首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model for the generation of oblique saccades is constructed by extending and modifying the one dimensional local feedback model. It is proposed that the visual system stores target location in inertial coordinates, but that the feedback loop which guides saccades works in retinotopic coordinates. To achieve straight trajectories for centripetal and centrifugal saccades in all meridians, a comparator computes motor error as a vector and uses the vectorial error signal to drive two orthogonally-acting burst generators. The generation of straight saccade trajectories when the extraocular muscles are of unequal strengths requires the introduction of a burst-tonic cell input to motor neurons. The model accounts for the results of two-site stimulation of the superior colliculus and frontal eye fields by allowing simultaneous activation of more than one comparator. The postulated existence of multiple comparators suggests that motor error may be computed topographically.  相似文献   

2.
In this work we have studied what mechanisms might possibly underlie arm trajectory modification when reaching toward visual targets. The double-step target displacement paradigm was used with inter-stimulus intervals (ISIs) in the range of 10-300 ms. For short ISIs, a high percentage of the movements were found to be initially directed in between the first and second target locations (averaged trajectories). The initial direction of motion was found to depend on the target configuration, and on : the time difference between the presentation of the second stimulus and movement onset. To account for the kinematic features of the averaged trajectories two modification schemes were compared: the superposition scheme and the abort-replan scheme. According to the superposition scheme, the modified trajectories result from the vectorial addition of two elemental motions: one for moving between the initial hand position and an intermediate location, and a second one for moving between that intermediate location and the final target. According to the abort-replan scheme, the initial plan for moving toward the intermediate location is aborted and smoothly replaced by a new plan for moving from the hand position at the time the trajectory is modified to the final target location. In both tested schemes we hypothesized that due to the quick displacement of the stimulus, the internally specified intermediate goal might be influenced by both stimuli and may be different from the location of the first stimulus. It was found that the statistically most successful model in accounting for the measured data is based on the superposition scheme. It is suggested that superposition of simple independent elemental motions might be a general principle for the generation of modified motions, which allows for efficient, parallel planning. For increasing values of the inferred locations of the intermediate targets were found to gradually shift from the first toward the second target locations along a path that curved toward the initial hand position. These inferred locations show a strong resemblance to the intermediate locations of saccades generated in a similar double-step paradigm. These similarities in the specification of target locations used in the generation of eye and hand movements may serve to simplify visuomotor integration. Received: 22 June 1994 / Accepted in revised form: 15 September 1994  相似文献   

3.
Observers made a saccade between two fixation markers while a probe was flashed sequentially at two locations on a side screen. The first probe was presented in the far periphery just within the observer''s visual field. This target was extinguished and the observers made a large saccade away from the probe, which would have left it far outside the visual field if it had still been present. The second probe was then presented, displaced from the first in the same direction as the eye movement and by about the same distance as the saccade step. Because both eyes and probes shifted by similar amounts, there was little or no shift between the first and second probe positions on the retina. Nevertheless, subjects reported seeing motion corresponding to the spatial displacement not the retinal displacement. When the second probe was presented, the effective location of the first probe lay outside the visual field demonstrating that apparent motion can be seen from a location outside the visual field to a second location inside the visual field. Recent physiological results suggest that target locations are “remapped” on retinotopic representations to correct for the effects of eye movements. Our results suggest that the representations on which this remapping occurs include locations that fall beyond the limits of the retina.  相似文献   

4.
Previous work has demonstrated that upcoming saccades influence visual and auditory performance even for stimuli presented before the saccade is executed. These studies suggest a close relationship between saccade generation and visual/auditory attention. Furthermore, they provide support for Rizzolatti et al.'s premotor model of attention, which suggests that the same circuits involved in motor programming are also responsible for shifts in covert orienting (shifting attention without moving the eyes or changing posture). In a series of experiments, we demonstrate that saccade programming also affects tactile perception. Participants made speeded saccades to the left and right side as well as tactile discriminations of up versus down. The first experiment demonstrates that participants were reliably faster at responding to tactile stimuli near the location of upcoming saccades. In our second experiment, we had the subjects cross their hands and demonstrated that the effect occurs in visual space (rather than the early representations of touch). In our third experiment, the tactile events usually occurred on the opposite side of upcoming eye movement. We found that the benefit at the saccade target location vanished, suggesting that this shift is not obligatory but that it may be vetoed on the basis of expectation.  相似文献   

