首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several serine proteases and protease inhibitors have been identified in the crustacean olfactory organ, which is comprised of the lateral flagellum of the antennule and its aesthetascs sensilla that house olfactory receptor neurons and their supporting cells. The function of these proteases in the olfactory organ is unknown, but may include a role in perireception (e.g., odor activation or inactivation) or in the development or survival of olfactory receptor neurons. To examine directly the function of proteases in the olfactory organ of the Caribbean spiny lobster Panulirus argus, we used different tissue fractions from the lateral flagellum in an enzyme activity assay with a variety of protease substrates and inhibitors. Trypsin‐like serine protease activity occurs throughout the lateral flagellum but is enriched in the cell membranes from aesthetascs. Cysteine‐ and metalloprotease activities also occur in olfactory tissue, but are more abundant in tissue fractions other than aesthetascs. To assess the contribution of one of the olfactory serine proteases—CUB‐serine protease (Csp)—Csp was immunoprecipitated using an antibody; results with the remaining fraction suggest that Csp accounts for at least 40% of the total serine protease activity in the olfactory organ. The amount of total serine protease activity follows a developmental axis in the lateral flagellum. Total protease activity is lowest in the proximal zone, which lacks aesthetascs, and the proliferation zone, where olfactory receptor neurons and associated cells are born, and highest in aesthetascs of the distally‐located senescence zone, which has the oldest olfactory tissue. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2004  相似文献   

2.
csp, a gene encoding a protein with high sequence identity to trypsinlike serine protease and CUB domains, was identified from a cDNA library from the olfactory organ (antennular lateral flagellum) of the spiny lobster Panulirus argus. The full-length cDNA sequence of csp is 1801 bp, encoding a protein of 50.25 kD, with three domains: signal peptide, trypsinlike serine protease, and CUB (named for a class of compounds including Complement subcomponents Clr/Cls, Uegf, and Bone morphogenic protein-1). RT-PCR, Northern blots, and immunoblots showed that csp is predominantly expressed in the lateral flagellum and eyestalk. Immunocytochemistry showed that Csp is present in olfactory (aesthetasc) sensilla around auxiliary cells (glia that surround the inner dendrites of olfactory receptor neurons, ORNs) and ORN outer dendrites. We propose that Csp is expressed and secreted by auxiliary cells, associates with ORN cell membranes or extracellular matrix via the CUB domain, and has trypsinlike activity. In the eyestalk, Csp is associated with cells surrounding axons between neuropils of the eyestalk ganglia. Possible functions in the olfactory organ and eyestalk are discussed. To our knowledge, this is the first report from any olfactory system of a gene encoding a protein with serine protease and CUB domains.  相似文献   

3.
csp, a gene encoding a protein with high sequence identity to trypsinlike serine protease and CUB domains, was identified from a cDNA library from the olfactory organ (antennular lateral flagellum) of the spiny lobster Panulirus argus. The full‐length cDNA sequence of csp is 1801 bp, encoding a protein of 50.25 kD, with three domains: signal peptide, trypsinlike serine protease, and CUB (named for a class of compounds including C omplement subcomponents Clr/Cls, U egf, and B one morphogenic protein‐1). RT‐PCR, Northern blots, and immunoblots showed that csp is predominantly expressed in the lateral flagellum and eyestalk. Immunocytochemistry showed that Csp is present in olfactory (aesthetasc) sensilla around auxiliary cells (glia that surround the inner dendrites of olfactory receptor neurons, ORNs) and ORN outer dendrites. We propose that Csp is expressed and secreted by auxiliary cells, associates with ORN cell membranes or extracellular matrix via the CUB domain, and has trypsinlike activity. In the eyestalk, Csp is associated with cells surrounding axons between neuropils of the eyestalk ganglia. Possible functions in the olfactory organ and eyestalk are discussed. To our knowledge, this is the first report from any olfactory system of a gene encoding a protein with serine protease and CUB domains. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 277–302, 2001  相似文献   

