysis. Separations of membrane proteins from these enriched preparations that have proven effective are discussed for both gel- and liquid chromatography-based MS analysis. In this context, quantitative membrane proteomic analyses using both isotope-coded and label-free approaches are presented and reveal the potential to establish a wider-biological interpretation of the function of plant membrane proteins that will ultimately lead to a more comprehensive understanding of plant physiology and their response mechanisms.  相似文献   

10.
11.
植物细胞壁蛋白质组学研究进展   总被引:1,自引:0,他引:1  
植物细胞壁蛋白质在细胞代谢和发育调控、细胞壁组分修饰、信号转导及胁迫响应等生物学事件中具有重要功能.最近,国内外学者开展了大量植物细胞壁蛋白质组学的研究工作,并取得了巨大进展.本文详述了细胞壁蛋白质的分类、提取、鉴定及生物信息学分析的最新进展,总结了植物细胞壁蛋白质组学的应用和面临的挑战,提出了植物细胞壁蛋白质组学研究的框架图,以期为植物细胞壁蛋白质组学的广泛研究提供借鉴.  相似文献   

12.
The cell wall is a critical extracellular structure that provides protection and structural support in plant cells. To study the biological function of the cell wall and the regulation of cell wall resynthesis, we examined cellular responses to enzymatic removal of the cell wall in rice (Oryza sativa) suspension cells using proteomic approaches. We find that removal of cell wall stimulates cell wall synthesis from multiple sites in protoplasts instead of from a single site as in cytokinesis. Nucleus DAPI stain and MNase digestion further show that removal of the cell wall is concomitant with substantial chromatin reorganization. Histone post-translational modification studies using both Western blots and isotope labeling assisted quantitative mass spectrometry analyses reveal that substantial histone modification changes, particularly H3K18(AC) and H3K23(AC), are associated with the removal and regeneration of the cell wall. Label-free quantitative proteome analyses further reveal that chromatin associated proteins undergo dramatic changes upon removal of the cell wall, along with cytoskeleton, cell wall metabolism, and stress-response proteins. This study demonstrates that cell wall removal is associated with substantial chromatin change and may lead to stimulation of cell wall synthesis using a novel mechanism.  相似文献   

13.
Functional roles of effectors of plant-parasitic nematodes   总被引:2,自引:0,他引:2  
Haegeman A  Mantelin S  Jones JT  Gheysen G 《Gene》2012,492(1):19-31
  相似文献   

14.
Cell walls play key roles during plant development. Following their deposition into the cell wall, polysaccharides are continually remodeled according to the growth stage and stress environment to accommodate cell growth and differentiation. To date, little is known concerning the enzymes involved in cell wall remodeling, especially in gramineous and particularly in the grain during development. Here, we investigated the cell wall proteome of the grain of Brachypodium distachyon. This plant is a suitable model for temperate cereal crops. Among the 601 proteins identified, 299 were predicted to be secreted. These proteins were distributed into eight functional classes; the class of proteins that act on carbohydrates was the most highly represented. Among these proteins, numerous glycoside hydrolases were found. Expansins and peroxidases, which are assumed to be involved in cell wall polysaccharide remodeling, were also identified. Approximately half of the proteins identified in this study were newly discovered in grain and were not identified in the previous proteome analysis conducted using the culms and leaves of B. distachyon. Therefore, the data obtained from all organs of B. distachyon infer a global cell wall proteome consisting of 460 proteins. At present, this is the most extensive cell wall proteome of a monocot species.  相似文献   

15.
With the available Arabidopsis genome and near-completion of the rice genome sequencing project, large-scale analysis of plant proteins with mass spectrometry has now become possible. Determining the proteome of a cell is a challenging task, which is complicated by proteome dynamics and complexity. The biochemical heterogeneity of proteins constrains the use of standardized analytical procedures and requires demanding techniques for proteome analysis. Several proteome studies of plant cell organelles have been reported, including chloroplasts and mitochondria. Chloroplasts are of particular interest for plant biologists because of their complex biochemical pathways for essential metabolic functions. Information from the chloroplast proteome will therefore provide new insights into pathway compartmentalization and protein sorting. Some approaches for the analysis of the chloroplast proteome and future prospects of plastid proteome research are discussed here.  相似文献   