5.
Mazer JA  Gallant JL 《Neuron》2003,40(6):1241-1250
Natural exploration of complex visual scenes depends on saccadic eye movements toward important locations. Saccade targeting is thought to be mediated by a retinotopic map that represents the locations of salient features. In this report, we demonstrate that extrastriate ventral area V4 contains a retinotopic salience map that guides exploratory eye movements during a naturalistic free viewing visual search task. In more than half of recorded cells, visually driven activity is enhanced prior to saccades that move the fovea toward the location previously occupied by a neuron's spatial receptive field. This correlation suggests that bottom-up processing in V4 influences the oculomotor planning process. Half of the neurons also exhibit top-down modulation of visual responses that depends on search target identity but not visual stimulation. Convergence of bottom-up and top-down processing streams in area V4 results in an adaptive, dynamic map of salience that guides oculomotor planning during natural vision.  相似文献   

6.
We present a model of the eye movement system in which the programming of an eye movement is the result of the competitive integration of information in the superior colliculi (SC). This brain area receives input from occipital cortex, the frontal eye fields, and the dorsolateral prefrontal cortex, on the basis of which it computes the location of the next saccadic target. Two critical assumptions in the model are that cortical inputs are not only excitatory, but can also inhibit saccades to specific locations, and that the SC continue to influence the trajectory of a saccade while it is being executed. With these assumptions, we account for many neurophysiological and behavioral findings from eye movement research. Interactions within the saccade map are shown to account for effects of distractors on saccadic reaction time (SRT) and saccade trajectory, including the global effect and oculomotor capture. In addition, the model accounts for express saccades, the gap effect, saccadic reaction times for antisaccades, and recorded responses from neurons in the SC and frontal eye fields in these tasks.  相似文献   

7.
When goal-directed movements are inaccurate, two responses are generated by the brain: a fast motor correction toward the target and an adaptive motor recalibration developing progressively across subsequent trials. For the saccadic system, there is a clear dissociation between the fast motor correction (corrective saccade production) and the adaptive motor recalibration (primary saccade modification). Error signals used to trigger corrective saccades and to induce adaptation are based on post-saccadic visual feedback. The goal of this study was to determine if similar or different error signals are involved in saccadic adaptation and in corrective saccade generation. Saccadic accuracy was experimentally altered by systematically displacing the visual target during motor execution. Post-saccadic error signals were studied by manipulating visual information in two ways. First, the duration of the displaced target after primary saccade termination was set at 15, 50, 100 or 800 ms in different adaptation sessions. Second, in some sessions, the displaced target was followed by a visual mask that interfered with visual processing. Because they rely on different mechanisms, the adaptation of reactive saccades and the adaptation of voluntary saccades were both evaluated. We found that saccadic adaptation and corrective saccade production were both affected by the manipulations of post-saccadic visual information, but in different ways. This first finding suggests that different types of error signal processing are involved in the induction of these two motor corrections. Interestingly, voluntary saccades required a longer duration of post-saccadic target presentation to reach the same amount of adaptation as reactive saccades. Finally, the visual mask interfered with the production of corrective saccades only during the voluntary saccades adaptation task. These last observations suggest that post-saccadic perception depends on the previously performed action and that the differences between saccade categories of motor correction and adaptation occur at an early level of visual processing.  相似文献   