4.
The lateral antennular flagellum of decapod crustaceans bears unique olfactory sensilla, namely the aesthetascs, and other sensilla types. In this study, we identify a new major tissue in the lateral flagellum of the Caribbean spiny lobster, Panulirus argus, namely “aesthetasc tegumental glands” (ATGs), based on immunostaining with antibodies against CUB serine protease (Csp), in situ hybridization with csp-specific probes, labeling with the F-actin marker phalloidin, labeling with the nuclear marker Hoechst 33258, and staining with methylene blue. Each ATG has 12–20 secretory cells arranged in a rosette. Each secretory cell has a Csp-immunoreactive basal portion and an apical portion containing granular material (metachromatic staining indicative of acid mucopolysaccharides). At the center of each secretory rosette is a phalloidin-positive common locus that gives rise to a main drainage duct projecting toward the cuticle. Scanning electron and light microscopy show that thin ducts traverse the cuticle and connect to “peg pores” proximal to the bases of the aesthetascs, with 3.4 peg pores per aesthetasc. Since the number of common loci is correlated with the number of peg pores, we conclude that each pore represents the outlet of one ATG, and that the secretions are released from them. We conclude further that ATGs and aesthetascs are functionally linked. We hypothesize that ATG secretions have antifouling and/or friction-reducing properties, and that they are spread over the surface of the aesthetascs by antennular grooming. A review of the literature suggests that ATGs are common in decapod crustacean antennules, and that rosette glands and grooming might be functionally coupled in other body areas.This study was supported by NSF IBN 0077474 and NIH DC00312.  相似文献   

5.
6.
Proliferation and turnover of neurons occurs in the olfactory systems of many animals. In this study, we examined developmental changes in turnover in the olfactory organ of the Caribbean spiny lobster Panulirus argus by examining two life-history stages—early juveniles and young adults. Turnover was compared using external morphology of the olfactory organ before and after molting to determine addition and loss of aesthetascs and other chemosensilla, and BrdU labeling to identify newly proliferated cells. The number of olfactory receptor neurons (ORNs) innervating each aesthetasc increased only slightly over development, but there was a net increase of olfactory sensory units (i.e. aesthetascs and their ORNs) at each molt. This increase was similar in early juveniles and young adults when expressed as absolute number of ORNs neurons but greater in early juveniles when expressed as a proportion of existing ORNs. The net increase in olfactory sensory units in early juveniles is due solely to addition, since virtually no aesthetascs are lost. In contrast, the net increase in olfactory sensory units in adults reflects addition of new units accompanied by considerable loss of old units. These developmental changes result in expansive enlargement of the olfactory organ without turnover in early juveniles, and a more modest growth combined with continuous turnover and replenishment of ORNs in adults.  相似文献   

7.
Serine protease inhibitor Spi2 mediated apoptosis of olfactory neurons   总被引:2,自引:0,他引:2  
The olfactory epithelium of adult mouse, where primary sensory neurons are massively committed to apoptosis by removal of their synaptic target, was used as a model to determine in vivo mechanisms for neuronal cell death induction. A macro-array assay revealed that the death of olfactory neurons is accompanied with over-expression of the serine protease inhibitor Spi2. This over-expression is associated with decreased serine protease activity in the olfactory mucosa. Moreover, in vitro or in vivo inhibition of serine proteases induced apoptotic death of olfactory neuronal cells. Interestingly, Spi2 over-expression is not occurring in olfactory neurons but in cells of the lamina propria, suggesting that Spi2 may act extracellularly as a cell death inducer. In that sense, we present evidence that in vitro Spi2 overexpression generates a secreted signal for olfactory neuron death. Hence, taken together these results document a possible novel mechanism for apoptosis induction that might occur in response to neurodegenerative insults.  相似文献   

8.
9.
Abstract  The protein digestive capability of the larvae of the longhorn beetle ( Oemona hirta , Coleoptera: Cerambycidae, Fabricius, 1775) was investigated. This species feeds only on wood where there is a high proportion of vascular tissue. The pH of the midgut, the major digestive organ, was alkaline and protein hydrolysis was maximal at alkaline pH. Use of specific synthetic peptide substrates showed that the major protease activities were the endopeptidases, trypsin and chymotrypsin-like activity, and the exopeptidase, leucine aminopeptidase and the pH curves corresponded to that with protein substrate. Studies using a range of serine protease inhibitors as well as specific inhibitors of metalloproteases, cysteine proteases and aspartate proteases confirmed a serine protease-based digestive system similar to earlier reports of sapwood-feeding Cerambycids. Control of these insect pests using protease inhibitors is discussed.  相似文献   