16.
The proteome of zebrafish, Danio rerio, embryos has not been studied in great detail mainly due to the presence of high abundance yolk proteins in embryos. Here we report the highest number of the zebrafish embryo proteins identified so far to our knowledge, through a combination of a protein-level fractionation approach (1D SDS-PAGE) and two different peptide-level fractionation approaches (IEF and strong anion exchange (SAX)) of deyolked zebrafish embryos followed by LC-MS/MS. We detected 5267 proteins in total of which 3464 proteins were identified with at least two peptides (less than 1% peptide false discovery rate). The analysis of proteome coverage from each method showed that 56% of detected proteins were common to all approaches and 95% of the detected proteome was obtained from 1D SDS-PAGE approach alone. Bioinformatics analysis of the detected proteome demonstrated that nucleocytoplasmic transport (biological process) and ribosomal proteins (cellular component) were the most over-represented proteins, whereas cell-cell signaling (biological process) and extracellular space proteins (cellular component) were the most under-represented proteins in the identified proteome.  相似文献   

17.
Many developmental processes and induced plant responses have been identified that are directly or indirectly influenced by wall-localized, or apoplastic, molecular interactions and signalling pathways. The yeast-based signal sequence trap (YSST) is a potentially valuable experimental tool to characterize the proteome of the wall and apoplast, or 'secretome', although few studies have been performed with plants and to date this strategy has not been coupled with a subsequent analysis to confirm extracellular localization of candidate proteins in planta. This current report describes the use of the YSST, together with transient expression of a selection of identified proteins as fusions with the reporter GFP, focusing on the complex extracellular interactions between peach (Prunus persica) pollen and pistil tissues. The coupled YSST and GFP localization assay was also used to confirm the extracellular localization of a recently identified pistil-specific basic RNase protein (PA1), as has been observed with S-RNases that are involved in self-incompatibility. This pilot YSST screen of pollinated and unpollinated pistil cDNAs revealed a diverse set of predicted cell wall-localized or plasma membrane-bound proteins, several of which have not previously been described. Transient GFP-fusion assays and RNA gel blot analyses were used to confirm their subcellular localization and to provide further insights into their expression or regulation, respectively. These results demonstrated that the YSST strategy represents an effective means either to confirm the extracellular localization of a specific candidate secreted protein, as demonstrated here with PA1, or to conduct a screen for new extracellular proteins.  相似文献   

18.
19.
Xylem plays a major role in plant development and is considered part of the apoplast. Here, we studied the proteome of Brassica oleracea cv Bartolo and compared it to the plant cell wall proteome of another Brassicaceae, the model plant Arabidopsis thaliana. B. oleracea was chosen because it is technically difficult to harvest enough A. thaliana xylem sap for proteomic analysis. We studied the whole proteome and an N-glycoproteome obtained after Concanavalin A affinity chromatography. Altogether, 189 proteins were identified by LC-MS/MS using Brassica EST and cDNA sequences. A predicted signal peptide was found in 164 proteins suggesting that most proteins of the xylem sap are secreted. Eighty-one proteins were identified in the N-glycoproteome, with 25 of them specific of this fraction, suggesting that they were concentrated during the chromatography step. All the protein families identified in this study were found in the cell wall proteomes. However, proteases and oxido-reductases were more numerous in the xylem sap proteome, whereas enzyme inhibitors were rare. The origin of xylem sap proteins is discussed. All the experimental data including the MS/MS data were made available in the WallProtDB cell wall proteomic database.  相似文献   

20.
Pathogenesis of Staphylococcus aureus, an opportunistic human pathogen, is complex and involves many virulence factors including an array of surface proteins (adhesins) that promote bacterial interactions with extracellular matrix components. A better understanding of these interactions can be achieved by studying the expression of membrane and cell wall associated proteins using a proteome analysis approach. To accomplish this, our goal here was to construct a reference map of membrane and cell wall associated proteins for S. aureus. Various lytic and solubilization methods have been tested to identify a suitable methodology for detection of these proteins in two-dimensional electrophoresis (2DE). Results demonstrate that cell lysis with lysostaphin, which lyses staphylococcal peptidoglycan, followed by solubilization with urea, thiourea, amidosulfobetaine 14 (ASB 14) and dithiothreitol (DTT) is an effective method, yielding a sample comprising proteins of wide molecular ranges and isoelectric points with minimum contamination from cytosolic proteins. Mass spectrometric analysis was employed to identify the membrane and cell surface proteins present in the sample and consequently an initial proteomic map of membrane and cell wall associated proteins for S. aureus is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号