8.
Saccadic averaging is the phenomenon that two simultaneously presented retinal inputs result in a saccade with an endpoint located on an intermediate position between the two stimuli. Recordings from neurons in the deeper layers of the superior colliculus have revealed neural correlates of saccade averaging, indicating that it takes place at this level or upstream. Recently, we proposed a neural network for internal feedback in saccades. This neural network model is different from other models in that it suggests the possibility that averaging takes place in a stage upstream of the colliculus. The network consists of output units representing the neural map of the deeper layers of the superior colliculus and hidden layers imitating areas in the posterior parietal cortex. The deeper layers of the superior colliculus represent the motor error of a desired saccade, e.g. an eye movement to a visual target. In this article we show that averaging is an emergent property of the proposed network. When two retinal targets with different intensities are simultaneously presented to the network, the activity in the output layer represents a single motor error with a weighted average value. Our goal is to understand the mechanism of weighted averaging in this neural network. It appears that averaging in the model is caused by the linear dependence of the net input, received by the hidden units, on retinal error, independent of its retinal coding format. For nonnormalized retinal error inputs, also the nonlinearity between the net input and the activity of the hidden units plays a role in the averaging process. The averaging properties of the model are in agreement with physiological experiments if the hypothetical retinal error input map is normalized. The neural network predicts that if this normalization is overruled by electrical stimulation, averaging still takes place. However, in this case – as a consequence of the feedback task – the location of the resulting saccade depends on the initial eye position and the total intensity/current applied at the two locations. This could be a way to verify the neural network model. If the assumptions for the model are valid, a physiological implication of this paper is that averaging of saccades takes place upstream of the superior colliculus. Received: 22 June 1997 / Accepted in revised form: 19 February 1998  相似文献   

9.
Lee KM  Ahn KH  Keller EL 《PloS one》2012,7(6):e39886
The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area's role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area's functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory.  相似文献   

10.
When we look at a stationary object, the perceived direction of gaze (where we are looking) is aligned with the physical direction of eyes (where our eyes are oriented) by which the object is foveated. However, this alignment may not hold in a dynamic situation. Our experiments assessed the perceived locations of two brief stimuli (1 ms) simultaneously displayed at two different physical locations during a saccade. The first stimulus was in the instantaneous location to which the eyes were oriented and the second one was always in the same location as the initial fixation point. When the timing of these stimuli was changed intra-saccadically, their perceived locations were dissociated. The first stimuli were consistently perceived near the target that will be foveated at saccade termination. The second stimuli once perceived near the target location, shifted in the direction opposite to that of saccades, as its latency from saccades increased. These results suggested an independent adjustment of gaze orientation from the physical orientation of eyes during saccades. The spatial dissociation of two stimuli may reflect sensorimotor control of gaze during saccades.  相似文献   

11.
Saccadic reaction times (SRTs) were analyzed in the context of stochastic models of information processing (e.g., Townsend and Ashby 1983) to reveal the processing architecture(s) underlying integrative interactions between visual and auditory inputs and the mechanisms of express saccades. The results support the following conclusions. Bimodal (visual + auditory) targets are processed in parallel, and facilitate SRT to an extent that exceeds levels attainable by probability summation. This strongly implies neural summation between elements responding to spatially aligned visual and auditory inputs in the human oculomotor system. Second, express saccades are produced within a separable processing stage that is organized in series with that responsible for intersensory integration. A model is developed that implements this combination of parallel and serial processing. The activity in parallel input channels is summed within a sensory stage which is organized in series with a pre-motor and motor stage. The time course of each subprocess is considered a random variable, and different experimental manipulations can selectively influence different stages. Parallels between the model and physiological data are explored.  相似文献   

12.
Researchers have conjectured that eye movements during visual search are selected to minimize the number of saccades. The optimal Bayesian eye movement strategy minimizing saccades does not simply direct the eye to whichever location is judged most likely to contain the target but makes use of the entire retina as an information gathering device during each fixation. Here we show that human observers do not minimize the expected number of saccades in planning saccades in a simple visual search task composed of three tokens. In this task, the optimal eye movement strategy varied, depending on the spacing between tokens (in the first experiment) or the size of tokens (in the second experiment), and changed abruptly once the separation or size surpassed a critical value. None of our observers changed strategy as a function of separation or size. Human performance fell far short of ideal, both qualitatively and quantitatively.  相似文献   