10.
The ectodomain of the human transferrin receptor (TfR) is released as soluble TfR into the blood by cleavage within a stalk. The major cleavage site is located C-terminally of Arg-100; alternative cleavage sites are also present. Since the cleavage process is still unclear, we looked for proteases involved in TfR ectodomain release. In the supernatant of U937 histiocytic cells we detected alternatively cleaved TfR (at Glu-110). In membrane fractions of these cells we identified two distinct proteolytic activities responsible for TfR cleavage within the stalk at either Val-108 or Lys-95. Both activities could be inhibited by serine protease inhibitors, but not by inhibitors of any other class of proteases. Protein purification yielded a 28 kDa protein that generated the Val-108 terminus. The protease activity could be ascribed to neutrophil elastase according to the substrate specificity determined by amino acid substitution analysis of synthetic peptides, an inhibitor profile, the size of the protease and the use of specific antibodies. The results of analogous experiments suggest that the second activity is represented by another serine protease, cathepsin G. Thus, membrane-associated forms of neutrophil elastase and cathepsin G may be involved in alternative TfR shedding in U937 cells.  相似文献   

11.
12.
Serine proteases are involved in many processes in the nervous system and specific inhibitors tightly control their proteolytic activity. Thrombin is thought to play a role in tissue development and homeostasis. To date, protease nexin-1 is the only known endogenous protease inhibitor that specifically interferes with thrombotic activity and is expressed in the brain. In this study, we report the detection of a novel thrombin inhibitory activity in the brain of protease nexin-1(-/-) mice. Purification and subsequent analysis by tandem mass spectrometry identified this protein as the phosphatidylethanolamine-binding protein (PEBP). We demonstrate that PEBP exerts inhibitory activity against several serine proteases including thrombin, neuropsin, and chymotrypsin, whereas trypsin, tissue type plasminogen activator, and elastase are not affected. Since PEBP does not share significant homology with other serine protease inhibitors, our results define it as the prototype of a novel class of serine protease inhibitors. PEBP immunoreactivity is found on the surface of Rat-1 fibroblast cells and although its sequence contains no secretion signal, PEBP-H(6) can be purified from the conditioned medium upon recombinant expression.  相似文献   

13.
Extracellular proteases were isolated from the cell-free culture supernatant of the oyster-pathogenic protozoan, Perkinsus marinus, by bacitracin–sepharose affinity chromatography. The purified protease fractions contained >75% of the protease activity initially loaded onto the column with very high specific activity that corresponded to 8–11-fold level of protease enrichment. The isolated proteases hydrolysed a variety of protein substrates including oyster plasma. All of the isolated P. marinus proteases belonged to the serine class of proteases. Inhibitor studies involving spectrophotometric assay and gelatin gel electrophoresis showed high levels of inhibition in the presence of the serine protease inhibitors PMSF, benzamidine and chymostatin, whereas inhibitors of cysteine, aspartic, and metalloproteases showed little or no inhibition. Spectrophotometric assays involving serine-specific peptide substrates further revealed that the isolated proteases belong to the class of chymotrypsin-like serine proteases. A 41.7 kDa monomeric, N-glycosylated, serine protease (designated Perkinsin) has been identified as the major P. marinus extracellular protease.  相似文献   

14.
The nematophagous fungus Arthrobotrys oligospora produced extracellular proteases when grown in a liquid culture, as revealed by measuring the hydrolysis of the chromogenic substrate Azocoll. The extracellular protease activity was inhibited by phenylmethylsulfonyl fluoride (PMSF) and other serine protease inhibitors and partly inhibited by the aspartate protease inhibitor pepstatin and by a cysteine protease inhibitor [l-trans-epoxysuccinyl-leucylamide-(4-guanidino)-butane, or E-64]. Substrate gel electrophoresis showed that the fungus produced several different proteases, including multiple serine proteases. The function of proteases in the infection of nematodes was examined by treating the fungus with various protease inhibitors. None of the inhibitors tested affected the adhesion of nematodes to the traps, but incubating trap-bearing mycelium with a serine protease inhibitor, PMSF, antipain, or chymostatin, or the metalloprotease inhibitor phenanthroline significantly decreased the immobilization of nematodes captured by the fungus. Inhibitors of cysteine or aspartic proteases did not affect the immobilization of captured nematodes. The effects of PMSF on the immobilization of nematodes were probably due to serine proteases produced by the fungus, since the effects were observed when unbound inhibitor was washed away from the fungus before the nematodes were added to the system. No effects were observed when the nematodes only were pretreated with PMSF.  相似文献   

15.
Intracellular localization of serine, cysteine and aspartate proteases, as well as their protein inhibitors, in bombyx grain in the postdiapause period of embryogenesis has been studied. Proteolytic activity of aspartate and cysteine proteases was found in lysosomal, mitochondrial, and nuclear fractions of grains. Serine protease activity was not observed in subcellular fractions of grains of the fourth day of postdiapause development. It has been shown that activities of protein inhibitors and certain peptide hydrolases in subcellular fractions provide consistent functioning and fine regulation of the proteolytic enzyme complex.  相似文献   

16.
The tRNA mediated, posttranslational, N-terminal arginylation of proteins occurs in all eukaryotic cells. In nervous tissue, these reactions can be inhibited by endogenous molecules with a molecular weight of between one thousand and five thousand. In the present experiments, exogenous serine protease inhibitors (10–5M or less) but not other types of protease inhibitors, were found to be able to block the arginylation of protein in extracts of rat brain homogenates. Inhibition was not by the usual mode of action of protease inhibitors, but by interfering (non-competitively) with the charging of tRNA. Since arginylated proteins are rapidly ubiquitinated and degraded by cytosolic proteases, serine protease inhibitors may act to stabilize proteins by a dual mechanism of inhibiting arginylation as well as inhibiting serine proteases.  相似文献   

17.
Although mite major group 1 allergens, Der p 1 and Der f 1, were first isolated as cysteine proteases, some studies reported that natural Der p 1 exhibits mixed cysteine and serine protease activity. Clarifying whether the serine protease activity originates from Der p 1 or is due to contamination is important for distinguishing between the pathogenic proteolytic activities of group 1 allergens and mite-derived serine proteases. Recombinant mite group 1 allergens would be useful tool for addressing this issue, because they are completely free from contamination by mite serine proteases. Recombinant Der p 1 and Der f 1, and highly purified natural forms exhibited only cysteine protease activity. However, commercially available natural forms exhibited both activities, but the two activities were eluted into different fractions in size-exclusion column chromatography. The substrate specificity associated with the serine protease activity was similar to that of Der f 3. These results indicate that the serine protease activity does not originate from group 1 allergens.  相似文献   

18.
Cathepsin C is a cysteine protease required for the activation of several pro-inflammatory serine proteases and, as such, is of interest as a therapeutic target. In cathepsin C-deficient mice and humans, the N-terminal processing and activation of neutrophil elastase, cathepsin G, and proteinase-3 is abolished and is accompanied by a reduction of protein levels. Pharmacologically, the consequence of cathepsin C inhibition on the activation of these serine proteases has not been described, due to the lack of stable and non-toxic inhibitors and the absence of appropriate experimental cell systems. Using novel reversible peptide nitrile inhibitors of cathepsin C, and cell-based assays with U937 and EcoM-G cells, we determined the effects of pharmacological inhibition of cathepsin C on serine protease activity. We show that indirect and complete inhibition of neutrophil elastase, cathepsin G, and proteinase-3 is achievable in intact cells with selective and non-cytotoxic cathepsin C inhibitors, at concentrations approximately 10-fold higher than those required to inhibit purified cathepsin C. The concentration of inhibitor needed to block processing of these three serine proteases was similar, regardless of the cell system used. Importantly, cathepsin C inhibition must be sustained to maintain serine protease inhibition, because removal of the reversible inhibitors resulted in the activation of pro-enzymes in intact cells. These findings demonstrate that near complete inhibition of multiple serine proteases can be achieved with cathepsin C inhibitors and that cathepsin C inhibition represents a viable but challenging approach for the treatment of neutrophil-based inflammatory diseases.  相似文献   

19.
Following the addition of EGF or ionomycin to A431 cells, protease activity mediates cleavage of the EGF receptor producing a 60 kDa fragment that includes the intracellular domain (ICD). This fragment is located in both membrane and nuclear fractions. On the basis of sensitivity to chemical inhibitors and overexpression of cDNAs, the rhomboid intramembrane proteases, not γ-secretase proteases, are identified as responsible for the cleavage event. Agonist-initiated cleavage occurs slowly over 3-24 h. Inhibition of calpain protease activity significantly increased the detectable level of ICD fragment.  相似文献   

20.
The effects of protease inhibitors on the secretion of catecholamines were studied in cultured bovine adrenal medullary cells. Although the inhibitors of serine proteases could inhibit the carbamylcholine-induced secretion, they failed to inhibit the secretion evoked by either high K+ or A23187. The thiol protease inhibitor had no effect on the secretion. These results therefore seem to indicate that the serine protease inhibitors may inhibit the receptor-mediated secretion probably through their effects on the plasma membrane, thus suggesting that a possible involvement of the serine, and thiol proteases in exocytosis may be unlikely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号