13.
Our ability to interact with the environment hinges on creating a stable visual world despite the continuous changes in retinal input. To achieve visual stability, the brain must distinguish the retinal image shifts caused by eye movements and shifts due to movements of the visual scene. This process appears not to be flawless: during saccades, we often fail to detect whether visual objects remain stable or move, which is called saccadic suppression of displacement (SSD). How does the brain evaluate the memorized information of the presaccadic scene and the actual visual feedback of the postsaccadic visual scene in the computations for visual stability? Using a SSD task, we test how participants localize the presaccadic position of the fixation target, the saccade target or a peripheral non-foveated target that was displaced parallel or orthogonal during a horizontal saccade, and subsequently viewed for three different durations. Results showed different localization errors of the three targets, depending on the viewing time of the postsaccadic stimulus and its spatial separation from the presaccadic location. We modeled the data through a Bayesian causal inference mechanism, in which at the trial level an optimal mixing of two possible strategies, integration vs. separation of the presaccadic memory and the postsaccadic sensory signals, is applied. Fits of this model generally outperformed other plausible decision strategies for producing SSD. Our findings suggest that humans exploit a Bayesian inference process with two causal structures to mediate visual stability.  相似文献   

14.
Carello CD  Krauzlis RJ 《Neuron》2004,43(4):575-583
The superior colliculus (SC) is well known for its role in the motor control of saccades. Recent work has shown that it also plays a role in the selection of saccades, but a causal role in the process of target selection has not been demonstrated. We applied subthreshold microstimulation to the SC while monkeys performed a task requiring them to select a stimulus as the target for a pursuit or saccade movement. Stimulation increased the proportion of selections toward the stimulus that appeared contralateral to the site of stimulation and also decreased their latencies. For pursuit, this stimulation-induced contralateral response bias was with respect to the initial target location and not the direction of eye movement, demonstrating a causal effect on target choice distinct from any effect on motor preparation. These results show that the SC helps decide the object of the next movement, beyond its traditional responsibility of saccade production.  相似文献   

15.
A model of the saccadic system of salamanders on the basis of electrophysiological and anatomical results is presented. The model includes centers found to be significant for the guidance of saccades in these comparatively simple vertebrates. In particular, these are the optic tectum, the bulbar reticular formation and the motor system. The latter consists of two pairs of neck-muscles, an epaxial and a hypaxial one driven by their respective motoneurons. The model includes a visual, a sensori-motor, and a motor level. At the sensory level, the retinal coordinates are transferred to the optic tectum to establish an orthogonal map of visual angles. A secondary visual map of the ipsilateral eye with a pointsymmetrical organization exists in addition. The premotor system of the tectum was modelled according to an ensemble-coding principle. Thus, local activation of the visual map results in recruitment of an appropriate number of tectal premotor units. Simulation of the model reproduces correct metric properties of salamander saccades under varying stimulus presentations.  相似文献   

16.
The present study investigated the inhibitory effect of visual distractors on the latency of saccades made by hemianopic and normal human subjects. The latency of saccades made by hemianopic subjects to stimuli in their intact visual field was not affected by visual distractors presented within their hemianopic field. In contrast, the latency of saccades made by normal subjects was increased significantly under distractor conditions. The latency increase was larger for temporal than nasal distractors. The results are inconsistent with previous proposals that the crossed retinotectal pathway from the nasal hemiretina to the superior colliculus may mediate a blindsight inhibitory effect when distractors appear within a hemianopic temporal visual field. Instead, the distractor effect appears to reflect the normal processes involved in saccade target selection which may be mediated by a circuit involving both cortical and subcortical structures.  相似文献   

17.
Variable saccade trajectories are produced in visual search paradigms in which multiple potential target stimuli are present. These variable trajectories provide a rich source of information that may lead to a deeper understanding of the basic control mechanisms of the saccadic system. We have used published behavioral observations and neural recordings in the superior colliculus (SC), gathered in monkeys performing visual search paradigms, to guide the construction of a new distributed model of the saccadic system. The new model can account for many of the variations in saccade trajectory produced by the appearance of multiple visual stimuli in a search paradigm. The model uses distributed feedback about current eye motion from the brainstem to the SC to reduce activity there at physiologically realistic rates during saccades. The long-range lateral inhibitory connections between SC cells used in previous models have been eliminated to match recent physiological evidence. The model features interactions between visually activated multiple populations of cells in the SC and distributed and topologically organized inhibitory input to the SC from the SNr to produce some of the types of variable saccadic trajectories, including slightly curved and averaging saccades, observed in visual search tasks. The distributed perisaccadic disinhibition of SC from the substantia nigra (SNr) is assumed to have broad spatial tuning. In order to produce the strongly curved saccades occasionally recorded in visual search, the existence of a parallel input to the saccadic burst generators in addition to that provided by the distributed input from the SC is required. The spatiotemporal form of this additional parallel input is computed based on the assumption that the input from the model SC is realistic. In accordance with other recent models, it is assumed that the parallel input comes from the cerebellum, but our model predicts that the parallel input is delayed during highly curved saccadic trajectories.  相似文献   

18.
The goal of this study was to understand how neural networks solve the 3-D aspects of updating in the double-saccade task, where subjects make sequential saccades to the remembered locations of two targets. We trained a 3-layer, feed-forward neural network, using back-propagation, to calculate the 3-D motor error the second saccade. Network inputs were a 2-D topographic map of the direction of the second target in retinal coordinates, and 3-D vector representations of initial eye orientation and motor error of the first saccade in head-fixed coordinates. The network learned to account for all 3-D aspects of updating. Hidden-layer units (HLUs) showed retinal-coordinate visual receptive fields that were remapped across the first saccade. Two classes of HLUs emerged from the training, one class primarily implementing the linear aspects of updating using vector subtraction, the second class implementing the eye-orientation-dependent, non-linear aspects of updating. These mechanisms interacted at the unit level through gain-field-like input summations, and through the parallel "tweaking" of optimally-tuned HLU contributions to the output that shifted the overall population output vector to the correct second-saccade motor error. These observations may provide clues for the biological implementation of updating.  相似文献   

19.
This article aims to investigate whether auditory stimuli in the horizontal plane, particularly originating from behind the participant, affect audiovisual integration by using behavioral and event-related potential (ERP) measurements. In this study, visual stimuli were presented directly in front of the participants, auditory stimuli were presented at one location in an equidistant horizontal plane at the front (0°, the fixation point), right (90°), back (180°), or left (270°) of the participants, and audiovisual stimuli that include both visual stimuli and auditory stimuli originating from one of the four locations were simultaneously presented. These stimuli were presented randomly with equal probability; during this time, participants were asked to attend to the visual stimulus and respond promptly only to visual target stimuli (a unimodal visual target stimulus and the visual target of the audiovisual stimulus). A significant facilitation of reaction times and hit rates was obtained following audiovisual stimulation, irrespective of whether the auditory stimuli were presented in the front or back of the participant. However, no significant interactions were found between visual stimuli and auditory stimuli from the right or left. Two main ERP components related to audiovisual integration were found: first, auditory stimuli from the front location produced an ERP reaction over the right temporal area and right occipital area at approximately 160–200 milliseconds; second, auditory stimuli from the back produced a reaction over the parietal and occipital areas at approximately 360–400 milliseconds. Our results confirmed that audiovisual integration was also elicited, even though auditory stimuli were presented behind the participant, but no integration occurred when auditory stimuli were presented in the right or left spaces, suggesting that the human brain might be particularly sensitive to information received from behind than both sides.  相似文献   

20.
The latent periods of saccadic eye movements in response to peripheral visual stimuli were measured in 8 right-handed healthy subjects using Posner's paradigm "COST-BENEFIT". In 6 subjects, the saccade latency in response to visual target presented in expected location in valid condition was shorter than that in neutral condition ("benefit"). Increase in saccade latency in response to the visual target presented in unexpected location in valid condition versus neutral condition took place only in 4 subjects ("cost"). A decrease in left-directed saccade latency in response to expected target presented in the left hemifield and increase in saccade latency in response to unexpected left target in comparison with analogous right-directed saccades were observed in valid condition. This phenomenon can be explained by the dominance of the right hemisphere in the processes of spatial orientation and "disengage" of attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号